Isolation, Structure Determination, and Synthesis of Cyclic Tetraglutamic Acids from Box Jellyfish Species Alatina alata and Chironex yamaguchii
Abstract
:1. Introduction
Background
2. Results
2.1. Alatina alata Venom
2.2. Chironex Yamaguchii Venom
2.3. Tissue Distribution of Cnidarins
2.4. Marine Animals Screened for Cnidarin 4A-C (1–3)
2.5. Cytotoxicity and Hemolytic Activity
3. Discussion
4. Materials and Methods
4.1. General Experimantal Procedures
4.2. Species Sample Collection
4.2.1. Alatina alata
4.2.2. Chironex yamaguchii
4.3. Venom Extraction and Preparation
4.3.1. Alatina alata
4.3.2. Chironex yamaguchii
4.4. Isolation of Compounds
4.4.1. Isolation of Cnidarin 4A (1) from Alatina alata
4.4.2. Cnidarin 4A, 4B, and 4C (1–3) Isolation from Chironex Yamaguchii
4.5. Compound Characterization from Alatina alata
4.5.1. Accurate Mass Determination and Routine LC-MS Analyses
4.5.2. NMR of Crude Cnidarin 4A (1)
4.5.3. Preparation of Methyl Esters of Cnidarin 4A (1)
4.5.4. Configurational Analysis of Compound 1 Using the Advanced Marfey’s Method
4.5.5. Quantitation of Compound 1 in Alatina alata Nematocyst and Tentacles
4.5.6. 1H-NMR of Compound 1 and Synthetic 1
4.6. Compound Characterization from Chironex yamaguchii
Marfey Analysis of Authentic Cnidarin 4C (3) and Synthesized llll- and dddd-cyclic tetra-γ-Glutamic Acids
4.7. Screening of Cnidarin 4A, 4B, and 4C (1–3) in Marine Invertebrates
4.7.1. Marine Species Screened for Cnidarins 4A–C (1–3)
4.7.2. Screening Procedure
4.8. Synthesis of Targeted Cyclic Tetraglutamic Acids
4.8.1. ddll Cyclic Tetra-γ-Glutamic Acid (Cnidarin 4A, 1) Synthesis (See Scheme 1)
4.8.2. llll Cyclic Tetraglutamic Acid (Cnidarin 4C, 3) Synthesis (See Scheme 2)
4.9. Bioassays
4.9.1. Cytotoxicity Assay
4.9.2. Hemolysis Assay
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bentlage, B.; Cartwright, P.; Yanagihara, A.A.; Lewis, C.; Richards, G.S.; Collins, A.G. Evolution of box jellyfish (Cnidaria: Cubozoa), a group of highly toxic invertebrates. Proc. R. Soc. B Biol. Sci. 2009, 277, 493–501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fenner, P.J.; Harrison, S.L. Irukandji and Chironex fleckeri jellyfish envenomation in tropical Australia. Wilderness Environ. Med. 2000, 11, 233–240. [Google Scholar] [CrossRef]
- Ramasamy, S.; Isbister, G.K.; Seymour, J.E.; Hodgson, W.C. The in vivo cardiovascular effects of box jellyfish Chironex fleckeri venom in rats: Efficacy of pre-treatment with antivenom, verapamil and magnesium sulphate. Toxicon 2004, 43, 685–690. [Google Scholar] [CrossRef] [PubMed]
- Currie, B.J. Marine antivenoms. J. Toxicol. Clin. Toxicol. 2003, 41, 301–308. [Google Scholar] [CrossRef] [PubMed]
- Brinkman, D.; Burnell, J. Identification, cloning and sequencing of two major venom proteins from the box jellyfish, Chironex fleckeri. Toxicon 2007, 50, 850–860. [Google Scholar] [CrossRef]
- Tibballs, J. Australian venomous jellyfish, envenomation syndromes, toxins and therapy. Toxicon Off. J. Int. Soc. Toxinol. 2006, 48, 830–859. [Google Scholar] [CrossRef]
- Carrette, T.J.; Underwood, A.H.; Seymour, J.E. Irukandji syndrome: A widely misunderstood and poorly researched tropical marine envenoming. Diving Hyperb. Med. 2012, 42, 214–223. [Google Scholar]
- Tibballs, J.; Li, R.; Tibballs, H.A.; Gershwin, L.-A.; Winkel, K.D. Australian carybdeid jellyfish causing “Irukandji syndrome”. Toxicon 2012, 59, 617–625. [Google Scholar] [CrossRef]
- Yanagihara, A.A.; Wilcox, C.; Smith, J.; Surrett, G.W. Cubozoan Envenomations: Clinical Features, Pathophysiology and Management. In The Cnidaria, Past, Present and Future; Springer: Berlin/Heidelberg, Germany, 2016; pp. 637–652. ISBN 978-3-319-31303-0. [Google Scholar]
- Lewis Ames, C.; Bentlage, B. Clarifying the identity of the Japanese Habu-Kurage, Chironex yamaguchii, sp. nov. (Cnidaria: Cubozoa: Chirodropida). Zootaxa 2009, 2030, 59–65. [Google Scholar] [CrossRef] [Green Version]
- Horiike, T.; Nagai, H.; Kitani, S. Identification of allergens in the box jellyfish Chironex yamaguchii that cause sting dermatitis. Int. Arch. Allergy Immunol. 2015, 167, 73–82. [Google Scholar] [CrossRef]
- Lewis, C.; Bentlage, B.; Yanagihara, A.; Gillan, W.; Blerk, J.V.; Keil, D.P.; Bely, A.E.; Collins, A.G. Redescription of Alatina alata (Reynaud, 1830) (Cnidaria: Cubozoa) from Bonaire, Dutch Caribbean. Zootaxa 2013, 3737, 473–487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagai, H.; Takuwa, K.; Nakao, M.; Sakamoto, B.; Crow, G.L.; Nakajima, T. Isolation and characterization of a novel protein toxin from the Hawaiian box jellyfish (sea wasp) Carybdea alata. Biochem. Biophys. Res. Commun. 2000, 275, 589–594. [Google Scholar] [CrossRef]
- Yoshimoto, C.M.; Yanagihara, A.A. Cnidarian (coelenterate) envenomations in Hawai’i improve following heat application. Trans. R. Soc. Trop. Med. Hyg. 2002, 96, 300–303. [Google Scholar] [CrossRef]
- Anderluh, G.; Sepčić, K.; Turk, T.; Maček, P. Cytolytic proteins from cnidarians-an overview. Acta Chim. Slov. 2011, 58, 724–729. [Google Scholar] [PubMed]
- Mariottini, G.L.; Pane, L. Cytotoxic and cytolytic cnidarian venoms. A review on health implications and possible therapeutic applications. Toxins 2013, 6, 108–151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brinkman, D.L.; Burnell, J.N. Biochemical and molecular characterisation of cubozoan protein toxins. Toxicon 2009, 54, 1162–1173. [Google Scholar] [CrossRef] [PubMed]
- Chung, J.J.; Ratnapala, L.A.; Cooke, I.M.; Yanagihara, A.A. Partial purification and characterization of a hemolysin (CAH1) from Hawaiian box jellyfish (Carybdea alata) venom. Toxicon 2001, 39, 981–990. [Google Scholar] [CrossRef]
- Yanagihara, A.A.; Shohet, R.V. Cubozoan venom-induced cardiovascular collapse is caused by hyperkalemia and prevented by zinc gluconate in mice. PLoS ONE 2012, 7, e51368. [Google Scholar] [CrossRef] [Green Version]
- Brinkman, D.L.; Jia, X.; Potriquet, J.; Kumar, D.; Dash, D.; Kvaskoff, D.; Mulvenna, J. Transcriptome and venom proteome of the box jellyfish Chironex fleckeri. BMC Genom. 2015, 16, 407. [Google Scholar] [CrossRef] [Green Version]
- Jouiaei, M.; Casewell, N.; Yanagihara, A.; Nouwens, A.; Cribb, B.; Whitehead, D.; Jackson, T.; Ali, S.; Wagstaff, S.; Koludarov, I.; et al. Firing the sting: Chemically induced discharge of cnidae reveals novel proteins and peptides from box jellyfish (Chironex fleckeri) venom. Toxins 2015, 7, 936–950. [Google Scholar] [CrossRef]
- Jaimes-Becerra, A.; Chung, R.; Morandini, A.C.; Weston, A.J.; Padilla, G.; Gacesa, R.; Ward, M.; Long, P.F.; Marques, A.C. Comparative proteomics reveals recruitment patterns of some protein families in the venoms of Cnidaria. Toxicon 2017, 137, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Fenner, P.J.; Hadok, J.C. Fatal envenomation by jellyfish causing Irukandji syndrome. Med. J. Aust. 2002, 177, 362–363. [Google Scholar] [CrossRef] [PubMed]
- Winkel, K.D.; Tibballs, J.; Molenaar, P.; Lambert, G.; Coles, P.; Ross-Smith, M.; Wiltshire, C.; Fenner, P.J.; Gershwin, L.-A.; Hawdon, G.M. Cardiovascular actions of the venom from the Irukandji (Carukia Barnesi) jellyfish: Effects in human, rat and guinea-pig tissues in vitro and in pigs in vitro. Clin. Exp. Pharmacol. Physiol. 2005, 32, 777–788. [Google Scholar] [CrossRef] [PubMed]
- Nagai, H. Recent progress in jellyfish toxin study. J. Health Sci. 2003, 49, 337–340. [Google Scholar] [CrossRef] [Green Version]
- Ramasamy, S.; Isbister, G.K.; Seymour, J.E.; Hodgson, W.C. Pharmacologically distinct cardiovascular effects of box jellyfish (Chironex fleckeri) venom and a tentacle-only extract in rats. Toxicol. Lett. 2005, 155, 219–226. [Google Scholar] [CrossRef]
- Bailey, P.M.; Little, M.; Jelinek, G.A.; Wilce, J.A. Jellyfish envenoming syndromes: Unknown toxic mechanisms and unproven therapies. Med. J. Aust. 2003, 178, 34–37. [Google Scholar] [CrossRef]
- Lau, M.-T.; Manion, J.; Littleboy, J.B.; Oyston, L.; Khuong, T.M.; Wang, Q.-P.; Nguyen, D.T.; Hesselson, D.; Seymour, J.E.; Neely, G.G. Molecular dissection of box jellyfish venom cytotoxicity highlights an effective venom antidote. Nat. Commun. 2019, 10, 1655. [Google Scholar] [CrossRef]
- Little, M.; Pereira, P.; Carrette, T.; Seymour, J. Jellyfish responsible for Irukandji syndrome. QJM 2006, 99, 425–427. [Google Scholar] [CrossRef]
- Rocha, J.; Peixe, L.; Gomes, N.; Calado, R. Cnidarians as a source of new marine bioactive compounds—An overview of the last decade and future steps for bioprospecting. Mar. Drugs 2011, 9, 1860–1886. [Google Scholar] [CrossRef]
- Dictionary of Natural Products; CRC Press: Boca Raton, FL, USA, 2019.
- Lindquist, N. Tridentatols D−H, nematocyst metabolites and precursors of the activated chemical defense in the marine hydroid Tridentata marginata (Kirchenpauer 1864). J. Nat. Prod. 2002, 65, 681–684. [Google Scholar] [CrossRef]
- Munekata, E.; Ishiyama, H.; Osakada, F.; Izumi, K. Synthetic cyclopeptides with some neuroactive properties. Pept. Chem. 1980, 181–186. [Google Scholar]
- Hollosi, M.; Katar, M. Synthesis of cyclo-γ-oligoglutamic acid derivatives. Acta Chim. Acad. Sci. Hung. 1972, 73, 247–254. [Google Scholar]
- Weber, J. Poly(gamma-glutamic acid)s are the major constituents of nematocysts in Hydra (Hydrozoa, Cnidaria). J. Biol. Chem. 1990, 265, 9664–9669. [Google Scholar] [PubMed]
- Weber, J. A novel kind of polyanions as principal components of cnidarian nematocysts. Comp. Biochem. Physiol. A Physiol. 1991, 98, 285–291. [Google Scholar] [CrossRef]
- Szczepanek, S.; Cikala, M.; David, C.N. Poly-gamma-glutamate synthesis during formation of nematocyst capsules in Hydra. J. Cell Sci. 2002, 115, 745–751. [Google Scholar]
- Berking, S.; Herrmann, K. Formation and discharge of nematocysts is controlled by a proton gradient across the cyst membrane. Helgol. Mar. Res. 2006, 60, 180–188. [Google Scholar] [CrossRef]
- Park, S.; Piriatinskiy, G.; Zeevi, D.; Ben-David, J.; Yossifon, G.; Shavit, U.; Lotan, T. The nematocyst’s sting is driven by the tubule moving front. J. R. Ssoc. Interface 2017, 14, 20160917. [Google Scholar] [CrossRef]
- Navath, R.S.; Pabbisetty, K.B.; Hu, L. Chemoselective deprotection of N-Boc group in amino acids and peptides by bismuth(III) trichloride. Tetrahedron Lett. 2006, 47, 389–393. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are not available from the authors. |
δC | |
---|---|
Isolated 1 Tetramethyl Ester | Synthetic 1 Tetramethyl Ester |
25.83 | 25.81 |
26.63 | 26.61 |
30.73 | 30.69 |
31.42 | 31.38 |
50.09 | 50.07 |
51.38 | 51.36 |
51.94 | 51.91 |
51.98 | 51.96 |
170.69 | 170.65 |
172.19 | 172.17 |
172.56 | 172.55 |
172.82 | 172.81 |
Position | 13C-NMR (ppm) | 1H-NMR (ppm) | Mult. | J (Hz) |
---|---|---|---|---|
Glu-1 a | ||||
COOH | 177.4 | - | ||
α | 54.5 | 4.37 | dd | 2.4, 6.6 |
β | 28.7 | Hα 1.89 Hβ 2.35 | m m | |
γ | 33.8 | 2H 2.41 | m | |
C=O | 174.8 | |||
Glu-2 a | ||||
COOH | 177.8 | - | ||
α | 55.3 | 4.27 | dd | 2.4, 6.6 |
β | 29.6 | Hα 2.01 Hβ 2.13 | m m | |
γ | 33.0 | Hα 2.31 Hβ 2.38 | m m | |
C=O | 175.4 |
Position | 13C-NMR (ppm) | 1H-NMR (ppm) | Mult. | J (Hz) |
---|---|---|---|---|
Glu-1 a | ||||
COOH | 176.42 b | - | ||
α | 54.15 | 4.37 | m | |
β | 28.71 | Hα 1.94 Hβ 2.35 | m m | |
γ | 33.8 | Hα 1.94 Hβ 2.35 | m m | |
C=O | 174.8 | |||
Glu-2 a | ||||
COOH | 176.43 b | - | ||
α | 54.38 | 4.34 | m | |
β | 28.27 | Hα 2.02 Hβ 2.22 | m m | |
γ | 32.87 | Hα 2.36 Hβ 2.46 | m m | |
C=O | 175.3 | |||
Glu-3 a | ||||
COOH | 176.65 c | - | ||
α | 54.8 | 4.32 | m | |
β | 29.11 | Hα 2.06 Hβ 2.16 | m m | |
γ | 33.71 | Hα 2.36 Hα 2.41 | m m | |
C=O | 175.07 | |||
Glu-4a | ||||
COOH | 176.66 c | - | ||
α | 54.38 | 4.33 | m | |
β | 28.81 | Hα 2.02 Hβ 2.16 | m m | |
γ | 33.81 | 2H 2.41 | m | |
C=O | 175.24 |
Position | 13C-NMR (ppm) | 1H-NMR (ppm) | Mult. | J (Hz) |
---|---|---|---|---|
COOH | 175.6 | - | ||
α | 53.3 | 4.41 | dd | 1.4, 6.5 |
β | 28.2 | Hα 1.99 Hβ 2.31 | m m | |
γ | 32.8 | 2H 2.41 | m | |
C=O | 175.0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reinicke, J.; Kitatani, R.; Masoud, S.S.; Galbraith, K.K.; Yoshida, W.; Igarashi, A.; Nagasawa, K.; Berger, G.; Yanagihara, A.; Nagai, H.; et al. Isolation, Structure Determination, and Synthesis of Cyclic Tetraglutamic Acids from Box Jellyfish Species Alatina alata and Chironex yamaguchii. Molecules 2020, 25, 883. https://doi.org/10.3390/molecules25040883
Reinicke J, Kitatani R, Masoud SS, Galbraith KK, Yoshida W, Igarashi A, Nagasawa K, Berger G, Yanagihara A, Nagai H, et al. Isolation, Structure Determination, and Synthesis of Cyclic Tetraglutamic Acids from Box Jellyfish Species Alatina alata and Chironex yamaguchii. Molecules. 2020; 25(4):883. https://doi.org/10.3390/molecules25040883
Chicago/Turabian StyleReinicke, Justin, Ryuju Kitatani, Shadi Sedghi Masoud, Kelly Kawabata Galbraith, Wesley Yoshida, Ayako Igarashi, Kazuo Nagasawa, Gideon Berger, Angel Yanagihara, Hiroshi Nagai, and et al. 2020. "Isolation, Structure Determination, and Synthesis of Cyclic Tetraglutamic Acids from Box Jellyfish Species Alatina alata and Chironex yamaguchii" Molecules 25, no. 4: 883. https://doi.org/10.3390/molecules25040883
APA StyleReinicke, J., Kitatani, R., Masoud, S. S., Galbraith, K. K., Yoshida, W., Igarashi, A., Nagasawa, K., Berger, G., Yanagihara, A., Nagai, H., & Horgen, F. D. (2020). Isolation, Structure Determination, and Synthesis of Cyclic Tetraglutamic Acids from Box Jellyfish Species Alatina alata and Chironex yamaguchii. Molecules, 25(4), 883. https://doi.org/10.3390/molecules25040883