Biological and Spectroscopic Investigations of New Tenoxicam and 1.10-Phenthroline Metal Complexes
Abstract
:1. Introduction
2. Results and Discussion
2.1. FT-IR Spectra
2.2. UV–Visible Spectra
2.3. 1H NMR Spectra
2.4. Mass Spectra
2.5. Thermal Analysis Studies
2.6. Antimicrobial Efficiency
2.6.1. Antifungal Activity
2.6.2. Antibacterial Activity
2.6.3. Mode of Action
2.7. Phytotoxicity Assay
2.8. Cytotoxicity Screening
3. Experimental
3.1. Chemicals, Materials, and Biological Species
3.2. Synthesis of New Metal Complexes
3.3. Instruments
3.4. Antimicrobial Investigation
3.4.1. Antifungal Activity
3.4.2. Antibacterial Activity
3.5. Phytotoxicity Assay
3.6. Cytotoxic Activity
MTT Cytotoxicity Assay
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Weder, J.E.; Dillon, C.T.; Hambley, T.W.; Kennedy, B.J.; Lay, P.A.; Biffin, J.R.; Regtop, H.L.; Davies, N.M. Copper complexes of non-steroidal anti-inflammatory drugs: An opportunity yet to be realized. Coord. Chem. Rev. 2002, 232, 95–126. [Google Scholar] [CrossRef]
- Gonzalez, J.P.; Todd, P.A. A Preliminary review of its pharmacodynamic and pharmacokinetic properties and therapeutic efficacy. Drugs 1987, 34, 289–310. [Google Scholar] [CrossRef] [PubMed]
- Atkobar, Z.; Tuncel, M. The polarographic determination of tenoxicam in the pharmaceutical preparations. Anal. Lett. 1996, 29, 2383–2397. [Google Scholar] [CrossRef]
- Blake, D.W.; Bjorksten, A.R.; Libreri, F.C. Oral Tenoxicam for Peripheral Orthopaedic Surgery: A Pharmacokinetic Study. Anaesth. Intens. Care 1997, 25, 142–146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tamasi, G.; Bernini, C.; Corbini, G.; Owens, N.F.; Messori, L.; Scaletti, F.; Massai, L.; LoGiudice, P.; Cini, R. Synthesis, spectroscopic and DFT structural characterization of two novel ruthenium(III) oxicam complexes. In vivo evaluation of anti-inflammatory and gastric damaging activities. J. Inorg. Biochem. 2014, 134, 25–35. [Google Scholar]
- Cini, R.; Tamasi, G.; Defazio, S.; Hursthouse, M.B. Unusual coordinating behavior by three non-steroidal anti-inflammatory drugs from the oxicam family towards copper(II). Synthesis, X-ray structure for copper(II)–isoxicam, –meloxicam and –cinnoxicam-derivative complexes, and cytotoxic activity for a copper(II)–piroxicam complex. J. Inorg. Biochem. 2007, 101, 1140–1152. [Google Scholar]
- Nesseem, D.I.; Eid, S.F.; El-Houseny, S.S. Development of novel transdermal self-adhesive films for tenoxicam, an anti-inflammatory drug. Life Sci. 2011, 89, 430–438. [Google Scholar] [CrossRef]
- Erbas, M.; Simsek, T.; Kiraz, H.A.; Sahin, H.; Toman, H. Comparison of the effectivity of oral and intra-articular administration of tenoxicam in patients with knee osteoarthritis. Rev. Bras. Anestesiol. 2015, 65, 333–337. [Google Scholar] [CrossRef] [Green Version]
- Baran, E.J. Quimica Bioinorganica; McGraw-Hill Interamericana: Madrid, Spain, 1995. [Google Scholar]
- Adam, A.M.A. Ca(II), Sr(II) and Ba(II) ion interaction with the rheumatoid arthitis drug tenoxicam: Structural, thermal, and biological characterization. Appl. Organometal. Chem. 2018, 32, e4055. [Google Scholar]
- McCormick, D.L.; Phillips, J.M.; Horn, T.L.; Johnson, W.D.; Steele, V.E.; Lubet, R.A. Over expression of Cyclooxygenase-2 in Rat oral cancers and prevention of oral carcinogenesis in rats by selective and non-selective COX inhibitors. Cancer. Prev. Res. 2010, 3, 73–81. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.V.; Tarun, P.; Kumar, T.A. Transdermal drug delivery system for non-steroidal anti inflammatory drugs: A review. J. Pharm. Res. 2013, 3, 3588–3605. [Google Scholar]
- Gurpinar, E.; Grizzle, W.E.; Piazza, G.A. COX-independent mechanisms of cancer chemoprevention by anti-inflammatory drugs. Front. Oncol. 2013, 3, 1–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sadeek, S.A.; Abd El-Hamid, S.M. Synthesis spectroscopic, thermal analysis and in vitro biological properties of some new metal complexes with gemifloxacin and 1,10-phenanthroline. J. Therm. Anal. Calorim. 2016, 124, 547–562. [Google Scholar] [CrossRef]
- Kucková, L.; Jomová, K.; Švorcová, A.; Valko, M.; Segľa, P.; Moncoľ, J.; Kožíšek, J. Synthesis, crystal structure, spectroscopic properties and potential biological activities of salicylate‒neocuproine ternary Copper(II) complexes. Molecules 2015, 20, 2115–2137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zayed, M.A.; Nour El-Dien, F.A.; Mohamed, G.G.; El-Gamel, N.E.A. Structure investigation, spectral, thermal, X-ray and mass characterization of piroxicam and its metal complexes. Spectrochim. Acta A 2004, 60, 2843–2852. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, G.G.; El-Gamel, N.E.A. Synthesis, investigation and spectroscopic characterization of piroxicam ternary complexes of Fe(II), Fe(III), Co(II), Ni(II), Cu(II) and Zn(II) with glycine and dl-phenylalanine. Spectrochim. Acta A 2004, 60, 3141–3154. [Google Scholar] [CrossRef]
- Hay, M.T.; Hainaut, B.J.; Geib, S.J. Synthesis and characterization of a novel iron (III) silsesquioxane compound. Inorg. Chem. Commun. 2003, 6, 431–434. [Google Scholar] [CrossRef]
- Manonmani, J.; Thirumuruhan, R.; Kandaswamy, M.; Narayanan, V.; Shanmuga, S.; Raj, S.; Ponnuswamy, M.N.; Shanmugan, G.; Fun, H.K. Synthesis of copper(II) and nickel(II) complexes using compartmental ligands: X-ray, electrochemical and magnetic studies. Polyhedron 2001, 20, 3039–3048. [Google Scholar] [CrossRef]
- Cini, R.; Giorgi, G.; Cinquantini, A.; Rossi, C.; Sabat, M. Metal complexes of the anti-inflammatory drug piroxicam. Inorg. Chem. 1990, 29, 5197–5200. [Google Scholar] [CrossRef]
- Kovala-Demertzi, D. Recent advances on non-steroidal anti-inflammatory drugs, NSAIDs: Organotin complexes of NSAIDs. J. Organomet. Chem. 2006, 691, 1767–1774. [Google Scholar] [CrossRef]
- Galani, A.; Demertzis, M.A.; Kubicki, M.; Kovala-Demertzi, D. Organotin-drug interactions organotin adducts of lornoxicam, synthesis and characterization of first complexes of lornoxicam. Eur. J. Inorg. Chem. 2003, 9, 1761–1767. [Google Scholar] [CrossRef]
- Defazio, S.; Cini, R. Synthesis, X-ray structure and molecular modelling analysis of cobalt (II), nickel (II), zinc (II) and cadmium (II) complexes of the widely used anti-inflammatory drug meloxicam. J. Chem. Soc. Dalton Trans. 2002, 9, 1888–1897. [Google Scholar] [CrossRef]
- Radecka-Paryzek, W.; Luks, E. The scandium (III) ion as a template for the synthesis of a hexaaza Schiff base macrocyclic ligand. J. Monatsh. Chem. 1995, 126, 795–798. [Google Scholar] [CrossRef]
- Costamagna, J.; Carruso, F.; Rossi, M.; Campos, M.; Canales, J.; Ramirez, J. Precursors of hexa-azamacrocycles synthesis and X-ray structure of 2,9-diaminophenanthroline-bisacetate-co(ii) and 6,6′-diaminobipyridine-bisacetate-M(ii) (M = Ni, Cu). J. Coord. Chem. 2001, 54, 247–259. [Google Scholar]
- Mohamed, A.A.; Sadeek, S.A.; Abd El-Hamid, S.M.; Zordok, W.A.; Awad, H.M. Mixed-ligand complexes of tenoxicam drug with some transition metal ions in presence of 2,2/-bipyridine: Synthesis, spectroscopic characterization, thermal analysis, density functional theory and in vitro cytotoxic activity. J. Mol. Struct. 2019, 1197, 628–644. [Google Scholar] [CrossRef]
- Li, Y.; Chai, Y.; Yuan, R.; Liang, W. Synthesis Spectroscopic and Biological Evaluation of some Levofloxacin Metal Complexes. Russ. J. Inorg. Chem. 2008, 53, 704–706. [Google Scholar] [CrossRef]
- Sadeek, S.A.; Abd El-Hamid, S.M. Preparation, characterization and cytotoxicity studies of some transition metal complexes with ofloxacin and 1,10-phenanthroline mixed ligand. J. Mol. Struct. 2016, 1122, 175–185. [Google Scholar] [CrossRef]
- El-Tabl, A.S.; El-Saied, A.F.; Al-Hakimi, A.N. Synthesis, spectroscopic investigation and biological activity of metal complexes with ONO tri functionalalized hydrazone ligand. Trans. Met. Chem. 2007, 32, 689–701. [Google Scholar] [CrossRef]
- Mohamed, H.A.; Wadood, M.A.; Farghaly, O.A. Potentiometric and spectrofluorometric studies on complexation of tenoxicam with some metal ions. J. Pharm. Biomed. Anal. 2002, 28, 819–826. [Google Scholar] [CrossRef]
- Kose, D.A.; Kaya, A.; Necefoglu, H. Synthesis and characterization of bis (N, N-diethylnicotinamide) m-hydroxybenzoate complexes of Co(II), Ni(II), Cu(II) and Zn(II). Russ. J. Coord. Chem. 2007, 33, 422–428. [Google Scholar] [CrossRef]
- Lever, A.B.P. The electronic spectra of tetragonal metal complexes analysis and significance. Coord. Chem. Rev. 1968, 3, 119–140. [Google Scholar] [CrossRef]
- Mohamed, G.G.; Abd El-Wahab, Z.H. Salisaldehyde-2-aminobenzimidazole schiff base complexes of Fe(III), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II). J. Therm. Anal. 2003, 73, 347–359. [Google Scholar] [CrossRef]
- Masoud, M.S.; Zaki, Z.M. Synthesis and characterization of 5-(arylazo)thiobarbituric acids and their complexes. Met. Chem. 1988, 13, 321–327. [Google Scholar] [CrossRef]
- Macias, B.; Martinez, M.; Sanchez, A.; Dominguez-Gil, A.A. physico-chemical study of the interaction of ciprofloxacin and ofloxacin with polivaientcations. Int. J. Pharm. 1994, 106, 229–235. [Google Scholar]
- El –Gamel, N.E.A.; Gerlach, D. Uranyl and transition metals chelates of tenoxicam. Crystal structures of trans, trans-[Co(II)-(Hten)2(dmso)2], trans, trans-[Zn(II)-(Hten)2(dmso)2] and solvate cis,cis-[UO2(VI)(Hten)2 (H2O)2].C2H5OH. Coord. Chem. 2008, 61, 2246–2265. [Google Scholar] [CrossRef]
- Khedr, A.M.; Draz, D.F. Synthesis, spectroscopic, and thermal analyses of trinuclear Mn(II), Co(II), Ni(II), and Zn(II) complexes with some sulfa derivatives. J. Coord. Chem. 2010, 63, 1418–1429. [Google Scholar] [CrossRef]
- Zordok, W.A.; Sadeek, S.A. Synthesis spectroscopic characterization, biological studies and DFT calculations on some transition metal complexes of NO donor ligand. J. Mol. Struct. 2018, 1158, 205–220. [Google Scholar] [CrossRef]
- Ringer, A.L.; Sherrill, C.D.; King, R.A.; Crawford, T.D. Low-lying singlet excited states of isocyanogen. Int. J. Quant. Chem. 2008, 108, 1137–1140. [Google Scholar] [CrossRef]
- Coats, A.W.; Redfern, J.P. Kinetic parameters from thermogravimetric data. Nature 1964, 201, 68–69. [Google Scholar] [CrossRef]
- Horowitz, H.W.; Metzger, G. A New Analysis of thermogravimetric traces. Anal. Chem. 1963, 35, 1464–1468. [Google Scholar] [CrossRef]
- El Gammal, O.A. Mononuclear and binuclear complexes derived from hydrazone Schiff base NON donor ligand: Synthesis, structure, theoretical and biological studies. Inorg. Chim. Acta 2015, 435, 73–81. [Google Scholar] [CrossRef]
- Elshafie, H.S.; Sakr, S.H.; Sadeek, S.A.; Camele, I. Biological investigations and spectroscopic studies of new Moxifloxacin/Glycine-Metal complexes. Chem. Biodiver. 2019, 16, e1800633. [Google Scholar]
- Sakr, S.H.; Elshafie, H.S.; Camele, I.; Sadeek, S.A. Synthesis, spectroscopic, and biological studies of mixed ligand complexes of gemifloxacin and glycine with Zn(II), Sn(II), and Ce(III). Molecules 2018, 23, e1182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patel, N.H.; Parekh, H.M.; Patel, M.N. Synthesis, physicochemical characteristics, and biocidal activity of some transition metal mixed-ligand complexes with bidentate (NO and NN) Schiff bases. Pharm. Chem. J. 2007, 1, 78–81. [Google Scholar] [CrossRef]
- Zygadlo, J.A.; Guzman, C.A.; Grosso, N.R. Antifungal properties of the leaf oils of Tagetesminuta L. and Tagetesfilifolia Lag. J. Essent. Oil Res. 1994, 6, 617–621. [Google Scholar] [CrossRef]
- Elshafie, H.S.; Mancini, E.; Camele, I.; De Martino, l.; De Feo, V. In vivo antifungal activity of two essential oils from Mediterranean plants against postharvest brown rot disease of peach fruit. Ind. Crop. Prod. 2015, 66, 11–15. [Google Scholar] [CrossRef]
- Elshafie, H.S.; Amato, M.; De Feo, V.; Camele, I. Chemical composition and antimicrobial activity of Chia (Salvia hispanica l.) essential oil. Eur. Food Res. Technol. 2018, 244, 1675–1682. [Google Scholar] [CrossRef]
- Ceglie, F.; Elshafie, H.S.; Verrastro, V.; Tittarelli, F. Evaluation of olive pomace and green waste composts as peat substitutes for organic tomato seedling production. J. Compost. Sci. Util. 2011, 19, 293–300. [Google Scholar] [CrossRef]
- Emam, A.; Samah, N.; Loutfy, A.; Mostafa, A.A.; Awad, H.M.; Mohamed, M.B. Cytotoxicity, biocompatibility and cellular response of carbon dots–plasmonic based nano-hybrids for bioimaging. RSC Adv. 2017, 7, 23502–23514. [Google Scholar] [CrossRef] [Green Version]
- Hassan, A.S.; Mady, M.F.; Awad, H.M.; Hafez, T.S. Synthesis and antitumor activity of some new pyrazolo [1, 5-a] pyrimidines. Chin. Chem. Lett. 2017, 28, 388–393. [Google Scholar] [CrossRef]
- Flefel, E.M.; El-Sayed, W.A.; Mohamed, A.M.; El-Sofany, W.I.; Awad, H.M. Synthesis and Anticancer Activity of New 1-Thia-4-azaspiro[4.5]decane, Their Derived Thiazolopyrimidine and 1,3,4-Thiadiazole Thioglycosides. Molecules 2017, 22, 1–13. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the new prepared compounds are available from the authors. |
Compounds | ν(O-H);enolate and H2O; | ν(C=O); amide | ν(C=N) in pyridyl H2Ten | ν(C=N) in pyridyl Bipy | νas(so2) | νs(so2) | ν(M-O) and ν(M-N) |
---|---|---|---|---|---|---|---|
H2Ten | 3432s | 1635vs | 1599s | 1327s | 1040 m | - | |
Phen | 3380 mbr | - | - | 1586 ms | - | - | - |
(A) | 3402 m,br | 1600 s | 1549 m | 1510 vw | 1325 m | 1050vw | 608 m 526 w 424 vw |
(B) | 3436 s | 1600 s | 1551 m | 1520 w | 1328 s | 1042 w | 624 m 582 m 528 m |
(C) | 3387 s,br | 1627 vs | 1592 s | 1524 m | 1325 m | 1052 vw | 626 vw 586 m 543 vw |
(D) | 3423 m,br | 1640 vs | 1533 w | 1501 sh | 1326 vs | 1037 vs | 617 m 530 w 423 w |
(E) | 3429 m,br | 1600 vs | 1547 m | 1510 w | 1328 s | 1041 vw | 627 w 548 vw 526 w |
Assignments (nm) | H2Ten | Phen | Mixed Ligand Complex With | ||||
---|---|---|---|---|---|---|---|
(A) | (B) | (C) | (D) | (E) | |||
π-π* transitions | 241 257 | 273 | 225 257 | 257 | 256 | 235 257 | 244 265 |
n-π* transitions | 383 | 350 | 383 | 382 | 386 | 380 | 382 |
Ligand-metal charge transfer | - | - | 520 | 510 | 560 | 530 | 550 |
d-d transition | - | - | 615 | 620 | 605 | 630 | --- |
Compounds | Decomposition | Tmax (οC) | Weight Loss (%) | Lost Species | |
---|---|---|---|---|---|
Calc. | Found | ||||
H2Ten (C13H11N3O4S2) | First step | 228 | 92.89 | 93.83 | 5C2H2+2SO+CO2+0.5H2+1.5N2 |
Second step | 92.89 | 93.83 | |||
Residue | 7.11 | 6.17 | 2C | ||
Phen (C12H10N2O) | First step | 95 | 9.07 | 9.02 | |
Second step | 278 | 90.93 | 90.98 | H2O | |
Total loss | 100 | 100 | 4C2H2+C4H2+N2 | ||
Residue | |||||
(A) (MnC25H27N5O8S2Cl2) | First step | 124 | 5.03 | 5.04 | 2H2O |
Second step | 208 | 30.19 | 30.30 | 6C2H2+2NO | |
Third step | 447,611 | 53.19 | 53.15 | 5C2H2+NCCl+HCl+CO+N2+2SO | |
Total loss | 88.41 | 83.49 | |||
Residue | 11.59 | 11.51 | MnO+C | ||
(B) (CoC25H25N5O7S2Cl2) | First step | 63 | 2.56 | 2.50 | H2O |
Second step | 212 | 30.83 | 30.80 | 6C2H2+2NO | |
Third step | 251,347 | 54.22 | 54.76 | 5C2H2+2SO+NCCl+HCl+N2+CO | |
Total loss | 87.61 | 88.06 | |||
Residue | 12.39 | 11.94 | CoO+C | ||
(C) (NiC29H35N5O13S2) | First step | 63,120 | 6.89 | 6.85 | 3H2O |
Second step | 258 | 27.54 | 27.35 | 6C2H2+2NO | |
Third step | 349 | 52.99 | 52.92 | 7C2H2+2SO+CO+NH3+2NO2 | |
Total loss | 87.42 | 87.12 | |||
Residue | 12.58 | 12.88 | NiO+2C | ||
(D) (CuC25H27N5O8S2Cl2) | First step | 129 | 4.97 | 4.91 | 2H2O |
Second step | 203 | 29.86 | 29.80 | 6C2H2+2NO | |
Third step | 307 | 47.55 | 47.48 | 4C2H2+2SO+NCCl+0.5Cl2+NO+NH3 | |
Total loss | 82.39 | 85.30 | |||
Residue | 17.61 | 17.81 | CuO+4C | ||
(E) (ZnC25H23N5O6S2Cl2) | First step | 217 | 31.34 | 31.32 | 6C2H2+2NO |
Second step | 439 | 53.39 | 53.98 | 5C2H2+2SO+Cl2+1.5N2+CO+0.5H2 | |
Total loss | 84.73 | 85.30 | |||
Residue | 15.27 | 14.70 | ZnO+2C |
Compounds | Decomposition Range (K) | Ts(K) | Method | Parameter | R a | SD b | ||||
---|---|---|---|---|---|---|---|---|---|---|
E* (KJ/mol) | A (s−1) | ΔS* (KJ/mol.K) | ΔH* (KJ/mol) | ΔG* (KJ/mol) | ||||||
H2Ten (C13H11N3O4S2) | 401–525 | 501 | CR HM | 94.49 99.97 | 7.06 × 107 2.11 × 108 | −0.0989 −0.0898 | 90.32 95.81 | 139.90 140.8 | 0.989 0.984 | 0.154 0.183 |
Phen (C12H10N2O) | 394–572 | 551 | CR HM | 117.83 146.78 | 2.03 × 109 7.97 × 1011 | −0.0718 −0.0222 | 113.25 142.20 | 153.44 152.84 | 0.985 0.984 | 0.206 0.219 |
(A) (MnC25H27N5O8S2Cl2) | 419–629 | 582 | CR HM | 85.59 77.30 | 3.5 × 106 1.65 × 106 | −0.1236 −0.1298 | 81.59 73.30 | 141.05 135.74 | 0.990 0.986 | 0.139 0.165 |
(B) (CoC25H25N5O7S2Cl2) | 439–516 | 482 | CR HM | 128.73 124.95 | 4.37 × 1011 3.73 × 1011 | −0.0260 −0.027 | 124.72 120.94 | 137.28 134.13 | 0.998 0.997 | 0.052 0.067 |
(C) (NiC29H35N5O13S2) | 440–741 | 531 | CR HM | 94.09 103.30 | 5.04 × 106 1.06 × 108 | −0.1213 −0.0960 | 89.68 98.89 | 154.13 149.88 | 0.991 0.985 | 0.132 0.176 |
(D) (CuC25H27N5O8S2Cl2) | 419–507 | 476 | CR HM | 92.53 87.42 | 5.42 × 107 3.02 × 107 | −0.1007 −0.1055 | 88.58 83.46 | 136.52 162.23 | 0.992 0.989 | 0.124 0.148 |
(E) (ZnC25H23N5O6S2Cl2) | 388–541 | 491 | CR HM | 96.50 86.20 | 3.92 × 107 1.05 × 107 | −0.1036 −0.1145 | 92.41 82.12 | 143.32 138.37 | 0.982 0.980 | 0.201 0.209 |
Tested Substances | Fungal Growth Inhibition (%) | |||
---|---|---|---|---|
PPM | P. digitatum | C. acutatum | M. fructicola | |
H2Ten | 250 | 87.5 ± 6.2a | 32.5 ± 2.9c | 67.5 ± 3.1b |
125 | 35.0 ± 3.1c | 14.0 ± 2.1c | 45.0 ± 2.5b | |
A | 250 | 100.0 ± 0.0a | 100.0 ± 0.0a | 100.0 ± 0.0a |
125 | 100.0 ± 0.0a | 100.0 ± 0.0a | 100.0 ± 0.0a | |
B | 250 | 87.5 ± 5.2a | 54.0 ± 2.1b | 81.0 ± 5.7a |
125 | 72.5 ± 4.3b | 22.5 ± 1.2c | 62.5 ± 5.4b | |
C | 250 | 87.5 ± 5.6a | 81.0 ± 5.8ab | 77.5 ± 7.2b |
125 | 15.0 ± 2.1c | 32.5 ± 3.1c | 57.5 ± 2.1b | |
D | 250 | 75.0 ± 3.1b | 65.0 ± 1.4b | 87.0 ± 3.5a |
125 | 36.5 ± 3.5c | 27.0 ± 1.6c | 61.0 ± 2.1b | |
E | 250 | 87.5 ± 2.5a | 62.5 ± 2.8b | 65.0 ± 2.2b |
125 | 62.5 ± 6.4b | 45.0 ± 3.4c | 45.0 ± 5.6b | |
PDA | −ve cont. | 0.0 ± 0.0e | 0.0 ± 0.0d | 0.0 ± 0.0c |
Azoxy. | +ve cont. | 58.1 ± 1.2b | 92.5 ± 1.3a | 45.3 ± 2.1b |
Compound Code | IC50 (µM) ± SD | ||
---|---|---|---|
HCT-116 | MCF-7 | HepG2 | |
H2Ten | 16.3 ± 5.1 | 11.9 ± 4.1 | 10.5 ± 4.1 |
Phen | 0.6 ± 0.3 | 0.5 ± 0.2 | 9.8 ± 3.5 |
(A) | 4.2 ± 1.5 | 3.0 ± 1.1 | 11.1 ± 3.9 |
(B) | 4.3 ± 1.6 | 4.2 ± 1.5 | 11.4 ± 3.8 |
(C) | 18.5 ± 4.9 | 11.2 ± 3.5 | 12.6 ± 4.1 |
(D) | 0.2 ± 0.2 | 0.3 ± 0.2 | 6.8 ± 2.5 |
(E) | 19.3 ± 4.3 | 6.3 ± 2.5 | 12.0 ± 4.1 |
Doxorubicin | 9.4 ± 3.9 | 6.7 ± 2.9 | 10.4 ± 3.6 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elshafie, H.S.; Sadeek, S.A.; Camele, I.; Awad, H.M.; Mohamed, A.A. Biological and Spectroscopic Investigations of New Tenoxicam and 1.10-Phenthroline Metal Complexes. Molecules 2020, 25, 1027. https://doi.org/10.3390/molecules25051027
Elshafie HS, Sadeek SA, Camele I, Awad HM, Mohamed AA. Biological and Spectroscopic Investigations of New Tenoxicam and 1.10-Phenthroline Metal Complexes. Molecules. 2020; 25(5):1027. https://doi.org/10.3390/molecules25051027
Chicago/Turabian StyleElshafie, Hazem S., Sadeek A. Sadeek, Ippolito Camele, Hanem M. Awad, and Amira A. Mohamed. 2020. "Biological and Spectroscopic Investigations of New Tenoxicam and 1.10-Phenthroline Metal Complexes" Molecules 25, no. 5: 1027. https://doi.org/10.3390/molecules25051027
APA StyleElshafie, H. S., Sadeek, S. A., Camele, I., Awad, H. M., & Mohamed, A. A. (2020). Biological and Spectroscopic Investigations of New Tenoxicam and 1.10-Phenthroline Metal Complexes. Molecules, 25(5), 1027. https://doi.org/10.3390/molecules25051027