Chemical Compositions and Anti-Skin-Ageing Activities of Origanum vulgare L. Essential Oil from Tropical and Mediterranean Region
Abstract
:Graphical Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Chemical Materials
2.3. Extraction of Essential Oils by Hydrodistillation
2.4. Characterization of O. vulgare Essential Oils
2.5. Chemical Compositions Determination of O. vulgare Essential oils by Gas Chromatography–Mass Spectrometry (GC–MS)
2.6. Determination of Anti-Wrinkle Activities of Essential Oils
2.6.1. Determination of Antioxidant Activities
1-Diphenyl-2-picrylhydrazyl (DPPH) Assay
Ferric Reducing/Antioxidant Power (FRAP) Assay
Lipid Peroxidation by Ferric Thiocyanate Method (FTC) Method
2.6.2. Determination of Hyaluronidase Inhibitory Activity
2.6.3. Determination of Collagenase Inhibitory Activity
2.6.4. Determination of Elastase Inhibitory Activity
2.7. Statistical Analysis
3. Results and Discussion
3.1. Yield and Appearance of O. vulgare Essential Oils
3.2. Chemical Compositions of O. vulgare Essential Oils
3.3. Antioxidant Activities of O. vulgare Essential Oils
3.4. Anti-Skin-Ageing Activities of O. vulgare Essential Oils
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chishti, S.; Kaloo, Z.A.; Sultan, P. Medicinal importance of genus Origanum: A review. J. Pharmacogn. Phytotherapy. 2013, 5, 170–177. [Google Scholar]
- Can Baser, K.H. Biological and pharmacological activities of carvacrol and carvacrol bearing essential oils. Curr. Pharm. Des. 2008, 14, 3106–3119. [Google Scholar] [CrossRef] [PubMed]
- Liengsakul, M.; Mekpaiboonwatana, S.; Pramojanee, P.; Bronsveld, K.; Huizing, H. Use of GIS and remote sensing for soil mapping and for locating new sites for permanent cropland—A case study in the “highlands” of northern Thailand. Geoderma 1993, 60, 293–307. [Google Scholar] [CrossRef]
- Rahman, S.A.; Rahman, M.F.; Codilan, A.L.; Farhana, K.M. Analysis of the economic benefits from systematic improvements to shifting cultivation and its evolution towards stable continuous agroforestry in the upland of Eastern Bangladesh. Int. Forest Rev. 2007, 9, 536–547. [Google Scholar] [CrossRef]
- Vokou, D.; Kokkini, S.; Bessiere, J.M. Geographic variation of Greek oregano (Origanum vulgare ssp. hirtum) essential oils. Biochem. Syst. Ecol. 1993, 21, 287–295. [Google Scholar] [CrossRef]
- Werker, E. Function of essential oil-secreting glandular hairs in aromatic plans of Lamiacea—A review. Flavour Fragr. J. 1993, 8, 249–255. [Google Scholar] [CrossRef]
- Silva, N.C.C.; Fernandes, J.A. Biological properties of medicinal plants: A review of their antimicrobial activity. J. Venom Anim. Toxins Incl. Trop. Dis. 2010, 16, 402–413. [Google Scholar] [CrossRef]
- Adam, K.; Sivropoulou, A.; Kokkini, S.; Lanaras, T.; Arsenakis, M. Antifungal activities of Origanum vulgare subsp. hirtum, Mentha spicata, Lavandula angustifolia, and Salvia fruticosa essential oils against human pathogenic fungi. J. Agric. Food Chem. 1998, 46, 1739–1745. [Google Scholar]
- Albano, S.M.; Miguel, M.G. Biological activities of extracts of plants grown in Portugal. Ind. Crops Prod. 2011, 33, 338–343. [Google Scholar] [CrossRef]
- Ocana-Fuentes, A.; Arranz-Gutierrez, E.; Senorans, F.J.; Reglero, G. Supercritical fluid extraction of oregano (Origanum vulgare) essentials oils: Anti-inflammatory properties based on cytokine response on THP-1 macrophages. Food Chem. Toxicol. 2010, 48, 1568–1575. [Google Scholar] [CrossRef]
- Edris, A.E. Pharmaceutical and therapeutic potentials of essential oils and their individual volatile constituents: A review. Phytother. Res. 2007, 21, 308–323. [Google Scholar] [CrossRef] [PubMed]
- Mittal, M.; Siddiqui, M.R.; Tran, K.; Reddy, S.P.; Malik, A.B. Reactive oxygen species in inflammation and tissue injury. Antioxid. Redox. Signal. 2014, 20, 1126–1167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Binic, I.; Lazarevic, V.; Ljubenovic, M.; Mojsa, J.; Sokolovic, D. Skin ageing: Natural weapons and strategies. Evid. Based Complement. Alternat. Med. 2013, 2013, 1–10. [Google Scholar]
- Benaiges, A.; Marcet, P.; Armengol, R.; Betes, C.; Girones, E. Study of the refirming effect of a plant complex. Int. J. Cosmet. Sci. 1998, 20, 223–233. [Google Scholar] [CrossRef] [PubMed]
- Phulara, S.C.; Shukla, V.; Tiwari, S.; Pandey, R. Bacopa monnieri promotes longevity in Caenorhabditis elegans under stress conditions. Pharmacogn. Mag. 2015, 11, 410–416. [Google Scholar] [PubMed] [Green Version]
- Guemouri, L.; Artur, Y.; Herberth, B.; Jeandel, C.; Cuny, G.; Siest, G. Biological variability of superoxide dismutase, glutathione peroxidase, and catalase in blood. Clin. Chem. 1991, 37, 1932–1937. [Google Scholar] [CrossRef]
- Junqueira, V.B.; Barros, S.B.; Chan, S.S.; Rodrigues, L.; Giavarotti, L.; Abud, R.L.; Deucher, G.P. Aging and oxidative stress. Mol. Aspects. Med. 2004, 25, 5–16. [Google Scholar] [CrossRef]
- Papakonstantinou, E.; Roth, M.; Karakiulakis, G. Hyaluronic acid: A key molecule in skin aging. Dermato-endocrinology 2012, 4, 253–258. [Google Scholar] [CrossRef] [Green Version]
- Smith, R.M. Alkylarylketones as a retention index scale in liquid chromatography. J. Chromatogr. A 1982, 236, 313–320. [Google Scholar] [CrossRef]
- Baratta, M.T.; Dorman, H.D.; Deans, S.G.; Biondi, D.M.; Ruberto, G. Chemical composition, antimicrobial and antioxidative activity of laurel, sage, rosemary, oregano, and coriander essential oils. J. Essent. Oil Res. 1998, 10, 618–627. [Google Scholar] [CrossRef]
- Chaiyana, W.; Punyoyai, C.; Somwongin, S.; Leelapornpisid, P.; Ingkaninan, K.; Waranuch, N.; Srivilai, J.; Thitipramote, N.; Wisuitiprot, W.; Schuster, R.; et al. Inhibition of 5α-reductase, IL-6 secretion, and oxidation process of Equisetum debile Roxb. ex Vaucher Extract as functional food and nutraceuticals ingredients. Nutrients 2017, 9, 1105. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.K.; Cho, J.J.; Park, E.J.; Choi, J.D. Anti-elastase and anti-hyaluronidase of phenolic substance from Areca catechu as a new anti-ageing agent. Int. J. Cosmet. Sci. 2001, 23, 341–346. [Google Scholar] [CrossRef]
- Thring, T.S.; Hili, P.; Naughton, D.P. Anti-collagenase, anti-elastase and anti-oxidant activities of extracts from 21 plants. BMC Complement. Altern. Med. 2009, 9, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Viuda-Martos, M.; Ruiz-Navajas, Y.; Fernández-López, J.; Pérez-Álvarez, J.A. Antifungal activities of thyme, clove and oregano essential oils. J. Food Saf. 2007, 27, 91–101. [Google Scholar] [CrossRef]
- Velluti, A.; Sanchis, V.; Ramos, A.J.; Egido, J.; Marın, S. Inhibitory effect of cinnamon, clove, lemongrass, oregano and palmarose essential oils on growth and fumonisin B1 production by Fusarium proliferatum in maize grain. Int. J. Food Microbiol. 2003, 89, 145–154. [Google Scholar] [CrossRef]
- Bozin, B.; Mimica-Dukic, N.; Simin, N.; Anackov, G. Characterization of the volatile composition of essential oils of some Lamiaceae spices and the antimicrobial and antioxidant activities of the entire oils. J. Agric. Food Chem. 2006, 54, 1822–1828. [Google Scholar] [CrossRef]
- Robouch, P.; von Holst, C. CRL Evaluation Report on the Analytical Methods submitted in connection with the Application for the Authorisation of a Feed Additive according to Regulation (EC) No 1831/2003; European Commission Joint Research Centre: Geel, Belgium, 2011. [Google Scholar]
- Baser, K.H.; Özek, T.; Tümen, G.; Sezik, E. Composition of the essential oils of Turkish Origanum species with commercial importance. J. Essent. Oil Res. 1993, 5, 619–623. [Google Scholar] [CrossRef]
- Baser, K.H.; Özek, T.; Kürket çüoglu, M.; Tümen, G. The essential oil of Origanum vulgare subsp. hirtum of Turkish origin. J. Essent. Oil Res. 1994, 6, 31–36. [Google Scholar] [CrossRef]
- Salvo, A.; La Torre, G.L.; Rotondo, A.; Cicero, N.; Gargano, R.; Mangano, V.; Casale, K.E.; Dugo, G. Multiple analytical approaches for the organic and inorganic characterization of Origanum vulgare L. samples. Nat. Prod. Res. 2019, 33, 2815–2822. [Google Scholar] [CrossRef]
- Daferera, D.J.; Ziogas, B.N.; Polissiou, M.G. GC-MS analysis of essential oils from some Greek aromatic plants and their fungitoxicity on Penicillium digitatum. J. Agric. Food Chem. 2000, 48, 2576–2581. [Google Scholar] [CrossRef]
- Sivropoulou, A.; Papanikolaou, E.; Nikolaou, C.; Kokkini, S.; Lanaras, T.; Arsenakis, M. Antimicrobial and cytotoxic activities of Origanum essential oils. J. Agric. Food Chem. 1996, 44, 1202–1205. [Google Scholar] [CrossRef]
- Aeschbach, R.; Löliger, J.; Scott, B.C.; Murcia, A.; Butler, J.; Halliwell, B.; Aruoma, O.I. Antioxidant actions of thymol, carvacrol, 6-gingerol, zingerone and hydroxytyrosol. Food Chem. Toxicol. 1994, 32, 31–36. [Google Scholar] [CrossRef]
- Ben Arfa, A.; Combes, S.; Preziosi-Belloy, L.; Gontard, N.; Chalier, P. Antimicrobial activity of carvacrol related to its chemical structure. Lett. Appl. Microbiol. 2006, 43, 149–154. [Google Scholar] [CrossRef] [PubMed]
- Llana-Ruiz-Cabello, M.; Gutiérrez-Praena, D.; Puerto, M.; Pichardo, S.; Jos, Á.; Cameán, A.M. In vitro pro-oxidant/antioxidant role of carvacrol, thymol and their mixture in the intestinal Caco-2 cell line. Toxicol. In Vitro 2015, 29, 647–656. [Google Scholar] [CrossRef] [PubMed]
- Costa, M.F.; Durço, A.O.; Rabelo, T.K.; Barreto, R.D.S.S.; Guimarães, A.G. Effects of Carvacrol, Thymol and essential oils containing such monoterpenes on wound healing: A systematic review. J. Pharm. Pharmacol. 2019, 71, 141–155. [Google Scholar] [CrossRef] [Green Version]
- Jukic, M.; Politeo, O.; Maksimovic, M.; Milos, M.; Milos, M. In vitro acetylcholinesterase inhibitory properties of thymol, carvacrol and their derivatives thymoquinone and thymohydroquinone. Phytother. Res. 2007, 21, 259–261. [Google Scholar] [CrossRef]
- Vinciguerra, V.; Rojas, F.; Tedesco, V.; Giusiano, G.; Angiolella, L. Chemical characterization and antifungal activity of Origanum vulgare, Thymus vulgaris essential oils and carvacrol against Malassezia furfur. Nat. Prod. Res. 2019, 33, 3273–3277. [Google Scholar] [CrossRef]
- Lambert, R.J.W.; Skandamis, P.N.; Coote, P.J.; Nychas, G.J. A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol. J. Appl. Microbiol. 2001, 91, 453–462. [Google Scholar] [CrossRef] [Green Version]
- Didry, N.; Dubreuil, L.; Pinkas, M. Activity of thymol, carvacrol, cinnamaldehyde and eugenol on oral bacteria. Pharm. Acta Helv. 1994, 69, 25–28. [Google Scholar] [CrossRef]
- Yanishlieva, N.V.; Marinova, E.M.; Gordon, M.H.; Raneva, V.G. Antioxidant activity and mechanism of action of thymol and carvacrol in two lipid systems. Food Chem. 1999, 64, 59–66. [Google Scholar] [CrossRef]
- Vardar-Ünlü, G.; Candan, F.; Sökmen, A.; Daferera, D.; Polissiou, M.; Sökmen, M.; Dönmez, E.; Tepe, B. Antimicrobial and antioxidant activity of the essential oil and methanol extracts of Thymus pectinatus Fisch. et Mey. Var. pectinatus (Lamiaceae). J. Agric. Food Chem. 2003, 51, 63–67. [Google Scholar] [CrossRef] [PubMed]
- Verma, R.S.; Padalia, R.C.; Chauhan, A. Volatile constituents of Origanum vulgare L., ‘thymol’ chemotype: Variability in North India during plant ontogeny. Nat. Prod. Res. 2012, 26, 1358–1362. [Google Scholar] [CrossRef] [PubMed]
- Alma, M.H.; Mavi, A.; Yildirim, A.; Digrak, M.; Hirata, T. Screening chemical composition and in vitro antioxidant and antimicrobial activities of the essential oils from Origanum syriacum L. growing in Turkey. Biol. Pharm. Bull. 2003, 26, 1725–1729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, D.; Rawat, D.S. Synthesis and antioxidant activity of thymol and carvacrol based Schiff bases. Bioorg. Med. Chem. Lett. 2013, 23, 641–645. [Google Scholar]
- Trautinger, F. Mechanisms of photodamage of the skin and its functional consequences for skin ageing. Clin. Exp. Dermatol. 2001, 26, 573–577. [Google Scholar] [CrossRef] [PubMed]
- Baumann, L. Skin ageing and its treatment. J. Pathol. Bacteriol. 2007, 211, 241–251. [Google Scholar] [CrossRef] [PubMed]
- Chaiyana, W.; Anuchapreeda, S.; Punyoyai, C.; Neimkhum, W.; Lee, K.H.; Lin, W.C.; Lue, S.C.; Viernstein, H.; Mueller, M. Ocimum sanctum Linn. as a natural source of skin anti-ageing compounds. Ind. Crops Prod. 2019, 127, 217–224. [Google Scholar] [CrossRef]
- Fattahi, T.; Salman, S. Hyaluronic Acid Dermal Fillers. Neurotoxins Fill. Facial Esthet. Surg. 2019, 2019, 4221128. [Google Scholar]
- Reppert, E.; Donegan, J.; Hines, L.E. Ascorbic acid and the hyaluronidase hyaluronic acid reaction. Proc. Soc. Exp. Biol. Med. 1951, 77, 318–320. [Google Scholar] [CrossRef]
- Roomi, M.W.; Ivanov, V.; Kalinovsky, T.; Niedzwiecki, A.; Rath, M. Antitumor effect of ascorbic acid, lysine, proline, arginine, and green tea extract on bladder cancer cell line T-24. Int. J. Urol. 2006, 13, 415–419. [Google Scholar] [CrossRef]
- Facino, R.M.; Carini, M.; Stefani, R.; Aldini, G.; Saibene, L. Anti-elastase and anti-hyaluronidase activities of saponins and sapogenins from Hedera helix, Aesculus hippocastanum, and Ruscus aculeatus: Factors contributing to their efficacy in the treatment of venous insufficiency. Arch. Der Pharmazie. 1995, 328, 720–724. [Google Scholar] [CrossRef] [PubMed]
- Gonulalan, E.M.; Nemutlu, E.; Demirezer, L.O. A new perspective on evaluation of medicinal plant biological activities: The correlation between phytomics and matrix metalloproteinases activities of some medicinal plants. Saudi Pharm. J. 2019, 27, 446–452. [Google Scholar] [CrossRef] [PubMed]
- Chompoo, J.; Upadhyay, A.; Fukuta, M.; Tawata, S. Effect of Alpinia zerumbet components on antioxidant and skin diseases-related enzymes. BMC Complement. Altern. Med. 2012, 12, 106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tu, P.T.B.; Tawata, S. Anti-oxidant, anti-aging, and anti-melanogenic properties of the essential oils from two varieties of Alpinia zerumbet. Molecules 2015, 20, 16723–16740. [Google Scholar] [CrossRef] [Green Version]
Sample Availability: Samples of Origanum vulgare L. essential oil are available from the authors. |
Yield and Characteristics | CO 1 | HO 2 |
---|---|---|
Yield (%) | N.D. 3 | 0.20 ± 0.06 |
Relative density (g/mL) | 0.940 ± 0.0013 | 0.937 ± 0.0021 |
Refractive index | 1.508 ± 0.0001 | 1.508 ± 0.0001 |
1 RT (min) | 2 KI | 3 LKI | 4 MW | Formula | Chemical | Amount (%) | |
---|---|---|---|---|---|---|---|
5 HO | 6 CO | ||||||
4.9 | 924 | 924 a | 136 | C10H16 | Thujene | - | 0.7 |
5.1 | 930 | 936 b | 136 | C10H16 | α-Pinene | - | 1.2 |
6.8 | 991 | 991 a | 136 | C10H16 | β-Myrcene | 0.9 | 1.7 |
7.2 | 1008 | 1006 a | 136 | C10H16 | α-Phellandrene | - | 0.2 |
7.7 | 1028 | 1017 a | 136 | C10H16 | α-Terpinene | 0.7 | 1.5 |
8.0 | 1043 | 1026 a | 134 | C10H14 | p-Cymene | 2.6 | 10.3 |
8.1 | 1049 | 1030 b | 136 | C10H16 | α-Limonene | - | 0.5 |
8.5 | 1068 | 1048 b | 136 | C10H16 | β-Ocimene | 0.3 | - |
9.3 | 1101 | 1060 b | 136 | C10H16 | γ-Terpinene | 7.6 | 7.6 |
11.1 | 1132 | 1088 a | 136 | C10H16 | α-Terpinolene | - | 2.2 |
13.8 | 1177 | 1165 b | 138 | C10H18 | 2-Bornanol | 0.4 | - |
19.9 | 1309 | 1293 a | 150 | C10H14O | m-Thymol | 1.2 | 3.6 |
20.4 | 1322 | 1309 b | 150 | C10H14O | Carvacrol | 79.5 | 64.6 |
24.3 | 1415 | 1420 b | 204 | C15H24 | β-Caryophyllene | 1.4 | 2.9 |
28.1 | 1508 | 1508 b | 204 | C15H24 | β-Bisabolene | 1.2 | 0.2 |
Total identified | 95.8 | 97.2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laothaweerungsawat, N.; Sirithunyalug, J.; Chaiyana, W. Chemical Compositions and Anti-Skin-Ageing Activities of Origanum vulgare L. Essential Oil from Tropical and Mediterranean Region. Molecules 2020, 25, 1101. https://doi.org/10.3390/molecules25051101
Laothaweerungsawat N, Sirithunyalug J, Chaiyana W. Chemical Compositions and Anti-Skin-Ageing Activities of Origanum vulgare L. Essential Oil from Tropical and Mediterranean Region. Molecules. 2020; 25(5):1101. https://doi.org/10.3390/molecules25051101
Chicago/Turabian StyleLaothaweerungsawat, Natnaree, Jakkapan Sirithunyalug, and Wantida Chaiyana. 2020. "Chemical Compositions and Anti-Skin-Ageing Activities of Origanum vulgare L. Essential Oil from Tropical and Mediterranean Region" Molecules 25, no. 5: 1101. https://doi.org/10.3390/molecules25051101
APA StyleLaothaweerungsawat, N., Sirithunyalug, J., & Chaiyana, W. (2020). Chemical Compositions and Anti-Skin-Ageing Activities of Origanum vulgare L. Essential Oil from Tropical and Mediterranean Region. Molecules, 25(5), 1101. https://doi.org/10.3390/molecules25051101