Antidepressant Potential of Lotus corniculatus L. subsp. corniculatus: An Ethnobotany Based Approach
Abstract
:1. Introduction
2. Results
2.1. Biological Activity Studies
2.2. Structure of Isolated Compounds
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Extraction, Fractionation and Isolation Process
4.2.1. Fractionation of MeOH Extract
4.2.2. Determination of the Structure of Compounds
4.3. Biological Activity Tests
4.3.1. Animals
4.3.2. Preparation of Test Samples for Bioassay
4.3.3. Forced Swimming Test
4.3.4. Tail Suspension Test
4.3.5. Antagonism of Hypothermia and Ptosis Induced by Tetrabenazine
4.3.6. The Inhibitory Activity on the MAO A&B
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Yemez:, B.; Alptekin, K. Depresyon etiyolojisi. Psikiyatri Dünyası 1998, 1, 21–25. [Google Scholar]
- Ohayon, M.M. Specific characteristics of the pain/depression association in the general population. J. Clin. Psychiatr. 2004, 65, 5–9. [Google Scholar]
- Zuckerman, B.; Amaro, H.; Bauchner, H.; Cabral, H. Depressive symptoms during pregnancy-Relationship to poor health behaviors. Am. J. Obstet. Gynecol. 1989, 160, 1107–1111. [Google Scholar] [CrossRef]
- Cassano, P.; Fava, M. Depression and public health: An overview. J. Psychosom. Res. 2002, 53, 849–857. [Google Scholar] [CrossRef]
- (WHO), W.H.O. Depression: Key Facts. Available online: http://www.who.int/en/news-room/fact-sheets/detail/depression (accessed on 13 February 2020).
- Hadizadeh, F.; Ebrahimzadeh, M.A.; Hosseinzadeh, H.; Motamed-Shariaty, V.; Salami, S.; Bekhradnia, A.R. Antidepressant and antioxidant activities of some 2-benzoxazolinone derivatives as bupropion analogues. Pharmacologyonline 2009, 1, 331–335. [Google Scholar]
- Bet, P.M.; Hugtenburg, J.G.; Penninx, B.W.J.H.; Hoogendijk, W.J.G. Side effects of antidepressants during long-term use in a naturalistic setting. Eur. Neuropsychopharmacol. 2013, 23, 1443–1451. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.J. Therapeutic effects of herbal extracts and constituents in animal models of psychiatric disorders. Life Sci. 2004, 75, 1659–1699. [Google Scholar] [CrossRef]
- Altundag, E.; Ozturk, M. Ethnomedicinal studies on the plant resources of east Anatolia, Turkey. Procd. Soc. Behv. 2011, 19, 756–777. [Google Scholar] [CrossRef] [Green Version]
- Rates, S.M.K. Plants as source of drugs. Toxicon 2001, 39, 603–613. [Google Scholar] [CrossRef]
- Mezrag, A.; Mohamed, B.; Nicola, M.; Massimiliano, D.; Aissaoui, M.; Lorella, S. Phytochemical investigation and citotoxix activity of Lotus corniculatus. Pharmacology Online 2014, 3, 222–225. [Google Scholar]
- Harborne, J.B. Gossypetin and herbacetin as taxonomic markers in higher plants. Phytochemistry 1969, 8, 177–183. [Google Scholar] [CrossRef]
- Reynaud, J.; Jay, M.; Raynaud, J. Flavonoid glycosides of Lotus corniculatus (Leguminosae). Phytochemistry 1982, 21, 2604–2605. [Google Scholar] [CrossRef]
- Walewska, E.; Strzelecka, H. Flavonoid compounds in aerial parts of Lotus corniculatus L. Herba Polonica 1984, 30, 151–157. [Google Scholar]
- Khalighi-Sigaroodi, F.; Ahvazi, M.; Hadjiakhoondi, A.; Taghizadeh, M.; Yazdani, D.; Khalighi-Sigaroodi, S.; Bidel, S. Cytotoxicity and antioxidant activity of 23 plant species of Leguminosae family. Iran J. Pharm. Res. 2012, 11, 295–302. [Google Scholar]
- Guan, L.P.; Liu, B.Y. Antidepressant-like effects and mechanisms of flavonoids and related analogues. Eur. J. Med. Chem. 2016, 121, 47–57. [Google Scholar] [CrossRef] [Green Version]
- Chilpa, R.R.; Estrada, M.J. Chemistry of antidotal plants. Interciencia 1995, 20, 257+. [Google Scholar]
- Maurich, T.; Iorio, M.; Chimenti, D.; Turchi, G. Erybraedin C and bitucarpin A, two structurally related pterocarpans purified from Bituminaria bituminosa, induced apoptosis in human colon adenocarcinoma cell lines MMR- and p53-proficient and -deficient in a dose-, time-, and structure-dependent fashion. Chem.-Biol. Interact. 2006, 159, 104–116. [Google Scholar] [CrossRef]
- Gnanamanickam, S.S.; Smith, D.A. Selective toxicity of isoflavonoid phytoalexins to gram-positive bacteria. Phytopathology 1980, 70, 894–896. [Google Scholar] [CrossRef]
- Soby, S.; Caldera, S.; Bates, R.; VanEtten, H. Detoxification of the phytoalexins maackiain and medicarpin by fungal pathogens of alfalfa. Phytochemistry 1996, 41, 759–765. [Google Scholar] [CrossRef]
- Messina, M.; Gleason, C. Evaluation of the potential antidepressant effects of soybean isoflavones. Menopause-J. N. Am. Menopause Soc. 2016, 23, 1348–1360. [Google Scholar] [CrossRef] [Green Version]
- Mohan, M.; Attarde, D.; Momin, R.; Kasture, S. Antidepressant, anxiolytic and adaptogenic activity of torvanol A: An isoflavonoid from seeds of Solanum torvum. Nat. Prod. Res. 2013, 27, 2140–2143. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.H. In vitro and in vivo atheroprotective effects of gossypetin against endothelial cell injury by induction of autophagy. Chem. Res. Toxicol. 2015, 28, 202–215. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.; Manna, K.; Bose, C.; Sinha, M.; Das, D.K.; Kesh, S.B.; Chakrabarty, A.; Banerji, A.; Dey, S. Gossypetin, a naturally occurring hexahydroxy flavone, ameliorates gamma radiation-mediated DNA damage. Int. J. Radiat. Biol. 2013, 89, 965–975. [Google Scholar] [CrossRef] [PubMed]
- Mounnissamy, V.M.; Gunasegaran, R.; Gopal, V.; Saraswathy, A. Diuretic activity of gossypetin isolated from Hibiscus sabdariffa in rats. Hamdard Med. 2002, 45, 68–70. [Google Scholar]
- Gulsheen Kumar, A.; Sharma, A. Antianxiety and antidepressant activity guided isolation and characterization of gossypetin from Hibiscus sabdariffa Linn. calyces. J. Biol. Act. Prod. Nat. 2019, 9, 205–214. [Google Scholar] [CrossRef]
- Cai, H.D.; Tao, W.W.; Su, S.L.; Guo, S.; Zhu, Y.; Guo, J.M.; Duan, J.A. Antidepressant activity of flavonoid ethanol extract of Abelmoschus manihot corolla with BDNF up-regulation in the hippocampus. Yao xue xue bao = Acta pharmaceutica Sinica 2017, 52, 222–228. [Google Scholar]
- Kim, J.H.; Lee, J.K. Naringenin enhances NK cell lysis activity by increasing the expression of NKG2D ligands on Burkitt’s lymphoma cells. Arch. Pharmacal Res. 2015, 38, 2042–2048. [Google Scholar] [CrossRef]
- Al-Rejaie, S.S.; Abuohashish, H.M.; Al-Enazi, M.M.; Al-Assaf, A.H.; Parmar, M.Y.; Ahmed, M.M. Protective effect of naringenin on acetic acid-induced ulcerative colitis in rats. World J. Gastroenterol. 2013, 19, 5633–5644. [Google Scholar] [CrossRef]
- Park, J.H.; Lee, J.W.; Paik, H.D.; Cho, S.G.; Nah, S.Y.; Park, Y.S.; Han, Y.S. Cytotoxic effects of 7-O-Butyl naringenin on human breast cancer MCF-7 cells. Food Sci. Biotechnol. 2010, 19, 717–724. [Google Scholar] [CrossRef]
- Patel, K.; Singh, G.K.; Patel, D.K. A review on pharmacological and analytical aspects of naringenin. Chin. J. Integr. Med. 2018, 24, 551–560. [Google Scholar] [CrossRef]
- Yi, L.T.; Li, C.F.; Zhan, X.; Cui, C.C.; Xiao, F.; Zhou, L.P.; Xie, Y. Involvement of monoaminergic system in the antidepressant-like effect of the flavonoid naringenin in mice. Prog. Neuropsychopharmacol. Biol. Psychiatry 2010, 34, 1223–1228. [Google Scholar] [CrossRef]
- Yi, L.T.; Li, J.; Li, H.C.; Su, D.X.; Quan, X.B.; He, X.C.; Wang, X.H. Antidepressant-like behavioral, neurochemical and neuroendocrine effects of naringenin in the mouse repeated tail suspension test. Prog. Neuropsychopharmacol. Biol. Psychiatry 2012, 39, 175–181. [Google Scholar] [CrossRef] [PubMed]
- Tamminga, C.A.; Nemeroff, C.B.; Blakely, R.D.; Brady, L.; Carter, C.S.; Davis, K.L.; Dingledine, R.; Gorman, J.M.; Grigoriadis, D.E.; Henderson, D.C.; et al. Developing novel treatments for mood disorders: Accelerating discovery. Biol. Psychiatry 2002, 52, 589–609. [Google Scholar] [CrossRef]
- Sakagami, Y.; Kumai, S.; Suzuki, A. Isolation and structure of medicarpin-β-D-glucoside in alfalfa. Agric. Biol. Chem. 1974, 38, 1031–1034. [Google Scholar] [CrossRef]
- Yaque, J.G.; Cuéllar, A.; Gaysinski, M.; Monan, M.; Nossin, E.; François-Haugrin, F. New reported flavonol characterized by NMR from the petals of Talipariti elatum S. w. in Cuba. Am. J. Plant Sci. 2016, 7, 1564–1569. [Google Scholar] [CrossRef] [Green Version]
- Ehab, A.R.; Mohammed, H.; Hazem, A.K.; Hassan, A.A. Flavanone glycosides from Gleditsia caspia. J. Nat. Prod. 2010, 3, 35–46. [Google Scholar]
- Porsolt, R.D.; Le Pichon, M.; Jalfre, M. Depression: A new animal model sensitive to antidepressant treatments. Nature 1977, 266, 730–732. [Google Scholar] [CrossRef]
- Dereli Gürağaç, F.T.; Ilhan, M.; Akkol, E.K. Discovery of new antidepressant agents: In vivo study on Anthemis wiedemanniana Fisch & Mey. J. Ethnopharmacol. 2018, 226, 11–16. [Google Scholar]
- Steru, L.; Chermat, R.; Thierry, B.; Simon, P. The tail suspension test-A new method for screening antidepressants in mice. Psychopharmacology 1985, 85, 367–370. [Google Scholar] [CrossRef]
- Gürağaç Dereli, F.T.; Ilhan, M.; Küpeli Akkol, E.J.E. Identification of the main active antidepressant constituents in a traditional Turkish medicinal plant, Centaurea kurdica Reichardt. J. Ethnopharmacol. 2020, 112373. [Google Scholar] [CrossRef]
- Alpermann, H.G.; Schacht, U.; Usinger, P.; Hock, F.J. Pharmacological effects of Hoe-249-A new potential antidepressant. Drug Dev. Res. 1992, 25, 267–282. [Google Scholar] [CrossRef]
- Hwang, K.H. Monoamine oxidase inhibitory activities of Korean medicinal plants classified to cold drugs by the theory of KIMI. Food Sci. Biotechnol. 2003, 12, 238–241. [Google Scholar]
- Küpeli Akkol, E.; Gürağaç, F.T.; Ilhan, M. Plant-based therapies for depressive disorders: Evaluating antidepressant activity of Micromeria myrtifolia Boiss. & Hohen. Molecules 2019, 24, 1–13. [Google Scholar]
Sample Availability: Samples of the compounds are available from the authors. |
Forced Swimming Test | ||||
Material | Dose (mg/kg. p.o.) | Duration of Immobility (s) (Mean ± S.E.M.) | Variation (%) | |
Control | - | 205.13 ± 22.54 | - | |
Aqueous extract | 100 | 204.66 ± 22.49 | −0.23 | |
Imipramine HCl | 30 | 102.87 ± 9.98 ** | −49.85 | |
50 | 85.41 ± 7.64 *** | −58.36 | ||
Tail Suspension Test | ||||
Control | - | 215.37 ± 27.01 | - | |
Aqueous extract | 100 | 204.60 ± 22.40 | −5.00 | |
Imipramine HCl | 30 | 82.81 ± 7.82 *** | −61.55 | |
50 | 71.26 ± 6.91 *** | −66.91 | ||
Antagonism of Tetrabenazine-Induced Ptosis, Hypothermia and Suppression of Locomotor Activity | ||||
Material | Dose (mg/kg) | Ptosis Mean Score (Mean ±S.E.M.) | Locomotor Activity (%) | Mean Decrease in Rectal Temperature (°C) (Mean ± S.E.M.) |
Control | - | 3.83 ± 1.27 | 0.00 | 5.12 ± 0.43 |
Aqueous extract | 100 | 3.50 ± 1.19 | 0.00 | 4.22 ± 0.37 |
Fluoxetine HCl | 25 | 0.00 ± 0.00 *** | 100.00 *** | 0.30 ± 0.03 *** |
Effects of the Extracts | |||
---|---|---|---|
Material | Dose (mg/kg) | Duration of Immobility (s) (Mean ± S.E.M.) | Variation (%) |
Control | - | 210.17 ± 25.59 | - |
n-Hexane extract | 100 | 142.31 ± 20.86 | −32.29 |
EtOAc extract | 165.40 ± 25.02 | −21.30 | |
MeOH extract | 139.97 ± 19.03 ** | −33.40 | |
Imipramine HCl | 30 | 115.76 ± 10.48 ** | −44.92 |
50 | 91.27 ± 8.63 *** | −56.57 | |
Effects of the Fractions Obtained from Active MeOH Extract | |||
Control | - | 205.21 ± 22.31 | - |
Fr. (1−12) | 100 | 129.42 ± 13.09 | −36.93 |
Fr. (13–20) | 115.22 ± 11.03 ** | −43.85 | |
Fr. (21–35) | 140.24 ± 18.03 | −31.66 | |
Fr. (36–42) | 150.46 ± 19.02 | −26.68 | |
Imipramine HCl | 30 | 106.11 ± 9.85 ** | −48.29 |
50 | 85.47 ± 7.40 *** | −58.35 |
Effects of the Extracts | |||
Material | Dose (mg/kg) | Duration of immobility (s) (Mean ± S.E.M.) | Variation (%) |
Control | - | 203.50 ± 22.13 | - |
n-Hexane extract | 100 | 131.99 ± 17.03 | −35.14 |
EtOAc extract | 140.38 ± 19.87 | −31.02 | |
MeOH extract | 125.94 ± 16.57 ** | −38.11 | |
Imipramine HCl | 30 | 88.11 ± 8.01 *** | −56.70 |
50 | 75.37 ± 7.32 *** | −62.96 | |
Effects of the Fractions Obtained from Active MeOH Extract | |||
Material | Dose (mg/kg. p.o.) | Duration of immobility (s) (Mean ± S.E.M.) | Variation (%) |
Control | - | 210.11 ± 25.05 | - |
Fr. (1−12) | 100 | 158.27 ± 19.29 | −24.67 |
Fr. (13–20) | 115.41 ± 14.17 ** | −45.07 | |
Fr. (21–35) | 145.36 ± 18.46 | −30.82 | |
Fr. (36–42) | 131.12 ± 19.73 | −37.59 | |
Imipramine HCl | 30 | 90.02 ± 9.71 ** | −57.16 |
50 | 81.46 ± 6.42 *** | −61.23 |
Effects of the Extracts | ||||
---|---|---|---|---|
Material | Dose(mg/kg) | Ptosis mean score(Mean ± S.E.M.) | Locomotor Activity (%) | Mean Decrease in Rectal Temperature (°C; Mean ± S.E.M.) |
Control | - | 3.83 ± 1.29 | 0.00 | 5.01 ± 0.43 |
n-Hexane extract | 100 | 2.25 ± 0.86 | 16.7 | 1.46 ± 0.11 |
EtOAc extract | 2.50 ± 0.96 | 33.3 | 3.28 ± 0.27 | |
MeOH extract | 1.75 ± 0.52 ** | 66.7 ** | 1.51 ± 0.13 ** | |
Fluoxetine HCl | 25 | 0.00 ± 0.00 *** | 100.00 *** | 0.24 ± 0.02 *** |
Effects of the Fractions Obtained from Active MeOH Extract | ||||
Control | - | 3.82 ± 1.23 | 0.00 | 5.23 ± 0.47 |
Fr. (1–12) | 100 | 2.23 ± 0.82 | 16.7 | 3.28 ± 0.27 |
Fr. (13–20) | 0.15 ± 0.03 ** | 66.7 ** | 0.58 ± 0.07 ** | |
Fr. (21–35) | 2.27 ± 0.83 | 16.7 | 3.82 ± 0.33 | |
Fr. (36–42) | 2.11 ± 0.76 | 33.3 | 2.68 ± 0.18 | |
Fluoxetine HCl | 25 | 0.00 ± 0.00 *** | 100.00 *** | 0.27 ± 0.02 *** |
Material | IC50 (mg/mL) ± S.D. | |
---|---|---|
MAO-A | MAO-B | |
Control | 0.182 ± 0.022 | 0.115 ± 0.046 |
Aqueous extract | 3.273 ± 0.149 | 2.371 ± 0.058 |
n-Hexane extract | 2.154 ± 0.927 | 1.196 ± 0.136 |
EtOAc extract | 4.649 ± 1.023 | 5.182 ± 1.049 |
MeOH extract | 9.315 ± 2.719 | 7.109 ± 1.172 |
Fr. (1–12) | 1.408 ± 0.612 | 3.524 ± 1.281 |
Fr. (13–20) | 8.923 ± 2.041 | 9.305 ± 2.972 |
Fr. (21–35) | 3.287 ± 1.925 | 1.471 ± 0.228 |
Fr. (36–42) | 1.054 ± 0.258 | 2.106 ± 0.130 |
IC50 (M) | ||
Caffeine | 0.004 ± 0.001 | 0.003 ± 0.001 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gürağaç Dereli, F.T.; Khan, H.; Sobarzo-Sánchez, E.; Akkol, E.K. Antidepressant Potential of Lotus corniculatus L. subsp. corniculatus: An Ethnobotany Based Approach. Molecules 2020, 25, 1299. https://doi.org/10.3390/molecules25061299
Gürağaç Dereli FT, Khan H, Sobarzo-Sánchez E, Akkol EK. Antidepressant Potential of Lotus corniculatus L. subsp. corniculatus: An Ethnobotany Based Approach. Molecules. 2020; 25(6):1299. https://doi.org/10.3390/molecules25061299
Chicago/Turabian StyleGürağaç Dereli, Fatma Tuğçe, Haroon Khan, Eduardo Sobarzo-Sánchez, and Esra Küpeli Akkol. 2020. "Antidepressant Potential of Lotus corniculatus L. subsp. corniculatus: An Ethnobotany Based Approach" Molecules 25, no. 6: 1299. https://doi.org/10.3390/molecules25061299
APA StyleGürağaç Dereli, F. T., Khan, H., Sobarzo-Sánchez, E., & Akkol, E. K. (2020). Antidepressant Potential of Lotus corniculatus L. subsp. corniculatus: An Ethnobotany Based Approach. Molecules, 25(6), 1299. https://doi.org/10.3390/molecules25061299