Antiviral Effects of Novel 2-Benzoxyl-Phenylpyridine Derivatives
Abstract
:1. Introduction
2. Results
2.1. Antiviral Activities of Novel 2-Benzoxyl-Phenylpyridine Derivatives against CVB3 and ADV7
2.2. Effects of Test Compounds on Virus Progeny Yields
2.3. Preliminary Studies of the Mechanism(s) of Action of the Compounds against CVB3
2.4. W9, W13, and W15 Affect the Early Stages of Viral Replication in Cells
2.5. W13 Strongly Inhibits CVB3 Replication in Hep-2 Cells
3. Discussion
4. Materials and Methods
4.1. Cells, Viruses, and Tested Compounds
4.2. Antiviral Assays and Selectivity Index
4.3. Progeny Virus Titration
4.4. Analysis of Effective Stage
4.5. Viral Adsorption/entry Analysis
4.6. Viral Release Analysis
4.7. Time of (drug) Addition Experiment
4.8. RNA Extraction and Quantitative Reverse Transcription-PCR
4.9. Immunofluorescence Microscopy
4.10. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Massilamany, C.; Gangaplara, A.; Reddy, J. Intricacies of cardiac damage in coxsackievirus B3 infection: Implications for therapy. Int. J. Cardiol. 2014, 177, 330–339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garmaroudi, F.S.; Marchant, D.; Hendry, R.; Luo, H.; Yang, D.; Ye, X.; Shi, J.; McManus, B.M. Coxsackievirus B3 replication and pathogenesis. Future Microbiol. 2015, 10, 629–653. [Google Scholar] [CrossRef] [PubMed]
- Huber, S.; Ramsingh, A.I. Coxsackievirus-induced pancreatitis. Viral Immunol. 2004, 17, 358–369. [Google Scholar] [CrossRef] [PubMed]
- Kemball, C.C.; Flynn, C.T.; Hosking, M.P.; Botten, J.; WhittonJ, L. Wild-type coxsackievirus infection dramatically alters the abundance, heterogeneity, and immunostimulatory capacity of conventional dendritic cells in vivo. Virology 2012, 429, 74–90. [Google Scholar] [CrossRef] [Green Version]
- Ni, H.X.; Yi, B.; Yin, J.H.; Fang, T.; He, T.F.; Du, Y.; Wang, J.; Zhang, H.W.; Xie, L.; Ding, Y.B.; et al. Epidemiological and etiological characteristics of hand, foot, and mouth disease in Ningbo, China, 2008–2011. J. Clin. Virol. 2012, 54, 342–348. [Google Scholar] [CrossRef]
- Han, J.Y.; Jeong, H.I.; Park, C.W.; Yoon, J.; Ko, J.; Nam, S.J.; Lim, B.K. Cholic Acid Attenuates ER Stress-Induced Cell Death in Coxsackievirus-B3 Infection. J. Microbiol. Biotechnol. 2018, 28, 109–114. [Google Scholar] [CrossRef]
- Zhang, Y.Y.; Li, J.Y.; Xia, H.H.X.; Zhang, S.L.; Zhong, J.; Wu, Y.Y.; Miao, S.K.; Zhou, L.M. Protective effects of losartan in mice with chronic viral myocarditis induced by coxsackievirus B3. Life Sci. 2013, 92, 1186–1194. [Google Scholar] [CrossRef]
- Kim, B.K.; Kim, J.H.; Kim, N.R.; Lee, W.G.; Lee, S.D.; Yun, S.H.; Jeon, E.S.; Kim, Y.C. Development of anti-coxsackievirus agents targeting 3C protease. Bioorg. Med. Chem. Lett. 2012, 22, 6952–6956. [Google Scholar] [CrossRef]
- Fechner, H.; Pinkert, S.; Geisler, A.; Poller, W.; Kurreck, J. Pharmacological and biological antiviral therapeutics for cardiac coxsackievirus infections. Molecules 2011, 16, 8475–8503. [Google Scholar] [CrossRef]
- Thibaut, H.J.; De Palma, A.M.; Neyts, J. Combating enterovirus replication: State-of-the-art on antiviral research. Biochem. Pharmacol. 2012, 83, 185–192. [Google Scholar] [CrossRef]
- Qiu, F.Z.; Shen, X.X.; Li, G.X.; Zhao, L.; Chen, C.; Duan, S.X.; Guo, J.Y.; Zhao, M.C.; Yan, T.F.; Qi, J.J.; et al. Adenovirus associated with acute diarrhea: A case-control study. BMC Infect. Dis. 2018, 18, 450. [Google Scholar] [CrossRef] [PubMed]
- Engelmann, I.; Coiteux, V.; Heim, A.; Magro, L.; Dewilde, A.; Dulery, R.; Hober, D.; Yakoub-Agha, I. Severe adenovirus pneumonia followed by bacterial septicaemia: Relevance of co-infections in allogeneic hematopoietic stem cell transplantation. Infect. Disord. Drug Targets 2016, 16, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Tan, D.Y.; Zhu, H.D.; Fu, Y.Y.; Tong, F.; Yao, D.Q.; Walline, J.; Xu, J.; Yu, X.Z. Severe community-acquired pneumonia caused by human adenovirus in immunocompetent adults: A multicenter case series. PLoS ONE 2016, 11, e0151199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, S.Y.; Luo, Y.P.; Huang, D.D.; Fan, H.; Lu, Q.B.; Wo, Y.; Chen, G.; Zhang, X.A.; Li, Y.; Tong, Y.G.; et al. Fatal pneumonia cases caused by human adenovirus 55 in immunocompetent adults. Infect. Dis. 2015, 48, 40–47. [Google Scholar] [CrossRef]
- Xie, L.Y.; Zhang, B.; Xiao, N.G.; Zhang, F.; Zhao, X.; Liu, Q.; Xie, Z.P.; Gao, H.C.; Duan, Z.J.; Zhong, L.L. Epidemiology of human adenovirus infection in children hospitalized with lower respiratory tract infections in Hunan, China. J. Med. Virol. 2018, 91, 392–400. [Google Scholar] [CrossRef] [Green Version]
- De Clercq, E. The clinical potential of the acyclic(and cyclic)nucleoside phosphonates: The magic of the phosphonate bond. Biochem. Pharmacol. 2011, 82, 99–109. [Google Scholar] [CrossRef] [Green Version]
- Hostetler, K.Y. Alkoxyalkyl prodrugs of acyclic nucleoside phosphonates enhance oral antiviral activity and reduce toxicity: Current state of the art. Antivir. Res. 2009, 82, A84–A98. [Google Scholar] [CrossRef] [Green Version]
- Naesens, L.; Lenaerts, L.; Andrei, G.; Snoeck, R.; Van Beers, D.; Holy, A.; Balzarini, J.; De Clercq, E. Antiadenovirus activities of several classes of nucleoside and nucleotide analogues. Antimicrob. Agents Chemother. 2005, 49, 1010–1016. [Google Scholar] [CrossRef] [Green Version]
- Tang, Z.Z.; Zang, N.; Fu, Y.X.; Ye, Z.X.; Chen, S.S.; Mo, S.; Ren, L.; Liu, E. HMGB1 mediates HADV7 infection-induced pulmonary inflammation in mice. Biochem. Biophys. Res. Commun. 2018, 501, 1–8. [Google Scholar] [CrossRef]
- SÁ, A.G.A.; de Meneses, A.C.; de Araújo, P.H.H.; de Oliveira, D. A review on enzymatic synthesis of aromatic esters used as flavor ingredients for food, cosmetics and pharmaceuticals industries. Trends Food Sci. Technol. 2017, 69, 95–105. [Google Scholar] [CrossRef]
- Adams, T.B.; Cohen, S.M.; Doull, J.; Feron, V.J. The FEMA GRAS assessment of benzyl derivatives used as flavor ingredients. Food Chem. Toxicol. 2005, 43, 1207–1240. [Google Scholar] [CrossRef] [PubMed]
- US Food and Drug Administration. Food additives permitted for direct addition to food for human consumption, flavoring agents and related substances. Code Fed. Regul. 2011, 515. [Google Scholar]
- JECFA. Safety Evaluation of Certain Food Additives and Contaminants: Prepared by the Seventy Seventh Meeting of the Joint FAO/WHO Ex-pert Committee on Food Additives (JECFA). 2007. Available online: http://apps.who.int/iris/bitstream/10665/43645/1/9789241660587_eng.pdf (accessed on 18 May 2006).
- Pavela, R. Essential oils for the development of eco-friendly mosquito larvicides: A review. Ind. Crop. Prod. 2015, 76, 174–187. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, Y.; Yang, T.T.; Li, L.; Li, D. Palladium catalyzed ortho-C–H-benzoxylation of 2-arylpyridines using iodobenzene dibenzoates. Tetrahedron Lett. 2015, 56, 6136–6141. [Google Scholar] [CrossRef]
- Kim, B.-K.; Cho, J.-H.; Jeong, P.; Lee, Y.; Lim, J.J.; Park, K.R.; Eom, S.H.; Kim, Y.-C. Benserazide, the first allosteric inhibitor of Coxsackievirus B3 3C protease. FEBS Lett. 2015, 589, 1795–1801. [Google Scholar] [CrossRef] [Green Version]
- Hoeben, R.C.; Uil, T.G. Adenovirus DNA Replication. Cold Spring Harb Perspect. Biol. 2013, 5, a013003. [Google Scholar] [CrossRef] [Green Version]
- Marrugal-Lorenzo, J.A.; Serna-Gallego, A.; Berastegui-Cabrera, J.; Pachón, J.; Sánchez-Céspedes, J. Repositioning Salicylanilide Anthelmintic Drugs to Treat Adenovirus Infections. Sci. Rep. 2019, 9, 17. [Google Scholar] [CrossRef] [Green Version]
- Zhong, D.W.; Liu, M.M.; Cao, Y.; Zhu, Y.L.; Bian, S.H.; Zhou, J.Y.; Wu, F.J.; Ryu, K.C.; Zhou, L.; Ye, D.Y. Discovery of Metal Ions Chelator Quercetin Derivatives with Potent Anti-HCV Activities. Molecules 2015, 20, 6978–6999. [Google Scholar] [CrossRef] [Green Version]
- Tsuchiya, Y.; Shimizu, M.; Hiyama, Y.; Itoh, K.; Hashimoto, Y.; Nakayama, M.; Horie, T.; Morita, N. Antiviral activity of natural occurring flavonoids in vitro. Chem. Pharm. Bull. 1985, 33, 3881–3886. [Google Scholar] [CrossRef] [Green Version]
- Chen, T.C.; Weng, K.F.; Chang, S.C.; Lin, J.Y.; Huang, P.N.; Shih, S.R. Development of antiviral agents for enteroviruses. J. Antimicrob. Chemother. 2008, 62, 1169–1173. [Google Scholar] [CrossRef] [Green Version]
- Bedard, K.M.; Semler, B.L. Regulation of picornavirus gene expression. Microbes Infect. 2004, 6, 702–713. [Google Scholar] [CrossRef] [PubMed]
- Farkas, T.; Yang, K.; Le Pendu, J.; Baines, J.D.; Cardin, R.D. The Coxsackievirus and Adenovirus Receptor, a Required Host Factor for Recovirus Infection, Is a Putative Enteric Calicivirus Receptor. J. Virol. 2019, 93. [Google Scholar] [CrossRef] [PubMed]
- Kitazato, K.; Wang, Y.; Kobayashi, N. Viral infectious disease and natural products with antiviral activity. Drug Discov. Ther. 2007, 1, 14–22. [Google Scholar]
- Grosso, F.; Stoilov, P.; Lingwood, C.; Brown, M.; Cochrane, A. Suppression of Adenovirus Replication by Cardiotonic Steroids. J. Virol. 2017, 91, e01623-16. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.H.; Tang, S.; Li, Y.H.; Cheng, X.Y.; Zhang, X.; Wang, Y.X.; Su, F.; Song, D.Q. Novel 12N-substituted matrinanes as potential anti-coxsackievirus agents. Bioorg. Med. Chem. Lett. 2017, 274, 829–833. [Google Scholar] [CrossRef]
- Zhai, X.; Qin, Y.; Chen, Y.; Lin, L.; Wang, T.; Zhong, X.; Wu, X.; Chen, S.; Li, J.; Wang, Y.; et al. Coxsackievirus B3 induces the formation of autophagosomes in cardiac fibroblasts both in vitro and in vivo. Exp. Cell Res. 2016, 349, 255–263. [Google Scholar] [CrossRef]
- Feld, J.J.; Jacobson, I.M.; Sulkowski, M.S.; Poordad, F.; Tatsch, F.; Pawlotsky, J.M. Ribavirin Revisited in the Era of Direct-Acting Antiviral Therapy for Hepatitis C Virus Infection. Liver Int. 2017, 37, 5–18. [Google Scholar] [CrossRef] [Green Version]
- Markland, W.; McQuaid, T.J.; Jain, J.; Kwong, A.D. Broadspectrum antiviral activity of the IMP dehydrogenase inhibitor VX-497—a comparison with ribavirin and demonstration of antiviral additivity with alpha interferon. Antimicrob. Agents Chemother. 2000, 44, 859–866. [Google Scholar] [CrossRef] [Green Version]
- Ning, Q.; Brown, D.; Parodo, J.; Cattral, M.; Gorczynski, R.; Cole, E.; Fung, L.; Ding, J.W.; Rotstein, O.; Phillips, M.J.; et al. Ribavirin inhibits viral-induced macrophage production of TNF, IL-1, the procoagulate fg12 prothrombinase and preserves the Thi cytokines production but inhibits Th2 cytokines response. J. Immunol. 1998, 160, 3487–3493. [Google Scholar]
- Crotty, S.; Cameron, C.E.; Andion, R. RNA virus error catastrophe: Direct molecular test by using ribavirin. PNAS 2001, 98, 6895–6900. [Google Scholar] [CrossRef] [Green Version]
- Reed, L.J.; Muench, H. A simple method of estimating fifty percent endpoints. Am. J. Hyg. 1938, 27, 493–497. [Google Scholar]
- Kumar, P.; Nagarajan, A.; Uchil, P.D. Analysis of Cell Viability by the MTT Assay. Cold Spring Harb Protoc. 2018, 6, pdb-prot095505. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the compounds are available from the author Qian Zhang. |
Compound Structure | Compound Number | CVB3 | ADV7 | ||||
---|---|---|---|---|---|---|---|
EC50 a (μM) | CC50 b (μM) | SI c | EC50 (μM) | CC50 (μM) | SI | ||
W1 | - | 594.2 ± 49.1d | - | - | 1057.1 ± 93.5 | - | |
W2 | 100.7 ± 14.1 | 240.3 ± 22.0 | 2.4 | 50.8 ± 16.7 | >655.7 | >12.9 | |
W3 | - | 630.4 ± 39.4 | - | - | 920.8 ± 59.5 | - | |
W4 | 54.4 ± 11.1 | 221.6 ± 24.1 | 4.1 | - | 796.9 ± 45.7 | - | |
W5 | - | 33.5 ± 9.4 | - | - | 38.9 ± 18.8 | - | |
W6 | 88.4 ± 19.5 | 243.9 ± 30.4 | 2.8 | 66.0 ± 20.1 | 325.7 ± 21.8 | 4.9 | |
W7 | - | 349.5 ± 28.8 | - | - | 1029.8 ± 63.1 | - | |
W8 | 80.1 ± 15.0 | 354.4 ± 49.5 | 4.4 | - | 842.7 ± 37.1 | - | |
W9 | 24.6 ± 8.7 | 148.0 ± 11.6 | 6.0 | 27.1 ± 9.0 | 265.3 ± 28.1 | 9.8 | |
W10 | 36.7 ± 15.8 | 184.2 ± 26.3 | 5.0 | 51.1 ± 20.1 | 249.2 ± 23.2 | 4.9 | |
W11 | - | 378.3 ± 19.2 | - | - | 1023.8 ± 72.6 | - | |
W12 | - | 128.0 ± 17.9 | - | 63.6 ± 16.6 | 211.4 ± 14.7 | 3.3 | |
W13 | 41.6 ± 11.5 | 423.8 ± 26.8 | 10.2 | 36.4 ± 16.4 | >371.7 | >10 | |
W14 | 87.1 ± 21.1 | 490.5 ± 26.8 | 5.6 | 75.4 ± 20.2 | 979.2 ± 27.8 | 13.0 | |
W15 | 69.7 ± 15.0 | 451.4 ± 32.4 | 6.5 | 65.2 ± 21.6 | 794.9 ± 33.8 | 12.2 | |
Ribavirin e | 101.2 | 836.5 | 8.3 | 114.3 | 806.6 | 7.1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, Y.; Wang, H.; Xi, C.; Li, N.; Li, D.; Yao, C.; Sun, G.; Ge, H.; Hu, K.; Zhang, Q. Antiviral Effects of Novel 2-Benzoxyl-Phenylpyridine Derivatives. Molecules 2020, 25, 1409. https://doi.org/10.3390/molecules25061409
Wei Y, Wang H, Xi C, Li N, Li D, Yao C, Sun G, Ge H, Hu K, Zhang Q. Antiviral Effects of Novel 2-Benzoxyl-Phenylpyridine Derivatives. Molecules. 2020; 25(6):1409. https://doi.org/10.3390/molecules25061409
Chicago/Turabian StyleWei, Yanhong, Haijie Wang, Caili Xi, Ni Li, Dong Li, Chenguang Yao, Ge Sun, Hongmei Ge, Kanghong Hu, and Qian Zhang. 2020. "Antiviral Effects of Novel 2-Benzoxyl-Phenylpyridine Derivatives" Molecules 25, no. 6: 1409. https://doi.org/10.3390/molecules25061409
APA StyleWei, Y., Wang, H., Xi, C., Li, N., Li, D., Yao, C., Sun, G., Ge, H., Hu, K., & Zhang, Q. (2020). Antiviral Effects of Novel 2-Benzoxyl-Phenylpyridine Derivatives. Molecules, 25(6), 1409. https://doi.org/10.3390/molecules25061409