Dynamic Flow Approaches for Automated Radiochemical Analysis in Environmental, Nuclear and Medical Applications
Abstract
:1. Introduction
2. Basic Concept in Flow Analysis
3. Application of Flow Techniques in Radiochemical Analysis
4. Implementation of Flow Approaches in Radiochemical Analysis
4.1. Sample Pretreatment
4.2. Chemical Separation and Purification
4.2.1. Liquid–Liquid Extraction/Microextraction
4.2.2. Chromatographic Separation
Single-Column Chromatographic Separation
Tandem-Column Chromatographic Separation
Renewable-Column Chromatographic Separation
Multi-Sample Chromatographic Separation
4.2.3. Other Separation Methods
4.3. Detection of Radionuclides
4.3.1. Radiometric Detection
4.3.2. Mass Spectrometry
4.3.3. Spectrophotometric Measurement
4.4. Automation of Flow Systems
4.5. Perspectives on the Future Development of Flow Approaches for Radiochemical Analysis
5. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Kołacińska, K.; Trojanowicz, M. Application of flow analysis in determination of selected radionuclides. Talanta 2014, 125, 131–145. [Google Scholar] [CrossRef]
- Grate, J.W.; Egorov, O.B. Automating analytical separations in radiochemistry. Anal. Chem. 1998, 70, 779A–788A. [Google Scholar] [CrossRef]
- Rodríguez, R.; Avivar, J.; Leal, L.O.; Cerdà, V.; Ferrer, L. Strategies for automating solid-phase extraction and liquid-liquid extraction in radiochemical analysis. TrAC Trends Anal. Chem. 2016, 76, 145–152. [Google Scholar] [CrossRef]
- Grate, J.W.; Egorov, O.B.; O’Hara, M.J.; DeVol, T.A. Radionuclide sensors for environmental monitoring: From flow injection solid-phase absorptiometry to equilibrium-based preconcentrating minicolumn sensors with radiometric detection. Chem. Rev. 2008, 108, 543–562. [Google Scholar] [CrossRef]
- Cerdà, V. Automation of radiochemical analysis by flow techniques – A review. TrAC Trends Anal. Chem. 2019, 352–367. [Google Scholar]
- Trojanowicz, M.; Kołacińska, K.; Grate, J.W. A review of flow analysis methods for determination of radionuclides in nuclear wastes and nuclear reactor coolants. Talanta 2018, 183, 70–82. [Google Scholar] [CrossRef]
- Fajardo, Y.; Avivar, J.; Ferrer, L.; Gómez, E.; Casas, M.; Cerdá, V.; Cerdà, V.; Casas, M. Automation of radiochemical analysis by applying flow techniques to environmental samles. Trends Anal. Chem. 2010, 29, 1399–1408. [Google Scholar] [CrossRef]
- Skeggs, L. An automatic method for colorimetric analysis. Am. J. Clin. Pathplogy 1957, 311–322. [Google Scholar] [CrossRef]
- Ruzicka, J.; Hansen, E.H. Flow Injeciton analysis part 1. a new concept of fast continuous flow analysis. Anal.Chim. Acta 1975, 78, 145–157. [Google Scholar]
- Rocha, F.R.P.; Reis, B.F.; Zagatto, E.A.G.; Lima, J.L.F.C.; Lapa, R.A.S.; Santos, J.L.M. Multicommutation in flow analysis: Concepts, applications and trends. Anal. Chim. Acta 2002, 468, 119–131. [Google Scholar] [CrossRef]
- Catalá Icardo, M.; García Mateo, J.V.; Martínez Calatayud, J. Multicommutation as a powerful new analytical tool. TrAC Trends Anal. Chem. 2002, 21, 366–378. [Google Scholar] [CrossRef]
- Cerdà, V.; Estela, J.M.; Forteza, R.; Cladera, A.; Becerra, E.; Altimira, P.; Sitjar, P. Flow techniques in water analysis. Talanta 1999, 50, 695–705. [Google Scholar] [CrossRef]
- Miró, M.; Cerdà, V.; Estela, J.M. Multisyringe flow injection analysis: Characterization and applications. TrAC Trends Anal. Chem. 2002, 21, 199–210. [Google Scholar] [CrossRef]
- Lima, J.L.F.C.; Santos, J.L.M.; Dias, A.C.B.; Ribeiro, M.F.T.; Zagatto, E.A.G. Multi-pumping flow systems: An automation tool. Talanta 2004, 64, 1091–1098. [Google Scholar] [CrossRef]
- Santos, J.L.M.; Ribeiro, M.F.T.; Dias, A.C.B.; Lima, J.L.F.C.; Zagatto, E.E.A. Multi-pumping flow systems: The potential of simplicity. Anal. Chim. Acta 2007, 600, 21–28. [Google Scholar] [CrossRef]
- Ruzicka, J. Lab-on-valve: Universal microflow analyzer based on sequential and bead injection. Analyst 2000, 125, 1053–1060. [Google Scholar] [CrossRef]
- Miró, M.; Hansen, E.H. Recent advances and future prospects of mesofluidic Lab-on-a-Valve platforms in analytical sciences - A critical review. Anal. Chim. Acta 2012, 750, 3–15. [Google Scholar] [CrossRef]
- Yu, Y.L.; Jiang, Y.; Chen, M.L.; Wang, J.H. Lab-on-valve in the miniaturization of analytical systems and sample processing for metal analysis. TrAC Trends Anal. Chem. 2011, 30, 1649–1658. [Google Scholar] [CrossRef]
- Hansen, E.H.; Wang, J. Implementation of suitable flow injection/sequential injection-sample separation/preconcentration schemes for determination of trace metal concentrations using detection by electrothermal atomic absorption spectrometry and inductively coupled plasma mass. Anal. Chim. Acta 2002, 467, 3–12. [Google Scholar] [CrossRef]
- Růžička, J.; Lamm, C.G. Automated determination of traces of mercury in biological materials by substoichiometric radioisotope dilution. Talanta 1969, 16, 157–168. [Google Scholar] [CrossRef]
- Myint, U.; Han, B.; Myoe, K.M.; Kywe, A.; Thida; Tölgyessy, J. Radiometric detection in flow-injection analysis (Radiometric flow-injection analysis). J. Radioanal. Nucl. Chem. 1994, 187, 117–122. [Google Scholar] [CrossRef]
- Myint, U.; Tölgyessy, J. Radiometric flow injection analysis. J. Radioanal. Nucl. Chem. 1995, 191, 413–426. [Google Scholar] [CrossRef]
- Grudpan, K.; Nacapricha, D.; Wattanakanjana, Y. Radiometric detectors for flow-injection analysis. Anal. Chim. Acta 1991, 246, 325–328. [Google Scholar] [CrossRef]
- Grudpan, K.; Nacapricha, D. Flow-injection radiorelease analysis for vanadium. Anal. Chim. Acta 1991, 246, 329–331. [Google Scholar] [CrossRef]
- Qiao, J.; Nielsen, S. Radionuclide Monitoring. In Encyclopedia of Analytical Chemistry; Elsevier: Amsterdam, The Netherlands, 2019; Volume 9, pp. 31–39. ISBN 9780124095472. [Google Scholar]
- Chung, K.H.; Kim, H.; Lim, J.M.; Ji, Y.Y.; Choi, G.S.; Kang, M.J. Rapid determination of radiostrontium in milk using automated radionuclides separator and liquid scintillation counter. J. Radioanal. Nucl. Chem. 2015, 304, 293–300. [Google Scholar] [CrossRef]
- Qiao, J.; Hou, X.; Roos, P.; Miró, M. Bead injection extraction chromatography using high-capacity lab-on-valve as a front end to inductively coupled plasma mass spectrometry for urine radiobioassay. Anal. Chem. 2013, 85, 2853–2859. [Google Scholar] [CrossRef]
- Hou, X. Radioanalysis of ultra-low level radionuclides for environmental tracer studies and decommissioning of nuclear facilities. J. Radioanal. Nucl. Chem. 2019, 1217–1245. [Google Scholar] [CrossRef] [Green Version]
- Croudace, I.W.; Russell, B.C.; Warwick, P.W. Plasma source mass spectrometry for radioactive waste characterisation in support of nuclear decommissioning: A review. J. Anal. At. Spectrom. 2017, 32. [Google Scholar] [CrossRef] [Green Version]
- Morley, T.J.; Dodd, M.; Gagnon, K.; Hanemaayer, V.; Wilson, J.; McQuarrie, S.A.; English, W.; Ruth, T.J.; Bénard, F.; Schaffer, P. An automated module for the separation and purification of cyclotron-produced 99mTcO 4-. Nucl. Med. Biol. 2012, 39, 551–559. [Google Scholar] [CrossRef]
- O’Hara, M.J.; Murray, N.J.; Carter, J.C.; Kellogg, C.M.; Link, J.M. Tandem column isolation of zirconium-89 from cyclotron bombarded yttrium targets using an automated fluidic platform: Anion exchange to hydroxamate resin columns. J. Chromatogr. A 2018, 1567, 37–46. [Google Scholar] [CrossRef]
- Bond, A.H.; Horwitz, E.P.; Hines, J.J.; Young, J.E. A compact automated radionuclide separation system for nuclear medical applications. Czechoslov. J. Phys. 2003, 53, A717–A723. [Google Scholar] [CrossRef]
- Bray, L.A.; Tingey, J.M.; DesChane, J.R.; Egorov, O.B.; Tenforde, T.S. Development of a unique bismuth (Bi-213) automated generator for use in cancer therapy. Ind. Eng. Chem. Res. 2000, 39, 3189–3194. [Google Scholar] [CrossRef]
- McAlister, D.R.; Philip Horwitz, E. Automated two column generator systems for medical radionuclides. Appl. Radiat. Isot. 2009, 67, 1985–1991. [Google Scholar] [CrossRef]
- Fajardo, Y.; Gomez, E.; Garcias, F.; Cerda, V.; Casas, M. Multisyringe flow injection analysis of stable and radioactive yttrium in water and biological samples. Anal. Chim. Acta 2005, 539, 189–194. [Google Scholar] [CrossRef]
- Villar, M.; Avivar, J.; Ferrer, L.; Borràs, A.; Vega, F.; Cerdà, V. Automatic in-syringe dispersive liquid-liquid microextraction of 99Tc from biological samples and hospital residues prior to liquid scintillation counting. Anal. Bioanal. Chem. 2015, 407, 5571–5578. [Google Scholar] [CrossRef]
- O’Hara, M.J.; Burge, S.R.; Grate, J.W. Automated Radioanalytical System for the Determination of Sr-90 in Environmental Water Samples by Y-90 Cherenkov Radiation Counting. Anal. Chem. 2009, 81, 1228–1237. [Google Scholar] [CrossRef]
- Miro, M.; Gomez, E.; Estela, J.M.; Casas, M.; Cerda, V. Sequential injection Sr-90 determination in environmental samples using a wetting-film extraction method. Anal. Chem. 2002, 74, 826–833. [Google Scholar] [CrossRef]
- St-Amant, N.; Whyte, J.C.; Rousseau, M.-E.; Lariviere, D.; Ungar, R.K.; Johnson, S. Radiostrontium and radium analysis in low-level environmental samples following a multi-stage semi-automated chromatographic sequential separation. Appl. Radiat. Isot. 2011, 69, 8–17. [Google Scholar] [CrossRef]
- O’Hara, M.J.; Burge, S.R.; Grate, J.W. Quantification of technetium-99 in complex groundwater matrixes using a radiometric preconcentrating minicolumn sensor in an equilibration-based sensing approach. Anal. Chem. 2009, 81, 1068–1078. [Google Scholar] [CrossRef]
- Shi, K.; Qiao, J.; Wu, W.; Roos, P.; Hou, X. Rapid determination of technetium-99 in large volume seawater samples using sequential injection extraction chromatographic separation and ICP-MS measurement. Anal. Chem. 2012, 84, 6783–6789. [Google Scholar] [CrossRef]
- Rodríguez, R.; Leal, L.; Miranda, S.; Ferrer, L.; Avivar, J.; García, A.; Cerdà, V. Automation of 99Tc extraction by LOV prior ICP-MS detection: Application to environmental samples. Talanta 2015, 133, 88–93. [Google Scholar] [CrossRef] [PubMed]
- Ceballos, M.R.; Borràs, A.; García-Tenorio, R.; Rodríguez, R.; Estela, J.M.; Cerdà, V.; Ferrer, L. 226Ra dynamic lixiviation from phosphogypsum samples by an automatic flow-through system with integrated renewable solid-phase extraction. Talanta 2017, 167, 398–403. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, R.; Borràs, A.; Leal, L.; Cerdà, V.; Ferrer, L. MSFIA-LOV system for 226Ra isolation and pre-concentration from water samples previous radiometric detection. Anal. Chim. Acta 2016, 911, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Avivar, J.; Ferrer, L.; Casas, M.; Cerdà, V. Smart thorium and uranium determination exploiting renewable solid-phase extraction applied to environmental samples in a wide concentration range. Anal. Bioanal. Chem. 2011, 400, 3585–3594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oguma, K.; Suzuki, T.; Saito, K. Determination of uranium in seawater by flow-injection preconcentration on dodecylamidoxime-impregnated resin and spectrophotometric detection. Talanta 2011, 84, 1209–1214. [Google Scholar] [CrossRef]
- Rodríguez, R.; Avivar, J.; Ferrer, L.; Leal, L.O.; Cerdà, V. Uranium monitoring tool for rapid analysis of environmental samples based on automated liquid-liquid microextraction. Talanta 2015, 134, 674–680. [Google Scholar] [CrossRef]
- Avivar, J.; Ferrer, L.; Casas, M.; Cerdà, V. Lab on valve-multisyringe flow injection system (LOV-MSFIA) for fully automated uranium determination in environmental samples. Talanta 2011, 84, 1221–1227. [Google Scholar] [CrossRef]
- Kim, C.-S.S.K.C.-K.; Kim, C.-S.S.K.C.-K.; Lee, J.-I.I.; Lee, K.-J.J.; Kim CS Lee JI Kim C K, L.K.J. Rapid determination of Pu isotopes and atom ratios in small amounts of environmental samples by an on-line sample pre-treatment system and isotope dilution high resolution inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom. 2000, 15, 247–255. [Google Scholar] [CrossRef]
- Kim, C.-K.; Kim, C.-S.; Sansone, U.; Martin, P. Development and application of an on-line sequential injection system for the separation of Pu, 210Po and 210Pb from environmental samples. Appl. Radiat. Isot. 2008, 66, 223–230. [Google Scholar] [CrossRef]
- Eroglu, A.E.; McLeod, C.W.; Leonard, K.S.; McCubbin, D. Determination of plutonium in seawater using co-precipitation and inductively coupled plasma mass spectrometry with ultrasonic nebulisation. Spectrochim. Acta Part B At. Spectrosc. 1998, 53, 1221–1233. [Google Scholar] [CrossRef] [Green Version]
- Kim, C.; Kim, C.; Lee, K. Determination of pu isotopes in seawater by an on-line sequential injection technique with sector field inductively coupled plasma mass spectrometry. Anal. Chem. 2002, 74, 3824–3832. [Google Scholar] [CrossRef] [PubMed]
- Fajardo, Y.; Ferrer, L.; Gómez, E.; Garcias, F.; Casas, M.; Cerdà, V. Development of an automatic method for americium and plutonium separation and preconcentration using an multisyringe flow injection analysis-multipumping flow system. Anal. Chem. 2008, 80, 195–202. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Chung, K.H.; Jung, Y.; Jang, M.; Kang, M.J.; Choi, G.S. A rapid and efficient automated method for the sequential separation of plutonium and radiostrontium in seawater. J. Radioanal. Nucl. Chem. 2015, 304, 321–327. [Google Scholar] [CrossRef]
- Qiao, J.; Hou, X.; Roos, P.; Miró, M. Reliable determination of 237Np in environmental solid samples using 242Pu as a potential tracer. Talanta 2011, 84, 494–500. [Google Scholar] [CrossRef]
- Qiao, J.; Hou, X.; Roos, P.; Miró, M. Rapid and simultaneous determination of neptunium and plutonium isotopes in environmental samples by extraction chromatography using sequential injection analysis and ICP-MS. J. Anal. At. Spectrom. 2010, 25, 1769. [Google Scholar] [CrossRef]
- Qiao, J.; Hou, X.; Roos, P.; Miró, M. High-throughput sequential injection method for simultaneous determination of plutonium and neptunium in environmental solids using macroporous anion-exchange chromatography, followed by inductively coupled plasma mass spectrometric detection. Anal. Chem. 2011, 83, 374–381. [Google Scholar] [CrossRef]
- Qiao, J.; Hou, X.; Roos, P.; Miro, M. Rapid Determination of Plutonium Isotopes in Environmental Samples Using Sequential Injection Extraction Chromatography and Detection by Inductively Coupled Plasma Mass Spectrometry. Anal. Chem. 2009, 81, 8185–8192. [Google Scholar] [CrossRef]
- Qiao, J.; Hou, X.; Roos, P.; Miró, M. Rapid isolation of plutonium in environmental solid samples using sequential injection anion exchange chromatography followed by detection with inductively coupled plasma mass spectrometry. Anal. Chim. Acta 2011, 685, 111–119. [Google Scholar] [CrossRef]
- Schaumloffel, D.; Giusti, P.; Zoriy, M.V.; Pickhardt, C.; Szpunar, J.; LobinSki, R.; Becker, J.S. Ultratrace determination of uranium and plutonium by nano-volume flow injection double-focusing sector field inductively coupled plasma mass spectrometry (nFI?ICP-SFMS). J. Anal. At. Spectrom. 2005, 20, 17. [Google Scholar] [CrossRef] [Green Version]
- Kołacińska, K.; Chajduk, E.; Dudek, J.; Samczyński, Z.; Łokas, E.; Bojanowska-Czajka, A.; Trojanowicz, M. Automation of sample processing for ICP-MS determination of 90Sr radionuclide at ppq level for nuclear technology and environmental purposes. Talanta 2017, 169, 216–226. [Google Scholar] [CrossRef]
- Chung, K.; Choi, S.; Choi, G.; Kang, M. Design and performance of an automated radionuclide separator: Its application on the determination of 99Tc in groundwater. Appl. Radiat. Isot. 2013, 81, 57–61. [Google Scholar] [CrossRef] [PubMed]
- Qiao, J.; Hou, X.; Steier, P.; Golser, R. Sequential injection method for rapid and simultaneous determination of 236U, 237Np, and Pu isotopes in seawater. Anal. Chem. 2013, 85, 11026–11033. [Google Scholar] [CrossRef] [PubMed]
- Qiao, J.; Shi, K.; Hou, X.; Nielsen, S.; Roos, P. Rapid multisample analysis for simultaneous determination of anthropogenic radionuclides in marine environment. Environ. Sci. Technol. 2014, 48, 3935–3942. [Google Scholar] [CrossRef] [PubMed]
- Qiao, J.; Xu, Y.; Hou, X.; Miró, M. Comparison of sample preparation methods for reliable plutonium and neptunium urinalysis using automatic extraction chromatography. Talanta 2014, 128, 75–82. [Google Scholar] [CrossRef] [PubMed]
- Liezers, M.; Lehn, S.A.; Olsen, K.B.; Farmer, O.T.; Duckworth, D.C.; Farmer, O.T., III; Duckworth, D.C. Determination of plutonium isotope ratios at very low levels by ICP-MS using on-line electrochemically modulated separations. J. Radioanal. Nucl. Chem. 2009, 282, 299–304. [Google Scholar] [CrossRef]
- Grate, J.W.; Strebin, R.; Janata, J.; Egorov, O.; Ruzicka, J. Automated analysis of radionuclides in nuclear waste: Rapid determination of 90Sr by sequential injection analysis. Anal. Chem. 1996, 68, 333–340. [Google Scholar] [CrossRef]
- Egorov, O.; O’Hara, M.J.; Grate, J.W.; Ruzicka, J. Sequential injection renewable separation column instrument for automated sorbent extraction separations of radionuclides. Anal. Chem. 1999, 71, 345–352. [Google Scholar] [CrossRef]
- Egorov, O.; O’Hara, M.J.; Ruzicka, J.; Grate, J.W. Sequential injection separation system with stopped-flow radiometric detection for automated analysis of 99Tc in nuclear waste. Anal. Chem. 1998, 70, 977–984. [Google Scholar] [CrossRef]
- Egorov, O.B.; O’Hara, M.J.; Grate, J.W. Microwave-assisted sample treatment in a fully automated flow-based instrument: Oxidation of reduced technetium species in the analysis of total technetium-99 in caustic aged nuclear waste samples. Anal. Chem. 2004, 76, 3869–3877. [Google Scholar] [CrossRef]
- Egorov, O.; O’Hara, M.J.; Grate, J.W. Automated radioanalytical system incorporating microwave-assisted sample preparation, chemical separation, and online radiometric detection for the monitoring of total 99Tc in nuclear waste processing streams. Anal. Chem. 2012, 84, 3090–3098. [Google Scholar] [CrossRef]
- Egorov, O.; Fiskum, S.; O’Hara, M.; Grate, J. Radionuclide Sensors Based on Chemically Selective Scintillating Microspheres: Renewable Column Sensor for Analysis of 99Tc in Water. Anal. Chem. 1999, 71, 5420–5429. [Google Scholar] [CrossRef] [PubMed]
- Hollenbach, M.; Grohs, J.; Mamich, S.; Kroft, M.; Denoyer, E. Determination of technetium-99, thorium-230 and uranium-234 in soils by inductively coupled plasma mass spectrometry using flow injection preconcentration. J. Anal. At. Spectrom. 1994, 9, 927–933. [Google Scholar] [CrossRef]
- Grate, J.W.; Egorov, O.B. Investigation and optimization of on-column redox reactions in the sorbent extraction separation of americium and plutonium using flow injection analysis. Anal. Chem. 1998, 70, 3920–3929. [Google Scholar] [CrossRef]
- Kuczewski, B.; Marquardt, C.M.; Seibert, A.; Geckeis, H.; Kratz, J.V.; Trautmann, N. Separation of plutonium and neptunium species by capillary electrophoresis-inductively coupled plasma-mass spectrometry and application to natural groundwater samples. Anal. Chem. 2003, 75, 6769–6774. [Google Scholar] [CrossRef] [PubMed]
- Egorov, O.; Grate, J.W.; O’Hara, M.J.; Farmer, O.T., III. Extraction chromatographic separations and analysis of actinides using sequential injection techniques with on-line inductively coupled plasma mass spectrometry (ICP MS) detection. Analyst 2001, 126, 1594–1601. [Google Scholar] [CrossRef]
- Grate, J.W.; Egorov, O.B.; Fiskum, S.K. Automated extraction chromatographic separations of actinides using separation-optimized sequential injection techniques. Analyst 1999, 124, 1143–1150. [Google Scholar] [CrossRef]
- Kim, C.; Kim, C.; Rho, B.; Lee, J. Rapid determination of 99Tc in environmental samples by high resolution ICP-MS coupled with on-line flow injection system. J. Radioanal. Nucl. Chem. 2002, 252, 421–427. [Google Scholar] [CrossRef]
- Qiao, J.; Hou, X.; Steier, P.; Nielsen, S.; Golser, R. Method for 236U Determination in Seawater Using Flow Injection Extraction Chromatography and Accelerator Mass Spectrometry. Anal. Chem. 2015, 87, 7411–7417. [Google Scholar] [CrossRef]
- Qiao, J.; Hou, X.; Miró, M.; Roos, P. Determination of plutonium isotopes in waters and environmental solids: A review. Anal. Chim. Acta 2009, 652, 66–84. [Google Scholar] [CrossRef] [Green Version]
- Chen, Q.J.; Hou, X.L.; Yu, Y.X.; Dahlgaard, H.; Nielsen, S.P. Separation of Sr from Ca, Ba and Ra by means of Ca(OH)(2) and Ba(Ra)Cl-2 or Ba(Ra)SO4 for the determination of radiostrontium. Anal. Chim. Acta 2002, 466, 109–116. [Google Scholar] [CrossRef]
- Chung, K.H.; Kang, D.; Rhee, D.S. Design and performance of an automated single column sequential extraction chromatographic system. J. Radioanal. Nucl. Chem. 2019, 321, 935–942. [Google Scholar] [CrossRef]
- Andersson, K.G.; Qiao, J.; Hansen, V. On the requirements to optimise restoration of radioactively contaminated soil areas. In Contaminated Soils: Environmental Impact, Disposal and Treatment; Nova Science Publishers: Hauppauge, NY, USA, 2011; pp. 419–432. ISBN 9781607417910. [Google Scholar]
- Qiao, J. Rapid and automated determination of plutonium and neptunium in environmental samples; Technical University of Denmark: Roskilde, Denmark, 2011; Volume 75. [Google Scholar]
- Lariviere, D.; Cumming, T.A.; Kiser, S.; Li, C.; Cornett, R.J.; Larivière, D. Automated flow injection system using extraction chromatography for the determination of plutonium in urine by inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom. 2008, 23, 352. [Google Scholar] [CrossRef]
- Kim, C.S.; Kim, C.K.; Lee, K.J. Simultaneous analysis of 237Np and Pu isotopes in environmental samples by ICP-SF-MS coupled with automated sequential injection system. J. Anal. At. Spectrom. 2004, 19, 743–750. [Google Scholar] [CrossRef]
- Grate, J.W.; Egorov, O.; Fadeff, S.K. Separation-optimized sequential injection method for rapid automated analytical separation of 90Sr in nuclear waste. Analyst 1999, 124, 203–210. [Google Scholar] [CrossRef]
- Rodríguez, R.; Avivar, J.; Ferrer, L.; Leal, L.O.; Cerdà, V. Automated total and radioactive strontium separation and preconcentration in samples of environmental interest exploiting a lab-on-valve system. Talanta 2012, 96, 96–101. [Google Scholar] [CrossRef] [PubMed]
- Benkhedda, K.; Larivière, D.; Scott, S.; Evans, D. Hyphenation of flow injection on-line preconcentration and ICP-MS for the rapid determination of 226Ra in natural waters. J. Anal. At. Spectrom. 2005, 20, 523. [Google Scholar]
- Šrámková, I.H.; Horstkotte, B.; Fikarová, K.; Sklenářová, H.; Solich, P. Direct-immersion single-drop microextraction and in-drop stirring microextraction for the determination of nanomolar concentrations of lead using automated Lab-In-Syringe technique. Talanta 2018, 184, 162–172. [Google Scholar] [CrossRef]
- Egorov, O.; Grate, J.W.; Ruzicka, J. Automation of radiochemical analysis by flow injection techniques. Am-Pu separation using TRU-resin sorbent extraction column. J. Radioanal. Nucl. Chem. 1998, 234, 231–235. [Google Scholar] [CrossRef]
- Qiao, J.; Hou, X.; Roos, P.; Lachner, J.; Christl, M.; Xu, Y. Sequential injection approach for simultaneous determination of ultratrace plutonium and neptunium in urine with accelerator mass spectrometry. Anal. Chem. 2013, 85, 8826–8833. [Google Scholar] [CrossRef]
- Erdem, Ö.; Saylan, Y.; Andaç, M.; Denizli, A. Molecularly Imprinted Polymers for Removal of Metal Ions: An Alternative Treatment Method. Biomimetics 2018, 3, 38. [Google Scholar] [CrossRef] [Green Version]
- Yuan, G.; Tu, H.; Liu, J.; Zhao, C.; Liao, J.; Yang, Y.; Yang, J.; Liu, N. A novel ion-imprinted polymer induced by the glycylglycine modified metal-organic framework for the selective removal of Co(II) from aqueous solutions. Chem. Eng. J. 2018, 333, 280–288. [Google Scholar] [CrossRef]
- Froidevaux, P.; Happel, S.; Chauvin, A.S. Ion-imprinted polymer concept for selective extraction of 90Y and 152Eu for medical applications and nuclear power plant monitoring. Chimia (Aarau). 2006, 60, 203–206. [Google Scholar] [CrossRef]
- Boonjob, W.; Yu, Y.; Miró, M.; Segundo, M.A.; Wang, J.; Cerdà, V. Online Hyphenation of Multimodal Microsolid Phase Extraction Involving Renewable Molecularly Imprinted and Reversed-Phase Sorbents to Liquid Chromatography for Automatic Multiresidue Assays. Anal. Chem. 2010, 82, 3052–3060. [Google Scholar] [CrossRef] [PubMed]
- Dias, A.C.B.; Figueiredo, E.C.; Grassi, V.; Zagatto, E.A.G.; Arruda, M.A.Z. Molecularly imprinted polymer as a solid phase extractor in flow analysis. Talanta 2008, 76, 988–996. [Google Scholar] [CrossRef] [PubMed]
- Becker, J.S.; Dietze, H.-J.J. Application of double-focusing sector field ICP mass spectrometry with shielded torch using different nebulizers for ultratrace and precise isotope analysis of long-lived radionuclides - Invited lecture. J. Anal. At. Spectrom. 1999, 14, 1493–1500. [Google Scholar] [CrossRef]
- Godoy, M.L.D.P.; Godoy, J.M.; Kowsmann, R.; dos Santos, G.M.; Petinatti da Cruz, R. 234U and 230Th determination by FIA-ICP-MS and application to uranium-series disequilibrium in marine samples. J. Environ. Radioact. 2006, 88, 109–117. [Google Scholar] [CrossRef]
- Thompson, J.; Houk, R. Inductively coupled plasma mass spectrometric detection for multielement flow injection analysis and elemental speciation by reversed-phase liquid chromatography. Anal. Chem. 1986, 58, 2541–2548. [Google Scholar] [CrossRef] [Green Version]
- Epov, V.N.; Douglas Evans, R.; Zheng, J.; Donard, O.F.X.; Yamada, M. Rapid fingerprinting of 239Pu and 240Pu in environmental samples with high U levels using on-line ion chromatography coupled with high-sensitivity quadrupole ICP-MS detection. J. Anal. At. Spectrom. 2007, 22, 1131–1137. [Google Scholar] [CrossRef]
- Epov, V.N.; Benkhedda, K.; Cornett, R.J.; Evans, R.D. Rapid determination of plutonium in urine using flow injection on-line preconcentration and inductively coupled plasma mass spectromentry. J. Anal. At. Spectrom. 2005, 20, 424–430. [Google Scholar] [CrossRef]
- Egorov, O.; O’Har, M.J.; Grate, J.W. Equilibration-Based Preconcentrating Minicolumn Sensors for Trace Level Monitoring of Radionuclides and Metal Ions in Water without Consumable Reagents. Anal. Chem. 2006, 78, 5480–5490. [Google Scholar] [CrossRef]
- Egorov, O.B.; O’Hara, M.J.; Grate, J.W. Automated radiochemical analysis of total 99Tc in aged nuclear waste processing streams. J. Radioanal. Nucl. Chem. 2005, 263, 629–633. [Google Scholar] [CrossRef]
- Becerra, E.; Cladera, A.; Cerdà, V. Design of a very versatile software program for automating analytical methods. Lab. Robot. Autom. 1999, 11, 131–140. [Google Scholar] [CrossRef]
- Mar, J. Martinez Multisyringe flow injection spectrophotometric determination of uranium in water samples. J. Radioanal. Nuclear Chem. 2009, 281, 433–439. [Google Scholar]
- Thierfeldt, S.; Schartmann, F. Decomissioning of Nuclear Installations in Germany, 3rd ed.; The Federal Ministry of Education and Research: Aachen, Germany, 2010.
- European Commision. COMMISSION RECOMMENDATION of 18 December 2003 on Standardised Information on Radioactive Airborne and Liquid Discharges into the Environment from Nuclear Power Reactors and Reprocessing Plants in Normal Operation; European Commision: Brussels, Belgium, 2004. [Google Scholar]
- Nellemann, T. Radiological Characterization and Decommissioning in Denmark. In Proceedings of the Workshop on Radiological Characterisation for Decommissioning, Nykoping, Sweden, 17–19 April 2012; Available online: https://www.oecd-nea.org/rwm/wpdd/rcd-workshop/A-3___OH_Radiological_Characterization_Denmark-Nellemann.pdf.pdf (accessed on 23 March 2020).
- OECD Radioactive Waste Management Programmes in OECD/NEA Member Countries-Norway. Available online: https://www.oecd-nea.org/rwm/profiles/ (accessed on 23 March 2020).
- IAEA Country Nuclear Power Profiles-Finland. Available online: https://cnpp.iaea.org/pages/index.htm (accessed on 23 March 2020).
- Radiological Characterization and Decommissioning in Denmark. Available online: https://www.oecd-nea.org/rwm/wpdd/rcd-workshop/A-3___PAPER_Radiological_Characterization_Denmark-Nellemann.pdf.pdf (accessed on 23 March 2020).
- Hou, X.; Olsson, M.; Togneri, L.; Englund, S.; Vaaramaa, K.; Askeljung, C.; Gottfridsson, O.; Hirvonen, H.; Öhlin, H.; Forsström, M.; et al. Present status and perspective of radiochemical analysis of radionuclides in Nordic countries. J. Radioanal. Nucl. Chem. 2016, 309, 1283–1319. [Google Scholar] [CrossRef]
Purpose | Radionuclides | Sample Type | Flow System Design | Sample Processing Mode | Chemical Separation | Measurement Technique | Performance | Ref |
---|---|---|---|---|---|---|---|---|
Environmental radioactivity monitoring | 90Sr | Groundwater (0.35 L) | FI | Single sample | SuperLig 620 column | LSC (Cherenkov counting) | Chemical yields: 99.9 ± 2.8% LOD: 0.057 Bq/L Turnover time: 41.5 h (27 h for 90Y ingrowth and 13.5 h for counting) | [37] |
90 Sr | Water, powdered milk, soil (2 mL of sample solution) | SI flow-reversal wetting-film extraction | Single sample | Wetting-film of BCHC in 1-octanol | LBPC * | Applied to measure 90Sr ranging in 0.07-0.30 Bq Chemical yield: up to 80% Precision: <3% RSD (n = 10) | [38] | |
89Sr, 90Sr, 226Ra | Milk (1000 mL), water (800 mL) | Semi-automated FI combined with HPLC | Multi-sample (8 samples) | Cation exchange chromatography (16 mL of Dowex 50W-X8) + HPIC (PRP-X400 poly (styrene–divinylbenzene)-sulfonate cation-exchange) | LSC * | Chemical yield: >95% for Sr, ca.100% for Ra MDC: 30 mBq/L of 89Sr, 20 mBq/L of 90Sr, 2 mBq/L of 226Ra Turnover time: 4–5 h | [39] | |
99 Tc | Groundwater (150 mL) | SI-minicolumn sensor | Single sample | Anion exchange chromatography (AG 4 × 4) | Flow-through scintillation counter | - | [40] | |
99 Tc | Seawater (50–200 L) | SI | Single sample | Tandem extraction chromatography (two 1.5-mL TEVA columns) | ICP-MS * | Chemical yield: 60–75% LOD (200 L seawater): 7.5 µBq/L of 99Tc Turnover time: 24 h (for a batch sample (n > 4)) | [41] | |
99 Tc | Soil (0.5 g), water (0.1–100 mL) | LOV-SI |
Single sample Renewable column | Extraction chromatography (32 mg TEVA resin) | ICP-MS * | Chemical yield: 94–98% LOD: 5 pg of 99Tc Precision: 3.8% (n = 5) Repeatability: 2% (n = 10) Turnover time: 2–5 h | [42] | |
226Ra | Leachate from phosphogypsum | LOV-MSFIA |
Single sample Renewable column | MnO2 coated on macroporous bead cellulose (0.3 g) | LBPC * | Chemical yield of 226Ra: > 90% | [43] | |
226 Ra | Drinking, natural water | LOV-MSFIA |
Single sample Renewable column | MnO2 coated on macroporous bead cellulose | LSC * LBPC * | Chemical yield: > 90% MDA: 4 mBq/L (LSC), 20 mBq /L (LBPC) Precision: 1.7% RSD Turnover time: 20 min | [44] | |
232Th, 238U | Sediment, water (sample solution up to 30 mL for U, up to 8 mL for Th) | LOV-MSFIA |
Single sample Renewable column | Extraction chromatography (0.03 g UTEVA) | Spectrophotometry with arsenazo-III | LOD: 5.9 ng/L of U, 60 ng/L of Th. Repeatability: 1.6% (n = 10) Turnover time: 11–50 min for U, 10–20 min for Th | [45] | |
238U | Seawater (10 mL) | FI | Single sample | Styrene-divinylbenzene copolymer resin, Bio-Beads SM-2 | Spectrophotometry with Chlorophosphonazo III | Chemical yields: 95–99% LOD: 130 ng/L Turnover time: 2.6 min | [46] | |
238 U | Soil, sediment, water, phosphogypsum | LIS-MSA-MSFIA | Single sample | LIS-LLME | LWCC spectrophotometry | Chemical yield: close to 100% LOD: 3.2 mg/L. Precision: 3.3% RSD | [47] | |
238U | Phosphogypsum, sediment, water | LOV-MSFIA |
Single sample Renewable column | Extraction chromatography (0.03 g UTEVA) | Spectrophotometry with arsenazo-III | Chemical yield: > 90% LOD: 10.3 ng/L of U. Repeatability: 1.6% (n = 10) Turnover time: 11–50 min | [48] | |
239 Pu, 240Pu | Soil and sediment (0.5–1 g) | FI | Single sample | Tandem chromatography (0.5 mL Sr resin and 0.17 mL TEVA resin) | ICP-MS | Chemical yield: > 70% LOD: 9.2 mBq of 239Pu, 25 mBq of 240Pu and 0.87 mBq of 242Pu Turnover time: 5 h | [49] | |
239+240Pu, 210Po, 210Pb | Soil (10 g), phosphogypsum (0.5 g) | FI | Multi-sample (2 samples) | Anion exchange and extraction chromatography (Dowex 1 × 8 resin, 100–200 mesh and Sr resin) | Alpha spectrometry * LSC * | Chemical yield: 87 ± 8% for Pu, 86 ± 6% for 210Pb, 82 ± 6% for 210Po Turnover time (online separation): 4.8 h for 210Po and 210Pb, 5.0 h for Pu | [50] | |
239 Pu, 240Pu | Seawater (1 L) | FI | Single sample | Co-precipitation and ion exchange * | ICP-MS | LOD: 5 mBq/L Precision: 12% RSD | [51] | |
239 Pu, 240Pu | Seawater (3–10 L) | FI | Single sample | Tandem chromatography (Sr resin and TEVA resin) | ICP-MS | LOD: 1.5 mBq/L of 239Pu, 1.6 mBq/L of 240Pu Precision: <3.4% RSD (n = 7) for 239Pu and < 5% RSD (n = 7) for 240Pu Turnover time: 4 h | [52] | |
239+240Pu, 241Am | Soil, vegetable ashes leachate, urine, blood | MSFIA-MPFS | Single sample | Extraction chromatography (0.08 g TRU) | Low- background proportional counter | Chemical yield: <90% for both Pu and Am LOD: 4 Bq/L Precision: 3% Turnover time (online separation): 40 min. | [53] | |
Environmental radioactivity monitoring, nuclear emergency preparedness | 90 Sr, 238Pu | Seawater (1 or 10 L) | FI | Single sample | Tandem chromatography (4 or 35 mL Sr resin and 4 or 6 mL TEVA resin) | LSC * Alpha spectrometry * | Chemical yield: 87.8 ± 6.5% for Sr, 62.5 ± 10.4% for Pu Turnover time (online separation): 3.2 h for 1 L seawater, 9.4 h for 10 L seawater | [54] |
237 Np | Soil/sediment (1-10 g) and seaweed (20 g) | SI | Nice samples in sequential mode | Anion exchange chromatography (2 mL AG 1 × 4 resin) | ICP-MS * | Chemical yield: 60–70% for Np Turnover time (in-line anion exchange chromatography): <2.5 h | [55] | |
237 Np, 239Pu 240Pu | Soil (10 g) and seaweed (20 g) | SI | Single sample | Extraction chromatography (2 mL TEVA resin) | ICP-MS * | Chemical yield: 80–105% LOD (for 10 g soil): 1.5 mBq/kg of 239Pu, 5.3 mBq/kg of 240Pu, 16 mBq/kg of 237Np Turnover time (in-line extraction chromatography): <1.5 h | [56] | |
237 Np, 239Pu, 240Pu | Soil/sediment (0.5–100 g) and seaweed (20 g) | SI | Nice samples in sequential mode | Anion exchange chromatography (2 mL AG MP-1M resin) | ICP-MS * | Chemical yield (100 g soil): 85 ± 10% for Pu, 79 ± 10% for Np Turnover time (in-line anion exchange chromatography): <3.5 h | [57] | |
239 Pu, 240Pu | Soil/sediment (10–200 g), seaweed (20 g), seawater (200 L) | SI | Single sample | Extraction chromatography (2 mL TEVA resin) | ICP-MS * | Chemical yield: 80–105%DFs for U, Th, Hg and Pb: > 104. Duration for in-line extraction chromatography: <1.5 h | [58] | |
239 Pu, 240Pu | Soil/sediment (5–100 g), seaweed (20 g) | SI | Nice samples in sequential mode | Anion exchange chromatography (2 mL AG 1 × 4 resin) | ICP-MS * | Chemical yield: up to 90% Turnover time (in-line anion exchange chromatography): <2.5 h | [59] | |
Environmental radioactivity monitoring, nuclear safeguards | 238 U, 242Pu | Urine (1 mL) and tap water (10 L) | FI | Single sample | Co-precipitation and extraction chromatography (TEVA) for water sample * | ICP-MS | LOD: 0.09 fg of 238U and 0.015 fg of 242Pu | [60] |
Environmental radioactivity monitoring, nuclear waste management | 90 Sr | Rain water and reactor coolant | LOV-MSFIA |
Single sample Renewable column | Extraction chromatography (0.35 mL Sr resin) | ICP-MS | Chemical yield: 53–100% Turnover time: 16–24 min for 5 mL sample, 60 min for 100 mL sample, 6 h for 1 L sample | [61] |
99 Tc | Ground water (250 mL) | FI | Multi-sample (4 samples) | Extraction chromatography (1.4 g TEVA resin) | ICP-MS * | Chemical yield: 96 ± 2% LOD: 0.2 ng/L 99Tc Turnover time: 81min | [62] | |
Environmental radioactivity monitoring, nuclear safeguards, radioecology and tracer studies | 236 U, 237Np, 239Pu, 240Pu | Seawater (10 L) | SI | Single sample | Tandem chromatography (2 mL TEVA resin and 1 UTEVA resin) | ICP-MS * AMS * | Chemical yields: 70–100% Turnover time: 8 h | [63] |
Environmental radioactivity monitoring, emergency preparedness, radioecology and tracer studies | 99 Tc, 237Np, 239Pu, 240Pu, 238U | Seawater (200 L) | FI | Multi-sample (4 samples) | Extraction and anion exchange chromatography (TEVA, AG MP-1M, UTEVA resin) | ICP-MS * AMS * | Chemical yield: 50–70% LOD: 8 µBq/L of 99Tc, 0.26 nBq/L of 237Np, 23 nBq/L of 239Pu, 84 nBq/L of 240Pu and 0.6 µBq/L of 238U Turnover time: 3–4 day | [64] |
Medical isotope production | 89 Zr ** | Cyclotron bombarded Y foil | SI | Single sample | Tandem chromatography (AG MP-1 M and hydroxamate resin) | Gamma spectrometry | Chemical yield: 95.1 ± 1.3% | [31] |
90 Y | Water, urine and blood | MSFIA coupling online column-based LLE | Single sample | LLME in a column (0.32 mL) containing HDEHP absorbed on C18 (0.11 g) | LBPC * | Chemical yield: 100 ± 2.3% (n = 10). LLD: 5 mBq of 90Y | [35] | |
99 Tc | Urine, saliva and hospital residues | LIS-DLLME | Single sample | LIS-DLLME with 22.5% of Aliquat®336 in acetone | LSC * | MDA: 75 mBq Turnover time (extraction): 7.5 min | [36] | |
99m Tc | Cyclotron bombarded Mo target | Vacuum pumping flow system | Single sample | Triple tandem chromatography (ABEC-2000, SCX and Al resin) | Gamma spectrometry | Chemical yield: close to 90% Turnover time: 27 ± 2 min | [30] | |
68 Ga, 99mTc, 188Re, 213Bi ** | Parent radionuclides 68Ge for 68Ga, 99Mo for 99mTc, 188W for 188Re, 225Ac for 213Bi | SI | Single sample | Tandem chromatography 68Ge/68Ga: 50W × 8 +UTEVA 99Mo/99mTc: ABEC − 2000 + 50W × 8/Diphonix188W/188Re: ABEC − 2000 + 50W × 8/Diphonix225Ac/213Bi: UTEVA + 50W × 8/pre-filter | Gamma spectrometry * LSC * | Chemical yield: 87 ± 3% for 213Bi, 95 ± 1% for 68Ga, 88 ± 2% for 99mTc and 93 ± 3% for 188Re Turnover time: 19–58 min. | [34] | |
213 Bi ** | Parent radionuclide 225Ac | SI | Single sample | Anion exchange chromatography | - | Chemical yield: 85–93% Turnover time: 6 min. | [33] | |
Nuclear emergency preparedness | 89 Sr, 90Sr | Milk | FI | Multi-sample (4 samples) | Cation exchange chromatography (Dowex 50W × 8 − 100) * Extraction chromatography (5 mL Sr resin) | LSC * | Chemical yield: 80% MDA: 0.7 Bq/L of 89Sr, 0.3 Bq/L of 90Sr Precision: 5% RSD Turnover time: <1 day | [26] |
237 Np, 239Pu | Urine (0.2–1 L) | LOV-SI |
Single sample Renewable column | Extraction chromatography (ca. 300 mg TEVA resin, 100–150 µm) | ICP-MS * | Chemical yield: 88.7 ± 11.6% for Pu, 94.2 ± 2.0% for Np LOD: 1.0–1.5 pg/L for both 237Np and 239Pu Turnover time: 6 h | [65] | |
239 Pu | Urine (1 L) | LOV-SI |
Single sample Renewable column | Extraction chromatography (ca. 300 mg TEVA resin, 100–150 µm) | ICP-MS * | Chemical yield: > 90% LOD: 1.0–1.5 pg/L of 239Pu Turnover time: 6 h | [27] | |
Nuclear safeguards | 239 Pu, 240Pu, 241Pu, 242Pu, 244Pu isotope ratios | Spiked working solution | FI | Single sample | Electrochemically modulated separation | ICP-MS | LOD: 0.055 fg of 239Pu Precision: 31.1% RSD for 239Pu/244Pu, 14.5% RSD for 240Pu/244Pu, 83.8% RSD for 241Pu/244Pu, 11.2% RSD for 242Pu/244Pu | [66] |
Nuclear waste management | 90 Sr | Aged nuclear waste samples from the Hanford site | SI | Single sample | Extraction chromatography (0.35 mL Sr resin) | Flow-through LSC | Chemical yield: 94 ± 5%. LOD: 2.62 Bq of 90Sr Turnover time: <40 min. | [67] |
90Sr, 241Am, 99Tc | Aged nuclear wastes | SI |
Single sample Renewable column | Extraction chromatography (50 µL Sr resin, TRU resin and TEVA resin) | Flow-through LSC | Chemical yield: 92 ± 2% for 90Sr, 99 ± 5% for 99Tc | [68] | |
99 Tc | Nuclear waste samples from the Hanford site | SI | Single sample | Extraction chromatography (0.83 mL TEVA, 20–50 µm) | Flow-through LSC | LOD: 2 ng of 99Tc Turnover time: 20–40 min. | [69] | |
99 Tc | Nuclear waste simulant solutions and aged nuclear waste | SI coupling online microwave-assisted sample treatment | Single sample | Anion exchange chromatography (0.83 mL AG MP-1M, 38–75 µm) | Flow-through solid scintillator detector | - | [70] | |
99 Tc | Nuclear waste simulant solutions and Hanford tank waste sample | SI coupling online microwave-assisted sample treatment | Single sample | Anion exchange column (AG MP-1M) | Flow-through solid scintillator detector | LOD: 23.5 kBq/L of 99Tc Precision: <10% RSD Turnover time: 12.5 min | [71] | |
99Tc | Aged nuclear wastes | SI |
Single sample Renewable column | Extraction chromatography (212 µL TEVA resin) | Flow-through LSC | LOD: 6 Bq/L Turnover time: 30 min | [72] | |
99 Tc, 230Th, 234Th | Soil (0.25–5 g) | FI | Single sample | Extraction chromatography (ca. 30 mg TEVA resin and ca. 30 mg TRU resin) | ICP-MS | LOD: 11 Bq/kg of 99Tc, 3.7 Bq/kg of 230Th, 0.74 Bq/kg 234Th | [73] | |
230 Th, 233U, 239Pu, 241Am | Spiked sample solution in 2 M HNO3 | FI | Single sample | Extraction chromatography (0.63 mL TRU resin, 20–50 µm) | Flow- through LSC LSC * Alpha spectrometry * | Chemical yield: up to 102 ± 4% for 241Am up to 101 ± 3% for 239Pu up to 93 ± 4% for 233U up to 88 ± 3% for 230Th | [74] | |
237 Np, 242Pu | Ground water at Gorleben site | FI | Single sample | Capillary electrophoresis | ICP-MS | LOD: 50 µg/L Turnover time: <15 min | [75] | |
237 Np, 238Pu, 239+240Pu, 241Am | Dissolved vitrified nuclear waste | SI | Single sample | Extraction chromatography (0.63 mL TRU resin, 20–50 µm) | ICP-MS | U decontamination factor (for Pu determination): 3.0 × 105 | [76] | |
238 Pu, 239+240Pu, 241Am, 243+244Cm, 242Cm | Vitrified glass waste, aged irradiated nuclear fuel and waste from Handford site | SI | Single sample | Extraction chromatography (0.63 mL TRU resin, 20–50 µm) | Flow-through LSC LSC * Alpha spectrometry * | Chemical yield: 85% for Pu, 86% for Am | [77] | |
Radioecology and tracer studies | 99 Tc | Soil (1–10 g) | FI | Single sample | Tandem chromatography (0.75 mL TEVA resin and 0.17 mL TEVA resin) | ICP-MS | Chemical yield: 63–73% LOD: 50 mBq/L Precision: <4% RSD Turnover time: 3–5 h | [78] |
236 U | Seawater (10 L) | FI | Multi-sample (4 samples) | Extraction chromatography (2 mL UTEVA resin, 100–150 µm) | ICP-MS * AMS * | Chemical yield: 80−100% LOD: 6.6 × 10−11 of 236U/238U atomic ratio Turnover time: 4 h | [79] |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiao, J. Dynamic Flow Approaches for Automated Radiochemical Analysis in Environmental, Nuclear and Medical Applications. Molecules 2020, 25, 1462. https://doi.org/10.3390/molecules25061462
Qiao J. Dynamic Flow Approaches for Automated Radiochemical Analysis in Environmental, Nuclear and Medical Applications. Molecules. 2020; 25(6):1462. https://doi.org/10.3390/molecules25061462
Chicago/Turabian StyleQiao, Jixin. 2020. "Dynamic Flow Approaches for Automated Radiochemical Analysis in Environmental, Nuclear and Medical Applications" Molecules 25, no. 6: 1462. https://doi.org/10.3390/molecules25061462
APA StyleQiao, J. (2020). Dynamic Flow Approaches for Automated Radiochemical Analysis in Environmental, Nuclear and Medical Applications. Molecules, 25(6), 1462. https://doi.org/10.3390/molecules25061462