Environmental Risk and Risk of Resistance Selection Due to Antimicrobials’ Occurrence in Two Polish Wastewater Treatment Plants and Receiving Surface Water
Abstract
:1. Introduction
2. Results
2.1. Predicted Concentrations of Antimicrobials in WWTPs
2.2. Antimicrobial Concentrations in Influents of WWTPs
2.3. Antimicrobial Concentrations in Effluent of WWTPs
2.4. Antimicrobial Concentrations in Receiving Waters
2.5. Antimicrobials’ Removal Efficiency
2.6. Antimicrobials’ Concentrations in Sewage Sludge from WWTPs
2.7. Antimicrobial Resistance Risk Assessment
2.8. Environmental Risk Assessment
3. Materials and Methods
3.1. Description of WWTPs and Sample Collection
3.2. Analysis of Antimicrobials’ Concentrations
3.2.1. Chemicals
3.2.2. Preparation of Water and Sewage Sludge Samples
3.2.3. Antimicrobial Detection by LC-MS/MS Analysis
3.3. Calculations
3.4. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Sale in 2018 (kg/month) | PLoad (g/d) 1 | LoadW (g/d) 2 | LoadS (g/d) 3 | LoadW/PLoad (%) | LoadS/PLoad (%) | LoadW+S 4/PLoad(%) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
range | S5 | A | W | S | A | W | S | A | W | S | A | W | S | A | W | S | A | W | |
AZM6 | 98–352 | 25.3 | 26.3 | 47.2 | 0.3 | 4.8 | 1.9 | 0.2 | 2.9 | 5.4 | 1 | 13 | 4 | 1 | 8 | 11 | 2 | 21 | 15 |
CIP | 601–821 | 106.5 | 128.9 | 112.8 | 58.7 | 15.6 | 27.1 | 54.2 | 26.1 | 60.1 | 55 | 12 | 24 | 51 | 20 | 53 | 106 | 32 | 77 |
CLR | 288–1509 | 68.9 | 121.1 | 145.5 | 7.9 | 11.2 | 19.4 | 0.04 | 0.27 | 0.09 | 12 | 9 | 13 | 0 | 0 | 0 | 12 | 9 | 13 |
CLI | 608–737 | 109.9 | 116.4 | 106.8 | 1.6 | 2.4 | 6.8 | 0.3 | 0.2 | 0.8 | 1 | 2 | 6 | 0 | 0 | 1 | 1 | 2 | 7 |
NOR | 179–214 | 30.9 | 35.5 | 29.9 | 5.1 | 11.2 | 3.0 | 10.3 | 18.0 | 52.7 | 16 | 31 | 10 | 33 | 51 | 176 | 49 | 82 | 186 |
OFX | 609–829 | 107.3 | 131.0 | 113.7 | 2.6 | 4.9 | 3.5 | 10.2 | 1.5 | 2.8 | 2 | 4 | 3 | 10 | 1 | 3 | 12 | 5 | 6 |
RIF | 40–48 | 7.08 | 7.19 | 6.63 | 0.26 | 0.08 | 0.08 | 4 | 1 | 1 | 0 | 0 | 0 | 4 | 1 | 1 | |||
ROX | 6–28 | 1.44 | 2.33 | 2.69 | 0.14 | 0.14 | 1.19 | 10 | 6 | 44 | 0 | 0 | 0 | 10 | 6 | 44 | |||
SXT | 606–1358 | 133.3 | 196.0 | 194.1 | 18.5 | 44.9 | 44.0 | 0.4 | 0.3 | 1.2 | 14 | 23 | 23 | 0 | 0 | 1 | 14 | 23 | 24 |
TMP | 122–272 | 26.7 | 39.7 | 38.9 | 8.1 | 5.5 | 6.8 | 0.02 | 0.02 | 0.09 | 30 | 14 | 18 | 0 | 0 | 0 | 30 | 14 | 18 |
Antimicrobial | % of Total Mass Load Sorbed to Sludge | log Kd Sludge |
---|---|---|
AZM | 73% | 7.1 ± 4.3 |
CIP | 55% | 7.3 ± 4.2 |
CLR | 18% | 5.7 ± 2.5 |
CLI | 9% | 5.7 ± 2.6 |
LCM | 7% | 5.2 ± 1.9 |
OFX | 43% | 7.7 ± 4.8 |
OTC | 62% | 9.8 ± 6.9 |
SDM | 32% | 6.8 ± 3.4 |
SXT | 2% | 5.1 ± 1.7 |
TET | 13% | 8.3 ± 5.5 |
TBZ | 23% | 5.9 ± 2.6 |
TMP | 19% | 4.8 ± 1.6 |
VAN | 24% | 6.3 ± 3.2 |
Antimicrobial (ng/g) | WWTP1-PS | WWTP1-ES | WWTP2-RS | WWTP2-FS | WWTP1-RS 1 | |||||
---|---|---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | |
AZM | 1.9 | 1.3 | 0.55 | 0.50 | 0.17 | 0.14 | 2.3 | 1.6 | 0.14 | 0.13 |
CIP | 18 | 13 | 9.1 | 3.5 | 8.9 | 9.8 | 41 | 40 | 11.4 | 5.2 |
CLR | 0.42 | 0.09 | 0.03 | 0.02 | 0.03 | 0.04 | 0.33 | 0.37 | <0.01 | - |
CLI | 0.06 | 0.04 | 0.08 | 0.06 | 0.04 | 0.05 | 0.07 | 0.05 | 0.01 | 0.01 |
LCM | 0.01 | 0.01 | 0.01 | - | 0.01 | 0.01 | 0.03 | 0.04 | <0.01 | - |
NOR | 7.8 | 5.8 | 5.2 | 4.4 | 2.4 | 2.4 | 5.0 | 4.1 | - | - |
OFX | 1.2 | 1.6 | 0.94 | 0.91 | 0.44 | 0.33 | 0.70 | 0.21 | 0.05 | 0.02 |
OTC | 0.86 | 0.74 | 0.48 | 0.41 | 0.07 | 0.06 | 0.41 | 0.37 | 0.01 | 0.01 |
PEF | 0.36 | 0.25 | 0.28 | 0.20 | 0.28 | 0.22 | 0.38 | 0.15 | - | - |
ROX | 0.03 | - | <0.01 | - | <0.01 | - | <0.01 | - | <0.01 | - |
SD | <0.01 | <0.01 | <0.01 | - | 0.03 | - | <0.01 | - | ||
SDM | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | - | <0.01 | - | <0.01 | - |
SXT | <0.03 | - | 0.12 | 0.10 | <0.03 | - | <0.03 | - | 0.01 | 0.01 |
TET | 0.12 | 0.09 | 0.06 | 0.02 | 0.08 | 0.05 | 0.29 | 0.17 | 0.04 | 0.03 |
TBZ | 0.03 | 0.01 | 0.02 | 0.01 | 0.09 | 0.08 | 0.07 | 0.04 | 0.01 | 0.01 |
TMP | 0.25 | 0.19 | 0.01 | 0.01 | <0.01 | - | <0.01 | - | <0.01 | - |
VAN | 0.53 | 0.10 | 0.27 | 0.16 | 0.11 | - | <0.01 | - | 0.55 | 0.15 |
Compound | Cyanobacteria NOEC/EC50 | Cyanobacteria PNEC | Eukaryote NOEC/EC50 | Eukaryote PNEC |
---|---|---|---|---|
AZM | 0.19 | 19 | 1.8 | 180(MA) |
CIP | 5.65 | 565 | 10 | 1000(MP) |
CLR | 0.84 | 84 | 2 | 40(MA) |
ERY | 2 | 200 | 10.3 | 206(MA) |
LCM | 18 | 1800 | 548 | 10976(MA) |
MTZ | 0 | nd | 250,000 | 5000000(IN) |
NOR | 1.6 | 160 | 300 | 3000(MP) |
OFX | 5 | 500 | 31.2 | 624(MA) |
OTC | 3.1 | 310 | 183 | 3660(MA) |
ROX | nd | nd | 10 | 100(MA) |
SD | 3900 | 390,000 | 135 | 2700(MA) |
SDM | 7800 | 780,000 | 100 | 5290(MA) |
SXT | 5.9 | 590 | 10 | 1000(MP,IN) |
TET | 90 | 9000 | 300 | 6000(MP) |
TMP | 1385 | 135,800 | 1000 | 20000(MP) |
Antimicrobial | PNEC Wastewater (µg/L) 1 | PNEC Sludge (µg/kg) 2 | PNEC Soil (µg/kg) 3 |
---|---|---|---|
AZT | 0.25 | 1200 | 47 |
CIP | 0.064 | 1200 | 27,000 |
CLR | 0.25 | 140 | 66 |
CLI | 1 | 280 | - |
ER | 2 | - | 260 |
LIN | 2 | 340 | - |
METR | 0.125 | - | 0.07 |
NFL | 0.5 | - | 300 |
OFL | 0.5 | 4200 | 730 |
OTET | 0.5 | 4,200,000 | 210 |
RIF | 0.5 | - | - |
ROX | 1 | 4300 | 50 |
STH | 16 | 2000 | 9.6 |
TET | 1 | 3000 | 1100 |
TRI | 0.5 | 100 | 3.7 |
VAN | 8 | 17,000 | 2.4 |
References
- Fu, W.; Fu, J.; Li, X.; Li, B.; Wang, X. Occurrence and fate of PPCPs in typical drinking water treatment plants in China. Environ. Geochem Health 2019, 41, 5–15. [Google Scholar] [CrossRef] [PubMed]
- Omar, T.F.T.; Aris, A.Z.; Yusoff, F.M.; Mustafa, S. Risk assessment of pharmaceutically active compounds (PhACs) in the Klang River estuary, Malaysia. Environ. Geochem Health 2019, 41, 211–223. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Zhou, H.; Li, K.; Zhao, X.; Liu, Q.; Li, D.; Zhao, G. Occurrence of pharmaceuticals and personal care products, and their associated environmental risks in a large shallow lake in north China. Environ. Geochem. Health 2018, 40, 1525–1539. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Li, J.; Chen, P.; Ding, R.; Zhang, P.; Li, X. Occurrence of antibiotics and antibiotic resistances in soils from wastewater irrigation areas in Beijing and Tianjin, China. Environ. Pollut. 2014, 193, 94–101. [Google Scholar] [CrossRef]
- Rodriguez-Mozaz, S.; Chamorro, S.; Marti, E.; Huerta, B.; Gros, M.; Sanchez-Melsio, A.; Borrego, C.M.; Barcelo, D.; Balcazar, J.L. Occurrence of antibiotics and antibiotic resistance genes in hospital and urban wastewaters and their impact on the receiving river. Water Res. 2015, 69, 234–242. [Google Scholar] [CrossRef]
- Harrabi, M.; Varela Della Giustina, S.; Aloulou, F.; Rodriguez-Mozaz, S.; Barceló, D.; Elleuch, B. Analysis of multiclass antibiotic residues in urban wastewater in Tunisia. Environ. Nanotechnol. Monit. Manag. 2018, 10, 163–170. [Google Scholar] [CrossRef]
- Dinh, Q.; Moreau-Guigon, E.; Labadie, P.; Alliot, F.; Teil, M.J.; Blanchard, M.; Eurin, J.; Chevreuil, M. Fate of antibiotics from hospital and domestic sources in a sewage network. Sci. Total Environ. 2017, 575, 758–766. [Google Scholar] [CrossRef]
- Marx, C.; Gunther, N.; Schubert, S.; Oertel, R.; Ahnert, M.; Krebs, P.; Kuehn, V. Mass flow of antibiotics in a wastewater treatment plant focusing on removal variations due to operational parameters. Sci. Total Environ. 2015, 538, 779–788. [Google Scholar] [CrossRef]
- Stadler, L.B.; Delgado Vela, J.; Jain, S.; Dick, G.J.; Love, N.G. Elucidating the impact of microbial community biodiversity on pharmaceutical biotransformation during wastewater treatment. Microb. Biotechnol. 2018, 11, 995–1007. [Google Scholar] [CrossRef] [Green Version]
- Luo, Y.; Guo, W.; Ngo, H.H.; Nghiem, L.D.; Hai, F.I.; Zhang, J.; Liang, S.; Wang, X.C. A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Sci. Total Environ. 2014, 473–474, 619–641. [Google Scholar] [CrossRef]
- ECDC. European Centre for Disease Prevention and Control (2016) An agency of the European Union. Available online: https://www.ecdc.europa.eu/en (accessed on 3 October 2019).
- Krzeminski, P.; Tomei, M.C.; Karaolia, P.; Langenhoff, A.; Almeida, C.M.R.; Felis, E.; Gritten, F.; Andersen, H.R.; Fernandes, T.; Manaia, C.M.; et al. Performance of secondary wastewater treatment methods for the removal of contaminants of emerging concern implicated in crop uptake and antibiotic resistance spread: A review. Sci. Total Environ. 2019, 648, 1052–1081. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mompelat, S.; Le Bot, B.; Thomas, O. Occurrence and fate of pharmaceutical products and by-products, from resource to drinking water. Environ. Int. 2009, 35, 803–814. [Google Scholar] [CrossRef]
- Grenni, P.; Ancona, V.; Barra Caracciolo, A. Ecological effects of antibiotics on natural ecosystems: A review. Microchem. J. 2018, 136, 25–39. [Google Scholar] [CrossRef]
- Zhao, S.; Liu, X.; Cheng, D.; Liu, G.; Liang, B.; Cui, B.; Bai, J. Temporal–spatial variation and partitioning prediction of antibiotics in surface water and sediments from the intertidal zones of the Yellow River Delta, China. Sci. Total Environ. 2016, 569–570, 1350–1358. [Google Scholar] [CrossRef]
- Watkinson, A.J.; Murby, E.J.; Kolpin, D.W.; Costanzo, S.D. The occurrence of antibiotics in an urban watershed: From wastewater to drinking water. Sci. Total Environ. 2009, 407, 2711–2723. [Google Scholar] [CrossRef]
- Loraine, G.A.; Pettigrove, M.E. Seasonal Variations in Concentrations of Pharmaceuticals and Personal Care Products in Drinking Water and Reclaimed Wastewater in Southern California. Environ. Sci. Technol. 2006, 40, 687–695. [Google Scholar] [CrossRef]
- Giebultowicz, J.; Tyski, S.; Wolinowska, R.; Grzybowska, W.; Zareba, T.; Drobniewska, A.; Wroczynski, P.; Nalecz-Jawecki, G. Occurrence of antimicrobial agents, drug-resistant bacteria, and genes in the sewage-impacted Vistula River (Poland). Environ. Sci. Pollut. Res. Int. 2018, 25, 5788–5807. [Google Scholar] [CrossRef]
- Kümmerer, K.; Henninger, A. Promoting resistance by the emission of antibiotics from hospitals and households into effluent. Clin. Microbiol. Infect. 2003, 9, 1203–1214. [Google Scholar] [CrossRef] [Green Version]
- Senta, I.; Terzic, S.; Ahel, M. Occurrence and fate of dissolved and particulate antimicrobials in municipal wastewater treatment. Water Res. 2013, 47, 705–714. [Google Scholar] [CrossRef] [Green Version]
- Radjenovic, J.; Petrovic, M.; Barcelo, D. Fate and distribution of pharmaceuticals in wastewater and sewage sludge of the conventional activated sludge (CAS) and advanced membrane bioreactor (MBR) treatment. Water Res. 2009, 43, 831–841. [Google Scholar] [CrossRef]
- Wang, S.; Cui, Y.; Li, A.; Zhang, W.; Wang, D.; Ma, J. Fate of antibiotics in three distinct sludge treatment wetlands under different operating conditions. Sci Total Environ. 2019, 671, 443–451. [Google Scholar] [CrossRef] [PubMed]
- Gobel, A.; McArdell, C.S.; Joss, A.; Siegrist, H.; Giger, W. Fate of sulfonamides, macrolides, and trimethoprim in different wastewater treatment technologies. Sci. Total Environ. 2007, 372, 361–371. [Google Scholar] [CrossRef] [PubMed]
- Ostman, M.; Lindberg, R.H.; Fick, J.; Bjorn, E.; Tysklind, M. Screening of biocides, metals and antibiotics in Swedish sewage sludge and wastewater. Water Res. 2017, 115, 318–328. [Google Scholar] [CrossRef] [PubMed]
- Plosz, B.G.; Leknes, H.; Liltved, H.; Thomas, K.V. Diurnal variations in the occurrence and the fate of hormones and antibiotics in activated sludge wastewater treatment in Oslo, Norway. Sci Total Environ. 2010, 408, 1915–1924. [Google Scholar] [CrossRef]
- Cycon, M.; Mrozik, A.; Piotrowska-Seget, Z. Antibiotics in the Soil Environment-Degradation and Their Impact on Microbial Activity and Diversity. Front. Microbiol. 2019, 10, 338. [Google Scholar] [CrossRef]
- Le Page, G.; Gunnarsson, L.; Snape, J.; Tyler, C.R. Integrating human and environmental health in antibiotic risk assessment: A critical analysis of protection goals, species sensitivity and antimicrobial resistance. Environ. Int. 2017, 109, 155–169. [Google Scholar] [CrossRef]
- Bengtsson-Palme, J.; Larsson, D.G.J. Concentrations of antibiotics predicted to select for resistant bacteria: Proposed limits for environmental regulation. Environ. Int. 2016, 86, 140–149. [Google Scholar] [CrossRef] [Green Version]
- O’Neill, J. Tackling drug-resistant infections globally:final report and recommendations. Rev. Antimicrob. Resist. 2016. Available online: https://amr-review.org/sites/default/files/160518_Final%20paper_with%20cover.pdf (accessed on 21 February 2020).
- Wishart, D.S.; Feunang, Y.D.; Guo, A.C.; Lo, E.J.; Marcu, A.; Grant, J.R.; Sajed, T.; Johnson, D.; Li, C.; Sayeeda, Z.; et al. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Res. 2018, 46, D1074–D1082. [Google Scholar] [CrossRef]
- Zachara, J.; Zachara, R.; Zachara, N.; Matuszczak, A.; Kłoda, K. The comparison of use of antibiotics due to acute respiratory infections in the rural population of primary care in 2010 and 2017. J. Educ. Health Sport 2019, 9, 70–83. [Google Scholar]
- Watkinson, A.J.; Murby, E.J.; Costanzo, S.D. Removal of antibiotics in conventional and advanced wastewater treatment: Implications for environmental discharge and wastewater recycling. Water Res. 2007, 41, 4164–4176. [Google Scholar] [CrossRef] [PubMed]
- Verlicchi, P.; Al Aukidy, M.; Zambello, E. Occurrence of pharmaceutical compounds in urban wastewater: Removal, mass load and environmental risk after a secondary treatment--a review. Sci Total Environ. 2012, 429, 123–155. [Google Scholar] [CrossRef] [PubMed]
- Peng, X.; Wang, Z.; Kuang, W.; Tan, J.; Li, K. A preliminary study on the occurrence and behavior of sulfonamides, ofloxacin and chloramphenicol antimicrobials in wastewaters of two sewage treatment plants in Guangzhou, China. Sci Total Environ. 2006, 371, 314–322. [Google Scholar] [CrossRef] [PubMed]
- Cunha, B.A. Vancomycin revisited: A reappraisal of clinical use. Crit. Care Clin. 2008, 24, 393–420. [Google Scholar] [CrossRef]
- Göbel, A.; Thomsen, A.; McArdell, C.S.; Joss, A.; Giger, W. Occurrence and Sorption Behavior of Sulfonamides, Macrolides, and Trimethoprim in Activated Sludge Treatment. Environ. Sci. Technol. 2005, 39, 3981–3989. [Google Scholar] [CrossRef]
- Le-Minh, N.; Khan, S.J.; Drewes, J.E.; Stuetz, R.M. Fate of antibiotics during municipal water recycling treatment processes. Water Res. 2010, 44, 4295–4323. [Google Scholar] [CrossRef]
- Choi, K.J.; Kim, S.G.; Kim, S.H. Removal of tetracycline and sulfonamide classes of antibiotic compound by powdered activated carbon. Environ. Technol. 2008, 29, 333–342. [Google Scholar] [CrossRef]
- Brown, K.D.; Kulis, J.; Thomson, B.; Chapman, T.H.; Mawhinney, D.B. Occurrence of antibiotics in hospital, residential, and dairy effluent, municipal wastewater, and the Rio Grande in New Mexico. Sci. Total Environ. 2006, 366, 772–783. [Google Scholar] [CrossRef]
- Sidhu, H.; D’Angelo, E.; O’Connor, G. Retention-release of ciprofloxacin and azithromycin in biosolids and biosolids-amended soils. Sci. Total Environ. 2019, 650, 173–183. [Google Scholar] [CrossRef]
- Kaeseberg, T.; Zhang, J.; Schubert, S.; Oertel, R.; Siedel, H.; Krebs, P. Sewer sediment-bound antibiotics as a potential environmental risk: Adsorption and desorption affinity of 14 antibiotics and one metabolite. Environ. Pollut. 2018, 239, 638–647. [Google Scholar] [CrossRef]
- Wu, C.; Spongberg, A.L.; Witter, J.D. Sorption and biodegradation of selected antibiotics in biosolids. J. Environ. Sci Health A 2009, 44, 454–461. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Qiang, Z.; Li, Y.; Ben, W. An insight into the removal of fluoroquinolones in activated sludge process: Sorption and biodegradation characteristics. J. Environ. Sci (China) 2017, 56, 263–271. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Zhang, W.; Liang, H.; Gao, D. Occurrence and fate of typical antibiotics in wastewater treatment plants in Harbin, North-east China. Front. Environ. Sci. Eng. 2019, 13, 34. [Google Scholar] [CrossRef]
- Rodayan, A.; Majewsky, M.; Yargeau, V. Impact of approach used to determine removal levels of drugs of abuse during wastewater treatment. Sci. Total Environ. 2014, 487, 731–739. [Google Scholar] [CrossRef] [Green Version]
- Golet, E.M.; Alder, A.C.; Giger, W. Environmental Exposure and Risk Assessment of Fluoroquinolone Antibacterial Agents in Wastewater and River Water of the Glatt Valley Watershed, Switzerland. Environ. Sci. Technol. 2002, 36, 3645–3651. [Google Scholar] [CrossRef]
- Gao, L.; Shi, Y.; Li, W.; Niu, H.; Liu, J.; Cai, Y. Occurrence of antibiotics in eight sewage treatment plants in Beijing, China. Chemosphere 2012, 86, 665–671. [Google Scholar] [CrossRef]
- Roberts, P.H.; Thomas, K.V. The occurrence of selected pharmaceuticals in wastewater effluent and surface waters of the lower Tyne catchment. Sci. Total Environ. 2006, 356, 143–153. [Google Scholar] [CrossRef]
- Chunhui, Z.; Liangliang, W.; Xiangyu, G.; Xudan, H. Antibiotics in WWTP discharge into the Chaobai River, Beijing. Arch. Environ. Prot. 2016, 42, 48–57. [Google Scholar] [CrossRef]
- Gros, M.; Petrovic, M.; Ginebreda, A.; Barcelo, D. Removal of pharmaceuticals during wastewater treatment and environmental risk assessment using hazard indexes. Environ. Int. 2010, 36, 15–26. [Google Scholar] [CrossRef]
- Kummerer, K. The presence of pharmaceuticals in the environment due to human use--present knowledge and future challenges. J. Environ. Manag. 2009, 90, 2354–2366. [Google Scholar] [CrossRef]
- Osorio, V.; Larrañaga, A.; Aceña, J.; Pérez, S.; Barceló, D. Concentration and risk of pharmaceuticals in freshwater systems are related to the population density and the livestock units in Iberian Rivers. Sci. Total Environ. 2016, 540, 267–277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, M.; Wu, L.; Huang, Y.; Luo, Y.; Christie, P. Total concentrations of heavy metals and occurrence of antibiotics in sewage sludges from cities throughout China. J. Soils Sediments 2014, 14, 1123–1135. [Google Scholar] [CrossRef]
- Lindberg, R.H.; Wennberg, P.; Johansson, M.I.; Tysklind, M.; Andersson, B.A.V. Screening of Human Antibiotic Substances and Determination of Weekly Mass Flows in Five Sewage Treatment Plants in Sweden. Environ. Sci. Technol. 2005, 39, 3421–3429. [Google Scholar] [CrossRef] [PubMed]
- Golet, E.M.; Xifra, I.; Siegrist, H.; Alder, A.C.; Giger, W. Environmental Exposure Assessment of Fluoroquinolone Antibacterial Agents from Sewage to Soil. Environ. Sci. Technol. 2003, 37, 3243–3249. [Google Scholar] [CrossRef]
- Göbel, A.; Thomsen, A.; McArdell, C.S.; Alder, A.C.; Giger, W.; Theiß, N.; Löffler, D.; Ternes, T.A. Extraction and determination of sulfonamides, macrolides, and trimethoprim in sewage sludge. J. Chromatogr. A 2005, 1085, 179–189. [Google Scholar] [CrossRef]
- GUS. Statistical Yearbook of the Regions—Poland; Statistics Poland: Warsaw, Poland, 2018. [Google Scholar]
- Buta, M.; Hubeny, J.; Zieliński, W.; Korzeniewska, E.; Harnisz, M.; Nowrotek, M.; Płaza, G. The Occurrence of Integrase Genes in Different Stages of Wastewater Treatment. J. Ecol. Eng. 2019, 20, 39–45. [Google Scholar] [CrossRef]
- Douziech, M.; Conesa, I.R.; Benítez-López, A.; Franco, A.; Huijbregts, M.; van Zelm, R. Quantifying variability in removal efficiencies of chemicals in activated sludge wastewater treatment plants—a meta-analytical approach. Environ. Sci. Processes Impacts 2018, 20, 171–182. [Google Scholar] [CrossRef] [Green Version]
- ECHA. Guidance on information requirements and chemical safety assessment; European Chemicals Agency: Helsinki, Finland, 2008. [Google Scholar]
- Ben, W.; Zhu, B.; Yuan, X.; Zhang, Y.; Yang, M.; Qiang, Z. Occurrence, removal and risk of organic micropollutants in wastewater treatment plants across China: Comparison of wastewater treatment processes. Water Res. 2018, 130, 38–46. [Google Scholar] [CrossRef]
- Rabùlle, M.; Spliid, N.H. Sorption and mobility of metronidazole, olaquindox, oxytetracycline and tylosin in soil. Chemosphere 2000, 40, 8. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are not available from the authors. |
WWTP1 Influent | WWTP1 Effluent | WWTP1 Leachate | River1 Upstream | River1 Downstream | WWTP2 Influent | WWTP2 Effluent | River2 Upstream | River2 Downstream | MDL 1 | MQL 1 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | |||
AZM | 87 | 71 | 230 | 110 | 320 | 290 | 25 | 15 | 441 | 249 | 360 | 450 | 650 | 680 | 5.2 | 2.7 | 36 | 21 | 10 | 33 |
CIP | 1260 | 680 | 184 | 72 | 890 | 410 | 108 | 33 | 95 | 4 | 4300 | 4300 | 312 | 73 | 12 | 12 | 182 | 182 | 2.4 | 8.1 |
CLR | 480 | 190 | 160 | 170 | 102 | 23 | 37 | 9 | 79 | 50 | 560 | 590 | 143 | 40 | 12.2 | 8.2 | 20.5 | 11.1 | 0.3 | 0.9 |
CLI | 134 | 87 | 166 | 60 | 73 | 37 | 78 | 46 | 134 | 3 | 106 | 51 | 290 | 200 | 2.3 | 1.1 | 25.4 | 3.5 | 2.9 | 9.5 |
ERY | 58 | 71 | 21 | 18 | 30 | 42 | 7 | 7 | 10 | 0 | 28 | 20 | 16 | 12 | <MDL | <MDL | 0.7 | 2.4 | ||
LCM | 20 | 15 | 48 | 52 | 24.7 | 7.8 | 3 | 3 | 9 | 4 | 102 | 46 | 56 | 19 | <MDL | 4.0 | 1.4 | 1.4 | 4.7 | |
MTZ | 250 | 160 | 69 | 82 | 11.1 | 8.4 | 9 | 3 | 21 | 11 | 7400 | 9600 | 88 | 41 | <MDL | 9.4 | 3.1 | 2.4 | 7.9 | |
NOR | 240 | 130 | 31 | 28 | 210 | 150 | 95 | 93 | <MDL | 80 | 110 | 10 | 11 | <MDL | <MDL | 6.3 | 21 | |||
OFX | 135 | 35 | 26 | 14 | 200 | 91 | 32 | 18 | 4 | 4 | 195 | 21 | 40 | 11 | 8.4 | 0.5 | 31 | 23 | 1.4 | 4.6 |
OTC | 0.7 | 0.9 | 0.1 | 0.1 | 1.1 | 1.4 | <MDL | 1 | 0 | <MDL | <MDL | <MDL | <MDL | 0.1 | 0.2 | |||||
RIF | 5.2 | 3.3 | <MDL | <MDL | <MDL | <MDL | 5.3 | 3.4 | 2.9 | 2 | <MDL | <MDL | 2.9 | 9.6 | ||||||
ROX | 18 | 19 | 6.6 | 6.9 | 1.6 | 1.6 | 4 | 4 | 5 | 2 | 6.2 | 5.3 | 6.2 | 2.1 | <MDL | <MDL | 0.5 | 1.6 | ||
SD | <MDL | 3.4 | 4.3 | 2.4 | 2.5 | <MDL | <MDL | <MDL | <MDL | <MDL | <MDL | 0.6 | 1.9 | |||||||
SDM | 4.1 | 3.2 | 3.4 | 3.5 | <MDL | <MDL | <MDL | 8.9 | 7.2 | 4.9 | 3.6 | <MDL | <MDL | 1.8 | 6.1 | |||||
SXT | 1300 | 460 | 630 | 220 | 480 | 630 | 644 | 41 | 451 | 95 | 3000 | 1900 | 770 | 280 | <MDL | 76.1 | 4.6 | 5.9 | 19 | |
ST | 94 | 46 | 21 | 14 | 136 | 54 | 7 | 6 | 29 | 19 | 180 | 110 | 36 | 16 | <MDL | <MDL | 2.4 | 8 | ||
TET | 190 | 190 | 39 | 55 | 180 | 170 | <MDL | 0 | 0 | 210 | 160 | 61 | 48 | <MDL | 7.2 | 6.4 | 0.2 | 0.7 | ||
TBZ | 18.4 | 2.8 | 22.3 | 4.5 | 18 | 11 | 12 | 7 | 16 | 0 | 11 | 2.8 | 25.5 | 3 | <MDL | 4.3 | 2.1 | 2.8 | 9.4 | |
TMP | 254 | 41 | 160 | 190 | 94 | 52 | 38 | 3 | 36 | 8 | 900 | 770 | 220 | 110 | 9.1 | 8.4 | 24.4 | 3.9 | 3 | 9.9 |
VAN | 350 | 390 | 114 | 60 | 840 | 220 | 27 | 23 | 62 | 8 | 3200 | 3600 | 162 | 62 | <MDL | 10.7 | 3.2 | 15 | 50 |
WWTP1-PS | WWTP1-ES | WWTP2-RS | WWTP2-FS | WWTP1-RS 1 | MDL | MQL | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | |||
AZM | 1260 | 690 | 370 | 280 | 82 | 75 | 1040 | 940 | 100 | 110 | 23 | 79 |
CIP | 12500 | 6900 | 6200 | 2000 | 6100 | 5500 | 28000 | 22000 | 7800 | 4400 | 490 | 1670 |
CLR | 289 | 52 | 18 | 14 | 18 | 23 | 150 | 180 | 3.0 | 0.8 | 2.2 | 7.4 |
CLI | 40 | 25 | 58 | 35 | 29 | 29 | 47 | 30 | 9.1 | 5.6 | 1.3 | 4.5 |
LCM | 4.3 | 3.2 | 1.5 | 2.0 | 2.5 | 2.6 | 19 | 24 | 0.13 | 0.05 | 0.2 | 0.6 |
NOR | 5300 | 3200 | 3600 | 2500 | 1600 | 1400 | 3400 | 2300 | <MDL | 370 | 1270 | |
OFX | 810 | 890 | 640 | 510 | 300 | 190 | 480 | 120 | 36 | 21 | 12 | 41 |
OTC | 590 | 410 | 320 | 230 | 50 | 35 | 190 | 200 | 4.0 | 6.5 | 0.2 | 0.7 |
PEF | 250 | 150 | 190 | 110 | 140 | 120 | 256 | 81 | <MDL | 29 | 100 | |
ROX | 11.4 | 7.8 | <MDL | <MDL | <MDL | 0.22 | 0.26 | 12 | 40 | |||
SD | <MDL | <MDL | 1.1 | 0.8 | 7.7 | 11 | 0.14 | 0.18 | 1.1 | 3.7 | ||
SDM | 12 | 14 | 13 | 14 | 7.5 | 11 | <MDL | 0.29 | - | 0.6 | 2.0 | |
SXT | <MDL | 81 | 54 | <MDL | <MDL | 5.9 | 9.4 | 41 | 140 | |||
TET | 82 | 50 | 40 | 13 | 58 | 29 | 201 | 95 | 25 | 29 | 0.7 | 2.5 |
TBZ | 19.5 | 5.2 | 15.6 | 5.8 | 43 | 43 | 49 | 22 | 8.3 | 6.2 | 0.6 | 2.2 |
TMP | 170 | 110 | 5.7 | 4.4 | <MDL | <MDL | 2.6 | 1.7 | 0.5 | 1.5 | ||
VAN | 363 | 55 | 181 | 91 | 36 | 30 | <MDL | 370 | 130 | 32 | 110 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giebułtowicz, J.; Nałęcz-Jawecki, G.; Harnisz, M.; Kucharski, D.; Korzeniewska, E.; Płaza, G. Environmental Risk and Risk of Resistance Selection Due to Antimicrobials’ Occurrence in Two Polish Wastewater Treatment Plants and Receiving Surface Water. Molecules 2020, 25, 1470. https://doi.org/10.3390/molecules25061470
Giebułtowicz J, Nałęcz-Jawecki G, Harnisz M, Kucharski D, Korzeniewska E, Płaza G. Environmental Risk and Risk of Resistance Selection Due to Antimicrobials’ Occurrence in Two Polish Wastewater Treatment Plants and Receiving Surface Water. Molecules. 2020; 25(6):1470. https://doi.org/10.3390/molecules25061470
Chicago/Turabian StyleGiebułtowicz, Joanna, Grzegorz Nałęcz-Jawecki, Monika Harnisz, Dawid Kucharski, Ewa Korzeniewska, and Grażyna Płaza. 2020. "Environmental Risk and Risk of Resistance Selection Due to Antimicrobials’ Occurrence in Two Polish Wastewater Treatment Plants and Receiving Surface Water" Molecules 25, no. 6: 1470. https://doi.org/10.3390/molecules25061470
APA StyleGiebułtowicz, J., Nałęcz-Jawecki, G., Harnisz, M., Kucharski, D., Korzeniewska, E., & Płaza, G. (2020). Environmental Risk and Risk of Resistance Selection Due to Antimicrobials’ Occurrence in Two Polish Wastewater Treatment Plants and Receiving Surface Water. Molecules, 25(6), 1470. https://doi.org/10.3390/molecules25061470