Enhanced Power Conversion Efficiency of Dye-Sensitized Solar Cells by Band Edge Shift of TiO2 Photoanode
Abstract
:1. Introduction
2. Results and Discussion
2.1. Modification of the TiO2 Surface Using an Aqueous Na2S Solution
2.2. Photovoltaic Properties of DSSCs with Na2S-TiO2/FTO
2.3. Effects of Surface Modification on Voc
2.4. Effects of Surface Modification on Jsc
2.5. Effects of Surface Modification on FF
3. Experimental Details
3.1. Materials
3.2. Fabrication of the DSSCs
3.3. Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Haider:, A.J.; Jameel, Z.N.; Al-Hussaini, I.H.M. Review on: Titanium dioxide applications. Energy Procedia 2019, 157, 17–29. [Google Scholar] [CrossRef]
- Gupta, S.M.; Tripathi, M. A review of TiO2 nanoparticles. Chin. Sci. Bull. 2011, 56, 1639–1657. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.T.; Lee, S.H.; Han, Y.S. Enhanced power conversion efficiency of dye-sensitized solar cells with Li2SiO3-modified photoelectrode. Appl. Surf. Sci. 2015, 333, 134–140. [Google Scholar] [CrossRef]
- Diamant, Y.; Chen, S.G.; Melamed, O.; Zaban, A. Core-shell nanoporous electrode for dye sensitized solar cells: The effect of the SrTiO3 shell on the electronic properties of the TiO2 core. J. Phys. Chem. B 2003, 107, 1977–1981. [Google Scholar] [CrossRef]
- Diamant, Y.; Chappel, S.; Chen, S.G.; Melamed, O.; Zaban, A. Core-shell nanoporous electrode for dye sensitized solar cells: The effect of shell characteristics on the electronic properties of the electrode. Coord. Chem. Rev. 2004, 248, 1271–1276. [Google Scholar] [CrossRef]
- Neale, N.R.; Kopidakis, N.; Van De Lagemaat, J.; Grätzel, M.; Frank, A.J. Effect of a coadsorbent on the performance of dye-sensitized TiO2 solar cells: Shielding versus band-edge movement. J. Phys. Chem. B 2005, 109, 23183–23189. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Wang, L.; Luo, F.; Ma, B.; Zhan, C.; Qiu, Y. BaCO3 Modification of TiO2 Electrodes in Quasi-Solid-State Dye-Sensitized Solar Cells: Performance Improvement and Possible Mechanism. J. Phys. Chem. C 2007, 111, 8075–8079. [Google Scholar] [CrossRef]
- Bandara, J.; Pradeep, U.W. Tuning of the flat-band potentials of nanocrystalline TiO2 and SnO2 particles with an outer-shell MgO layer. Thin Solid Films 2008, 517, 952–956. [Google Scholar] [CrossRef]
- Liao, B.; Wei, L.; Chen, Z.; Guo, X. Na2S-influenced electrochemical migration of tin in a thin electrolyte layer containing chloride ions. RSC Adv. 2017, 7, 15060–15070. [Google Scholar] [CrossRef] [Green Version]
- Schlichthörl, G.; Huang, S.Y.; Sprague, J.; Frank, A.J. Band edge movement and recombination kinetics in dye-sensitized nanocrystalline TiO2 solar cells: A study by intensity modulated photovoltage spectroscopy. J. Phys. Chem. B 1997, 101, 8141–8155. [Google Scholar] [CrossRef]
- Zhang, Z.; Zakeeruddin, S.M.; O’Regan, B.C.; Humphry-Baker, R.; Grätzel, M. Influence of 4-guanidinobutyric acid as coadsorbent in reducing recombination in dye-sensitized solar cells. J. Phys. Chem. B 2005, 109, 21818–21824. [Google Scholar] [CrossRef] [PubMed]
- Khazraji, A.C.; Hotchandani, S.; Das, S.; Kamat, P.V. Controlling dye (merocyanine-540) aggregation on nanostructured TiO2 films. An organized assembly approach for enhancing the efficiency of photosensitization. J. Phys. Chem. B 1999, 103, 4693–4700. [Google Scholar] [CrossRef]
- Kim, J.Y.; Kim, K.H.; Kim, D.-H.; Han, Y.S. Effects of a dianion compound as a surface modifier on the back reaction of photogenerated electrons in TiO2-based solar cells. Arabian J. Chem. 2020, 13, 2340–2348. [Google Scholar] [CrossRef]
- Xiao, G.; Wang, X.; Li, D.; Fu, X. InVO4-sensitized TiO2 photocatalysts for efficient air purification with visible light. J. Photochem. Photobiol. A Chem. 2008, 193, 213–221. [Google Scholar] [CrossRef]
- Sun, L.; Qi, Y.; Jia, C.J.; Jin, Z.; Fan, W. Enhanced visible-light photocatalytic activity of g-C3N4/Zn2GeO4 heterojunctions with effective interfaces based on band match. Nanoscale 2014, 6, 2649–2659. [Google Scholar] [CrossRef]
- Zhang, J.; Ren, F.; Deng, M.; Wang, Y. Enhanced visible-light photocatalytic activity of a g-C3N4/BiVO4 nanocomposite: A first-principles study. Phys. Chem. Chem. Phys. 2015, 17, 10218–10226. [Google Scholar] [CrossRef]
- Chen, S.; Lin, J.; Wu, J. Facile synthesis of Y2O3:Dy3+ nanorods and its application in dye-sensitized solar cells. Appl. Surf. Sci. 2014, 293, 202–206. [Google Scholar] [CrossRef]
- Nath, N.C.D.; Lee, J.J. Binary redox electrolytes used in dye-sensitized solar cells. J. Ind. Eng. Chem. 2019, 78, 53–65. [Google Scholar] [CrossRef]
- Kim, C.; Kim, J.T.; Kim, H.; Park, S.H.; Son, K.C.; Han, Y.S. Effects of metal hydroxide-treated photoanode on the performance of hybrid solar cells. Curr. Appl. Phys. 2010, 10, e176–e180. [Google Scholar] [CrossRef]
- Hagfeldt, A.; Boschloo, G.; Sun, L.; Kloo, L.; Pettersson, H. Dye-Sensitized Solar Cells. Chem. Rev. 2010, 110, 6569–6663. [Google Scholar] [CrossRef]
- Arkan, F.; Izadyar, M.; Nakhaeipour, A. The role of the electronic structure and solvent in the dye-sensitized solar cells based on Zn-porphyrins: Theoretical study. Energy 2016, 114, 559–567. [Google Scholar] [CrossRef] [Green Version]
- Park, J.T.; Roh, D.K.; Chi, W.S.; Patel, R.; Kim, J.H. Fabrication of double layer photoelectrodes using hierarchical TiO2 nanospheres for dye-sensitized solar cells. J. Ind. Eng. Chem. 2012, 18, 449–455. [Google Scholar] [CrossRef]
- Alarcón, H.; Hedlund, M.; Johansson, E.M.J.; Rensmo, H.; Hagfeldt, A.; Boschloo, G. Modification of Nanostructured TiO2 Electrodes by Electrochemical Al3+ Insertion: Effects on Dye-Sensitized Solar Cell Performance. J. Phys. Chem. C 2007, 111, 13267–13274. [Google Scholar] [CrossRef]
- Lee, K.E.; Gomez, M.A.; Charbonneau, C.; Demopoulos, G.P. Enhanced surface hydroxylation of nanocrystalline anatase films improves photocurrent output and electron lifetime in dye sensitized solar cell photoanodes. Electrochim. Acta 2012, 67, 208–215. [Google Scholar] [CrossRef]
- Kim, J.T.; Han, Y.S. Effects of surface-modified photoelectrode on the power conversion efficiency of dye-sensitized solar cells. Met. Mater. Int. 2014, 20, 571–575. [Google Scholar] [CrossRef]
- Kelly, C.A.; Farzad, F.; Thompson, D.W.; Stipkala, J.M.; Meyer, G.J. Cation-controlled interfacial charge injection in sensitized nanocrystalline TiO2. Langmuir 1999, 15, 7047–7054. [Google Scholar] [CrossRef]
- Tachibana, Y.; Haque, S.A.; Mercer, I.P.; Moser, J.E.; Klug, D.R.; Durrant, J.R. Modulation of the rate of electron injection in dye-sensitized nanocrystalline TiO2 films by externally applied bias. J. Phys. Chem. B 2001, 105, 7424–7431. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.Y.; Kwak, G.; Choi, Y.C.; Kim, D.-H.; Han, Y.S. Enhanced performance of perovskite solar cells by incorporation of a triphenylamine derivative into hole-transporting poly(3-hexylthiophene) layers. J. Ind. Eng. Chem. 2019, 73, 175–181. [Google Scholar] [CrossRef]
- Kim, K.S.; Song, H.; Nam, S.H.; Kim, S.-M.; Jeong, H.; Kim, W.B.; Jung, G.Y. Fabrication of an Efficient Light-Scattering Functionalized Photoanode Using Periodically Aligned ZnO Hemisphere Crystals for Dye-Sensitized Solar Cells. Adv. Mater. 2012, 24, 792–798. [Google Scholar] [CrossRef]
- Zhao, J.; Sun, B.; Qiu, L.; Caocen, H.; Li, Q.; Chen, X.; Yan, F. Efficient light-scattering functionalized TiO2 photoanodes modified with cyanobiphenyl-based benzimidazole for dye-sensitized solar cells with additive-free electrolytes. J. Mater. Chem. 2012, 22, 18380–18386. [Google Scholar] [CrossRef]
- Baek, G.W.; Kim, Y.-J.; Jung, K.-H.; Han, Y.S. Enhancement of solar cell performance through the formation of a surface dipole on polyacrylonitrile-treated TiO2 photoelectrodes. J. Ind. Eng. Chem. 2019, 73, 260–267. [Google Scholar] [CrossRef]
- Lü, X.; Mou, X.; Wu, J.; Zhang, D.; Zhang, L.; Huang, F.; Xu, F.; Huang, S. Improved-performance dye-sensitized solar cells using Nb-doped TiO2 electrodes: Efficient electron injection and transfer. Adv. Funct. Mater. 2010, 20, 509–515. [Google Scholar] [CrossRef]
- Koide, N.; Islam, A.; Chiba, Y.; Han, L. Improvement of efficiency of dye-sensitized solar cells based on analysis of equivalent circuit. J. Photochem. Photobiol. A 2006, 182, 296–305. [Google Scholar] [CrossRef]
- Syrrokostas, G.; Leftheriotis, G.; Yianoulis, P. Effect of acidic additives on the structure and performance of TiO2 films prepared by a commercial nanopowder for dye-sensitized solar cells. Renew. Energy 2014, 72, 164–173. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are not available from the authors. |
Applied Photoanodes | Voc (mV) | Jsc (mA/cm2) | FF (%) | PCE (%) | Loaded Dye (μmol/cm3) | Rse (Ωcm2) | Rsh (Ωcm2) |
---|---|---|---|---|---|---|---|
Pristine TiO2/FTO | 671 | 17.35 | 66.16 | 7.70 | 17.39 | 6.96 | 1418 |
Na2S(5)-TiO2/FTO | 700 | 16.53 | 69.81 | 8.08 | 17.09 | 6.05 | 2347 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sung, H.K.; Lee, Y.; Kim, W.H.; Lee, S.-J.; Sung, S.-J.; Kim, D.-H.; Han, Y.S. Enhanced Power Conversion Efficiency of Dye-Sensitized Solar Cells by Band Edge Shift of TiO2 Photoanode. Molecules 2020, 25, 1502. https://doi.org/10.3390/molecules25071502
Sung HK, Lee Y, Kim WH, Lee S-J, Sung S-J, Kim D-H, Han YS. Enhanced Power Conversion Efficiency of Dye-Sensitized Solar Cells by Band Edge Shift of TiO2 Photoanode. Molecules. 2020; 25(7):1502. https://doi.org/10.3390/molecules25071502
Chicago/Turabian StyleSung, Hye Kyeong, Yeonju Lee, Wook Hyun Kim, Sang-Ju Lee, Shi-Joon Sung, Dae-Hwan Kim, and Yoon Soo Han. 2020. "Enhanced Power Conversion Efficiency of Dye-Sensitized Solar Cells by Band Edge Shift of TiO2 Photoanode" Molecules 25, no. 7: 1502. https://doi.org/10.3390/molecules25071502
APA StyleSung, H. K., Lee, Y., Kim, W. H., Lee, S. -J., Sung, S. -J., Kim, D. -H., & Han, Y. S. (2020). Enhanced Power Conversion Efficiency of Dye-Sensitized Solar Cells by Band Edge Shift of TiO2 Photoanode. Molecules, 25(7), 1502. https://doi.org/10.3390/molecules25071502