Clay Composites for Thermal Energy Storage: A Review
Abstract
:1. Introduction
2. Thermal Energy Storage with PCM
3. PCM/clay Composites for Thermal Energy Storage
3.1. Montmorillonite-Based PCM Composites
3.2. Sepiolite-Based PCM Composites
3.3. Kaolinite-Based PCM Composites
3.4. Diatomite-Based PCM Composites
3.5. Halloysite-based PCM Composites
4. Conclusions and Outlook
Funding
Conflicts of Interest
References
- Rotaru, A. Thermal analysis and kinetic study of Petroşani bituminous coal from Romania in comparison with a sample of Ural bituminous coal. J. Therm. Anal. Calorim. 2012, 110, 1283–1291. [Google Scholar] [CrossRef]
- Liu, Z.J.; Liu, Y.W.; He, B.J.; Xu, W.; Jin, G.Y.; Zhang, X.T. Application and suitability analysis of the key technologies in nearly zero energy buildings in China. Renew. Sustain. Energy Rev. 2019, 101, 329–345. [Google Scholar] [CrossRef]
- Zhao, B.-C.; Cheng, M.-S.; Liu, C.; Dai, Z.-M. Cyclic thermal characterization of a molten-salt packed-bed thermal energy storage for concentrating solar power. Appl. Energy 2017, 195, 761–773. [Google Scholar] [CrossRef]
- Nazir, H.; Batool, M.; Osorio, F.J.B.; Isaza-Ruiz, M.; Xu, X.H.; Vignarooban, K.; Phelan, P.; Inamuddin Kannan, A.M. Recent developments in phase change materials for energy storage applications: A review. Int. J. Heat Mass Transf. 2019, 129, 491–523. [Google Scholar] [CrossRef]
- Li, Z.X.; Al-Rashed, A.A.A.A.; Rostamzadeh, M.; Kalbasi, R.; Shahsavar, A.; Afrand, M. Heat transfer reduction in buildings by embedding phase change material in multi-layer walls: Effects of repositioning, thermophysical properties and thickness of PCM. Energy Convers. Manag. 2019, 195, 43–56. [Google Scholar] [CrossRef]
- Cabeza, L.F.; Castell, A.; Barreneche, C.; de Gracia, A.; Fernández, A.I. Materials used as PCM in thermal energy storage in buildings: A review. Renew. Sustain. Energy Rev. 2011, 15, 1675–1695. [Google Scholar] [CrossRef]
- Kuznik, F.; David, D.; Johannes, K.; Roux, J.-J. A review on phase change materials integrated in building walls. Renew. Sustain. Energy Rev. 2011, 15, 379–391. [Google Scholar] [CrossRef] [Green Version]
- Khedache, S.; Makhlouf, S.; Djefel, D.; Lefebvre, G.; Royon, L. Preparation and thermal characterization of composite “Paraffin/Red Brick” as a novel form-stable of phase change material for thermal energy storage. Int. J. Hydrogen Energy 2015, 40, 13771–13776. [Google Scholar] [CrossRef]
- Erlbeck, L.; Schreiner, P.; Fasel, F.; Methner, F.J.; Rädle, M. Investigation of different materials for macroencapsulation of salt hydrate phase change materials for building purposes. Constr. Build. Mater. 2018, 180, 512–518. [Google Scholar] [CrossRef]
- Giro-Paloma, J.; Martínez, M.; Cabeza, L.F.; Fernández, A.I. Types, methods, techniques, and applications for microencapsulated phase change materials (MPCM): A review. Renew. Sustain. Energy Rev. 2016, 53, 1059–1075. [Google Scholar] [CrossRef] [Green Version]
- Milián, Y.E.; Gutiérrez, A.; Grágeda, M.; Ushak, S. A review on encapsulation techniques for inorganic phase change materials and the influence on their thermophysical properties. Renew. Sustain. Energy Rev. 2017, 73, 983–999. [Google Scholar] [CrossRef]
- Raul - Augustin, M.; Daniela, B.; Cristian, M. Phase change materials based on mesoporous silica. Curr. Org. Chem. 2018, 22, 2644–2663. [Google Scholar] [CrossRef]
- Huang, X.; Chen, X.; Li, A.; Atinafu, D.; Gao, H.; Dong, W.; Wang, G. Shape-stabilized phase change materials based on porous supports for thermal energy storage applications. Chem. Eng. J. 2019, 356, 641–661. [Google Scholar] [CrossRef]
- Li, M.; Shi, J. Review on micropore grade inorganic porous medium based form stable composite phase change materials: Preparation, performance improvement and effects on the properties of cement mortar. Constr. Build. Mater. 2019, 194, 287–310. [Google Scholar] [CrossRef]
- Lv, P.; Liu, C.; Rao, Z. Review on clay mineral-based form-stable phase change materials: Preparation, characterization and applications. Renew. Sustain. Energy Rev. 2017, 68, 707–726. [Google Scholar] [CrossRef]
- Pelay, U.; Lu, L.A.; Fan, Y.L.; Stitou, D.; Rood, M. Thermal energy storage systems for concentrated solar power plants. Renew. Sustain. Energy Rev. 2017, 79, 82–100. [Google Scholar] [CrossRef]
- Guelpa, E.; Verda, V. Thermal energy storage in district heating and cooling systems: A review. Appl. Energy 2019, 252, 113474. [Google Scholar] [CrossRef]
- Carrillo, A.J.; Gonzalez-Aguilar, J.; Romero, M.; Coronado, J.M. Solar energy on demand: A review on high temperature thermochemical heat storage systems and materials. Chem. Rev. 2019, 119, 4777–4816. [Google Scholar] [CrossRef]
- Alva, G.; Lin, Y.X.; Fang, G.Y. An overview of thermal energy storage systems. Energy 2018, 144, 341–378. [Google Scholar] [CrossRef]
- Shchukina, E.M.; Graham, M.; Zheng, Z.; Shchukin, D.G. Nanoencapsulation of phase change materials for advanced thermal energy storage systems. Chem. Soc. Rev. 2018, 47, 4156–4175. [Google Scholar] [CrossRef] [Green Version]
- Wu, B.; Wang, Y.; Liu, Z.M.; Liu, Y.; Fu, X.W.; Kong, W.B.; Jiang, L.; Yuan, Y.; Zhang, X.; Lei, J.X. Thermally reliable, recyclable and malleable solid-solid phase-change materials through the classical Diels-Alder reaction for sustainable thermal energy storage. J. Mater. Chem. A 2019, 7, 21802–21811. [Google Scholar] [CrossRef]
- Fauziyah, N.A.; Hilmi, A.R.; Zainuri, M.; Asrori, M.Z.; Mashuri, M.; Jawaid, M.; Pratapa, S. Thermal and dynamic mechanical properties of polyethylene glycol/quartz composites for phase change materials. J. Appl. Polym. Sci. 2019, 136, 10. [Google Scholar] [CrossRef]
- Shi, Z.Q.; Xu, H.Y.; Yang, Q.L.; Xiong, C.X.; Zhao, M.C.; Kobayashi, K.; Saito, T.; Isogai, A. Carboxylated nanocellulose/poly(ethylene oxide) composite films as solid-solid phase-change materials for thermal energy storage. Carbohydr. Polym. 2019, 225, 8. [Google Scholar] [CrossRef] [PubMed]
- Kousksou, T.; Bruel, P.; Jamil, A.; El Rhafiki, T.; Zeraouli, Y. Energy storage: Applications and challenges. Sol. Energy Mater. Sol. Cells 2014, 120, 59–80. [Google Scholar] [CrossRef]
- Stojiljkovic, M.; Stojiljkovic, S.; Todorovic, B.; Reljic, M.; Savić, S.; Petrovic, S. Thermal Energy Storage of Composite Materials Based on Clay, Stearic Acid, Paraffin and Glauber’s Salt as Phase Change Materials. Springer International Publishing: Cham, Switzerland, 2019; pp. 34–43. [Google Scholar] [CrossRef]
- Chandel, S.S.; Agarwal, T. Review of current state of research on energy storage, toxicity, health hazards and commercialization of phase changing materials. Renew. Sustain. Energy Rev. 2017, 67, 581–596. [Google Scholar] [CrossRef]
- Sundararajan, S.; Samui, A.B.; Kulkarni, P.S. Versatility of polyethylene glycol (PEG) in designing solid-solid phase change materials (PCMs) for thermal management and their application to innovative technologies. J. Mater. Chem. A 2017, 5, 18379–18396. [Google Scholar] [CrossRef]
- Mohamed, S.A.; Al-Sulaiman, F.A.; Ibrahim, N.I.; Zahir, M.H.; Al-Ahmed, A.; Saidur, R.; Yilbas, B.S.; Sahin, A.Z. A review on current status and challenges of inorganic phase change materials for thermal energy storage systems. Renew. Sustain. Energy Rev. 2017, 70, 1072–1089. [Google Scholar] [CrossRef]
- Kumar, N.; Hirschey, J.; LaClair, T.J.; Gluesenkamp, K.R.; Graham, S. Review of stability and thermal conductivity enhancements for salt hydrates. J. Energy Storage 2019, 24, 100794. [Google Scholar] [CrossRef]
- Purohit, B.K.; Sistla, V.S. Crystallization of inorganic salt hydrates in polymeric foam for thermal energy storage application. J. Energy Storage 2017, 12, 196–201. [Google Scholar] [CrossRef]
- Kolacek, M.; Charvatova, H.; Sehnalek, S. Experimental and numerical research of the thermal properties of a PCM window panel. Sustainability 2017, 9, 15. [Google Scholar] [CrossRef] [Green Version]
- Haruki, N.; Horibe, A.; Yamada, Y. Heat storage and release behavior in a thin vessel heat storage unit using salt hydrate latent heat storage material. Heat Mass Transf. 2019, 55, 2797–2807. [Google Scholar] [CrossRef]
- Rodriguez-Cumplido, F.; Pabon-Gelves, E.; Chejne-Jana, F. Recent developments in the synthesis of microencapsulated and nanoencapsulated phase change materials. J. Energy Storage 2019, 24, 15. [Google Scholar] [CrossRef]
- Aftab, W.; Huang, X.Y.; Wu, W.H.; Liang, Z.B.; Mahmood, A.; Zou, R.Q. Nanoconfined phase change materials for thermal energy applications. Energy Environ. Sci. 2018, 11, 1392–1424. [Google Scholar] [CrossRef]
- Shchukina, E.; Shchukin, D.G. Nanocontainer-based active systems: From self-healing coatings to thermal energy storage. Langmuir 2019, 35, 8603–8611. [Google Scholar] [CrossRef]
- Delgado, M.; Lázaro, A.; Mazo, J.; Zalba, B. Review on phase change material emulsions and microencapsulated phase change material slurries: Materials, heat transfer studies and applications. Renew. Sustain. Energy Rev. 2012, 16, 253–273. [Google Scholar] [CrossRef]
- Graham, M.; Shchukina, E.; De Castro, P.F.; Shchukin, D. Nanocapsules containing salt hydrate phase change materials for thermal energy storage. J. Mater. Chem. A 2016, 4, 16906–16912. [Google Scholar] [CrossRef] [Green Version]
- Graham, M.; Coca-Clemente, J.A.; Shchukina, E.; Shchukin, D. Nanoencapsulated crystallohydrate mixtures for advanced thermal energy storage. J. Mater. Chem. A 2017, 5, 13683–13691. [Google Scholar] [CrossRef]
- Liu, Z.; Chen, Z.; Yu, F. Preparation and characterization of microencapsulated phase change materials containing inorganic hydrated salt with silica shell for thermal energy storage. Sol. Energy Mater. Sol. Cells 2019, 200, 110004. [Google Scholar] [CrossRef]
- Yi, H.; Zhan, W.; Zhao, Y.; Zhang, X.; Jia, F.; Wang, W.; Ai, Z.; Song, S. Design of MtNS/SA microencapsulated phase change materials for enhancement of thermal energy storage performances: Effect of shell thickness. Sol. Energy Mater. Sol. Cells 2019, 200, 109935. [Google Scholar] [CrossRef]
- Gu, S.; Kang, X.; Wang, L.; Lichtfouse, E.; Wang, C. Clay mineral adsorbents for heavy metal removal from wastewater: A review. Environ. Chem. Lett. 2019, 17, 629–654. [Google Scholar] [CrossRef]
- Yang, J.-H.; Lee, J.-H.; Ryu, H.-J.; Elzatahry, A.A.; Alothman, Z.A.; Choy, J.-H. Drug–clay nanohybrids as sustained delivery systems. Appl. Clay Sci. 2016, 130, 20–32. [Google Scholar] [CrossRef]
- Li, C.; Wang, M.; Xie, B.; Ma, H.; Chen, J. Enhanced properties of diatomite-based composite phase change materials for thermal energy storage. Renew. Energy 2020, 147, 265–274. [Google Scholar] [CrossRef]
- Li, M.; Wu, Z. A review of intercalation composite phase change material: Preparation, structure and properties. Renew. Sustain. Energy Rev. 2012, 16, 2094–2101. [Google Scholar] [CrossRef]
- Constantinescu, C.; Rotaru, A.; Nedelcea, A.; Dinescu, M. Thermal behavior and matrix-assisted pulsed laser evaporation deposition of functional polymeric materials thin films with potential use in optoelectronics. Mater. Sci. Semicond. Process. 2015, 30, 242–249. [Google Scholar] [CrossRef]
- Rotaru, A. Thermal and kinetic study of hexagonal boric acid versus triclinic boric acid in air flow. J. Therm. Anal. Calorim. 2017, 127, 755–763. [Google Scholar] [CrossRef]
- Rotaru, A.; Dumitru, M. Thermal behaviour of CODA azoic dye liquid crystal and nanostructuring by drop cast and spin coating techniques. J. Therm. Anal. Calorim. 2017, 127, 21–32. [Google Scholar] [CrossRef]
- Neamtu, J.; Bubulica, M.V.; Rotaru, A.; Ducu, C.; Balosache, O.E.; Manda, V.C.; Turcu-Stiolica, A.; Nicolicescu, C.; Melinte, R.; Popescu, M.; et al. Hydroxyapatite–alendronate composite systems for biocompatible materials. J. Therm. Anal. Calorim. 2017, 127, 1567–1582. [Google Scholar] [CrossRef]
- Palacios, A.; Cong, L.; Navarro, M.E.; Ding, Y.L.; Barreneche, C. Thermal conductivity measurement techniques for characterizing thermal energy storage materials—A review. Renew. Sustain. Energy Rev. 2019, 108, 32–52. [Google Scholar] [CrossRef]
- Riikonen, J.; Salonen, J.; Lehto, V.-P. Utilising thermoporometry to obtain new insights into nanostructured materials. J. Therm. Anal. Calorim. 2011, 105, 811–821. [Google Scholar] [CrossRef]
- Mitran, R.A.; Berger, D.; Munteanu, C.; Matei, C. Evaluation of different mesoporous silica supports for energy storage in shape-stabilized phase change materials with dual thermal responses. J. Phys. Chem. C 2015, 119, 15177–15184. [Google Scholar] [CrossRef]
- Hrachová, J.; Komadel, P.; Fajnor, V.Š. The effect of mechanical treatment on the structure of montmorillonite. Mater. Lett. 2007, 61, 3361–3365. [Google Scholar] [CrossRef]
- Fang, X.; Zhang, Z. A novel montmorillonite-based composite phase change material and its applications in thermal storage building materials. Energy Build. 2006, 38, 377–380. [Google Scholar] [CrossRef]
- Fang, X.; Zhang, Z.; Chen, Z. Study on preparation of montmorillonite-based composite phase change materials and their applications in thermal storage building materials. Energy Convers. Manag. 2008, 49, 718–723. [Google Scholar] [CrossRef]
- Sarier, N.; Onder, E.; Ozay, S.; Ozkilic, Y. Preparation of phase change material-montmorillonite composites suitable for thermal energy storage. Thermochim. Acta 2011, 524, 39–46. [Google Scholar] [CrossRef]
- Chen, M.; Zheng, S.; Wu, S.; Xu, G. Melting intercalation method to prepare lauric acid/organophilic montmorillonite shape-stabilized phase change material. J. Wuhan Univ. Technol. Mater. Sci. Ed. 2010, 25, 674–677. [Google Scholar] [CrossRef]
- Li, Z.; Chen, M.G.; Tan, D.X.; Chen, J. Preparation of Stearic/Montmorillonite Composite as Form-Stable Phase Change Material. Adv. Mater. Res. 2013, 652–654, 131–134. [Google Scholar] [CrossRef]
- Wang, Y.; Zheng, H.; Feng, H.X.; Zhang, D.Y. Effect of preparation methods on the structure and thermal properties of stearic acid/activated montmorillonite phase change materials. Energy Build. 2012, 47, 467–473. [Google Scholar] [CrossRef]
- Peng, K.; Fu, L.J.; Li, X.Y.; Ouyang, J.; Yang, H.M. Stearic acid modified montmorillonite as emerging microcapsules for thermal energy storage. Appl. Clay Sci. 2017, 138, 100–106. [Google Scholar] [CrossRef]
- Liao, C.Y.; Chiou, J.Y.; Lin, J.J. Phase change materials of fatty amine-modified silicate clays of nano layered structures. Rsc Adv. 2017, 7, 23530–23534. [Google Scholar] [CrossRef] [Green Version]
- Wei, X.F.; Yang, S.Y.; Wang, J.C. Hyperbranched polyester-modified montmorillonite: A novel phase change material for energy storage. Polym. Int. 2017, 66, 1284–1294. [Google Scholar] [CrossRef]
- Wei, X.F.; Wang, J.C. Study on Application Properties of Modified Montmorillonite as Phase Change Material for Energy Storage. Adv. Polym. Tech. 2018, 37, 12. [Google Scholar] [CrossRef]
- Yi, H.; Ai, Z.; Zhao, Y.; Zhang, X.; Song, S. Design of 3D-network montmorillonite nanosheet/stearic acid shape-stabilized phase change materials for solar energy storage. Sol. Energy Mater. Sol. Cells 2020, 204, 110233. [Google Scholar] [CrossRef]
- Wu, L.M.; Duan, Y.T.; Chen, L.N.; Tang, N.; Li, J.H.; Qian, Q.H.; Wang, Q.; Lv, G.C. Study on controllable assembly of stearic acid within interlayer spacing of montmorillonite and its energy storage performance. Langmuir 2019, 35, 5684–5692. [Google Scholar] [CrossRef]
- Kao, H.; Li, M.; Lv, X.; Tan, J. Preparation and thermal properties of expanded graphite/paraffin/organic montmorillonite composite phase change material. J. Therm. Anal. Calorim. 2012, 107, 299–303. [Google Scholar] [CrossRef]
- Jeong, S.-G.; Jin Chang, S.; We, S.; Kim, S. Energy efficient thermal storage montmorillonite with phase change material containing exfoliated graphite nanoplatelets. Sol. Energy Mater. Sol. Cells 2015, 139, 65–70. [Google Scholar] [CrossRef]
- Tabassum, H.; Huang, X.; Chen, R.; Zou, R. Tailoring thermal properties via synergistic effect in a multifunctional phase change composite based on methyl stearate. J. Mater. 2015, 1, 229–235. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Guo, Q.; Nutt, S. Carbon nanotube/paraffin/montmorillonite composite phase change material for thermal energy storage. Sol. Energy 2017, 146, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Zhan, W.; Zhao, Y.; Yuan, Y.; Yi, H.; Song, S. Development of 2D-Mt/SA/AgNPs microencapsulation phase change materials for solar energy storage with enhancement of thermal conductivity and latent heat capacity. Sol. Energy Mater. Sol. Cells 2019, 201, 110090. [Google Scholar] [CrossRef]
- Del Riío, M.S.; Garciía-Romero, E.; Suaírez, M.; da Silva, I.; Fuentes-Montero, L.; Martiínez-Criado, G. Variability in sepiolite: Diffraction studies. Am. Mineral. 2011, 96, 1443–1454. [Google Scholar] [CrossRef]
- Nadziakiewicza, M.; Kehoe, S.; Micek, P. Physico-chemical properties of clay minerals and their use as a health promoting feed additive. Animals 2019, 9, 15. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.Y.; Wang, Y.H.; Wu, Z.X.; Gao, Y.; Li, X.P. Adsorption properties and mechanism of sepiolite modified by anionic and cationic surfactants on oxytetracycline from aqueous solutions. Sci. Total Environ. 2020, 708, 12. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.S.; Wu, Z.Z.; Liang, G.C.; Li, G.S.; Yin, H.; Wang, J.; Liang, X.H. Preparation of the composite materials with dodecanol and sepiolite for self-operating temperature. Rare Met. Mater. Eng. 2004, 33, 110–113. [Google Scholar]
- Shen, Q.; Liu, S.Y.; Ouyang, J.; Yang, H.M. Sepiolite supported stearic acid composites for thermal energy storage. Rsc Adv. 2016, 6, 112493–112501. [Google Scholar] [CrossRef]
- Shen, Q.; Ouyang, J.; Zhang, Y.; Yang, H.M. Lauric acid/modified sepiolite composite as a form-stable phase change material for thermal energy storage. Appl. Clay Sci. 2017, 146, 14–22. [Google Scholar] [CrossRef]
- Konuklu, Y.; Ersoy, O.; Erzin, F. Development of pentadecane/diatomite and pentadecane/sepiolite nanocomposites fabricated by different compounding methods for thermal energy storage. Int. J. Energy Res. 2019, 43, 6510–6520. [Google Scholar] [CrossRef]
- Konuklu, Y.; Ersoy, O. Preparation and characterization of sepiolite-based phase change material nanocomposites for thermal energy storage. Appl. Therm. Eng. 2016, 107, 575–582. [Google Scholar] [CrossRef]
- Sari, A.; Sharma, R.K.; Hekimoglu, G.; Tyagi, V.V. Preparation, characterization, thermal energy storage properties and temperature control performance of form-stabilized sepiolite based composite phase change materials. Energy Build. 2019, 188, 111–119. [Google Scholar] [CrossRef]
- Cui, W.W.; Zhang, H.Z.; Xia, Y.P.; Zou, Y.J.; Xiang, C.L.; Chu, H.L.; Qiu, S.J.; Xu, F.; Sun, L.X. Preparation and thermophysical properties of a novel form-stable CaCl2 center dot 6H(2)O/sepiolite composite phase change material for latent heat storage. J. Therm. Anal. Calorim. 2018, 131, 57–63. [Google Scholar] [CrossRef]
- Rutkai, G.; Kristóf, T. Molecular simulation study of intercalation of small molecules in kaolinite. Chem. Phys. Lett. 2008, 462, 269–274. [Google Scholar] [CrossRef]
- Panda, A.K.; Mishra, B.G.; Mishra, D.K.; Singh, R.K. Effect of sulphuric acid treatment on the physico-chemical characteristics of kaolin clay. Colloids Surf. A Physicochem. Eng. Asp. 2010, 363, 98–104. [Google Scholar] [CrossRef]
- Memon, S.A.; Lo, T.Y.; Shi, X.; Barbhuiya, S.; Cui, H.Z. Preparation, characterization and thermal properties of Lauryl alcohol/Kaolin as novel form-stable composite phase change material for thermal energy storage in buildings. Appl. Therm. Eng. 2013, 59, 336–347. [Google Scholar] [CrossRef]
- Song, S.K.; Dong, L.K.; Zhang, Y.; Chen, S.; Li, Q.; Guo, Y.; Deng, S.F.; Si, S.; Xiong, C.X. Lauric acid/intercalated kaolinite as form-stable phase change material for thermal energy storage. Energy 2014, 76, 385–389. [Google Scholar] [CrossRef]
- Sari, A. Fabrication and thermal characterization of kaolin-based composite phase change materials for latent heat storage in buildings. Energy Build. 2015, 96, 193–200. [Google Scholar] [CrossRef]
- Li, C.C.; Fu, L.J.; Ouyang, J.; Tang, A.D.; Yang, H.M. Kaolinite stabilized paraffin composite phase change materials for thermal energy storage. Appl. Clay Sci. 2015, 115, 212–220. [Google Scholar] [CrossRef]
- Liu, S.Y.; Yang, H.M. Composite of Coal-Series Kaolinite and Capric-Lauric Acid as Form-Stable Phase-Change Material. Energy Technol. 2015, 3, 77–83. [Google Scholar] [CrossRef]
- Lv, P.Z.; Liu, C.Z.; Rao, Z.H. Experiment study on the thermal properties of paraffin/kaolin thermal energy storage form-stable phase change materials. Appl. Energy 2016, 182, 475–487. [Google Scholar] [CrossRef]
- Li, J.W.; Zuo, X.C.; Zhao, X.G.; Li, D.K.; Yang, H.M. Stearic acid hybridizing kaolinite as shape-stabilized phase change material for thermal energy storage. Appl. Clay Sci. 2019, 183, 10. [Google Scholar] [CrossRef]
- Zuo, X.; Yan, Z.; Hou, K.; Yang, H.; Xi, Y. Highly stable hierarchical porous nanosheet composite phase change materials for thermal energy storage. Appl. Therm. Eng. 2019, 163, 114417. [Google Scholar] [CrossRef]
- Li, B.-R.; Tan, H.; Liu, Y.; Liu, Q.; Zhang, G.-q.; Deng, Z.-F.; Xu, G.-Z.; Guo, Y.-Q.; Du, X.-Z. Experimental investigations on the thermal stability of Na2CO3–K2CO3 eutectic salt/ceramic composites for high temperature energy storage. Renew. Energy 2020, 146, 2556–2565. [Google Scholar] [CrossRef]
- Arik, H. Synthesis of Si3N4 by the carbo-thermal reduction and nitridation of diatomite. J. Eur. Ceram. Soc. 2003, 23, 2005–2014. [Google Scholar] [CrossRef]
- Abden, M.J.; Tao, Z.; Pan, Z.; George, L.; Wuhrer, R. Inclusion of methyl stearate/diatomite composite in gypsum board ceiling for building energy conservation. Appl. Energy 2020, 259, 114113. [Google Scholar] [CrossRef]
- Karaman, S.; Karaipekli, A.; Sari, A.; Bicer, A. Polyethylene glycol (PEG)/diatomite composite as a novel form-stable phase change material for thermal energy storage. Sol. Energy Mater. Sol. Cells 2011, 95, 1647–1653. [Google Scholar] [CrossRef]
- Sari, A.; Bicer, A. Thermal energy storage properties and thermal reliability of some fatty acid esters/building material composites as novel form-stable PCMs. Sol. Energy Mater. Sol. Cells 2012, 101, 114–122. [Google Scholar] [CrossRef]
- Sun, Z.M.; Zhang, Y.Z.; Zheng, S.L.; Park, Y.; Frost, R.L. Preparation and thermal energy storage properties of paraffin/calcined diatomite composites as form-stable phase change materials. Thermochim. Acta 2013, 558, 16–21. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Kao, H.T.; Wu, Z.S.; Tan, J.M. Study on preparation and thermal property of binary fatty acid and the binary fatty acids/diatomite composite phase change materials. Appl. Energy 2011, 88, 1606–1612. [Google Scholar] [CrossRef]
- Fořt, J.; Trník, A.; Pavlíková, M.; Pavlík, Z.; Černý, R. Fabrication of Dodecanol/Diatomite Shape-Stabilized PCM and Its Utilization in Interior Plaster. Int. J. Thermophys. 2018, 39, 137. [Google Scholar] [CrossRef]
- Fořt, J.; Novotný, R.; Trník, A.; Černý, R. Preparation and Characterization of Novel Plaster with Improved Thermal Energy Storage Performance. Energies 2019, 12, 3318. [Google Scholar] [CrossRef] [Green Version]
- Miliozzi, A.; Chieruzzi, M.; Torre, L. Experimental investigation of a cementitious heat storage medium incorporating a solar salt/diatomite composite phase change material. Appl. Energy 2019, 250, 1023–1035. [Google Scholar] [CrossRef]
- Jin, J.; Liu, L.; Liu, R.; Wei, H.; Qian, G.; Zheng, J.; Xie, W.; Lin, F.; Xie, J. Preparation and thermal performance of binary fatty acid with diatomite as form-stable composite phase change material for cooling asphalt pavements. Constr. Build. Mater. 2019, 226, 616–624. [Google Scholar] [CrossRef]
- Guo, X.; Huang, Y.; Cao, J. Performance of a thermal energy storage composite by incorporating diatomite stabilized paraffin as phase change material. Energy Build. 2018, 158, 1257–1265. [Google Scholar] [CrossRef]
- Zhang, X.; Li, X.; Zhou, Y.; Hai, C.; Shen, Y.; Ren, X.; Zeng, J. Calcium chloride hexahydrate/diatomite/paraffin as composite shape-stabilized phase-change material for thermal energy storage. Energy Fuels 2018, 32, 916–921. [Google Scholar] [CrossRef]
- Leng, G.; Qiao, G.; Jiang, Z.; Xu, G.; Qin, Y.; Chang, C.; Ding, Y. Micro encapsulated & form-stable phase change materials for high temperature thermal energy storage. Appl. Energy 2018, 217, 212–220. [Google Scholar] [CrossRef]
- Yang, Z.; Yang, Z.; Li, J.; Deng, Y.; Liu, L.; Luan, X.; Huang, K. Design of diatomite-based hydrated salt composites with low supercooling degree and enhanced heat transfer for thermal energy storage. Int. J. Energy Res. 2019, 43, 7058–7074. [Google Scholar] [CrossRef]
- Xu, B.W.; Li, Z.J. Paraffin/diatomite/multi-wall carbon nanotubes composite phase change material tailor-made for thermal energy storage cement-based composites. Energy 2014, 72, 371–380. [Google Scholar] [CrossRef]
- Liu, P.; Gu, X.; Bian, L.; Cheng, X.; Peng, L.; He, H. Thermal properties and enhanced thermal conductivity of capric acid/diatomite/carbon nanotube composites as form-stable phase change materials for thermal energy storage. ACS Omega 2019, 4, 2964–2972. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Tie, J.; Zhang, J.; Jiang, S.; Tie, S. Preparation and properties of porous diatomite-supported multi-walled carbon nanotubes with Na2SO4·10H2O-based phase change energy storage composites. SN Appl. Sci. 2019, 1, 710. [Google Scholar] [CrossRef] [Green Version]
- Qian, T.; Zhu, S.; Wang, H.; Fan, B. Comparative study of carbon nanoparticles and single-walled carbon nanotube for light-heat conversion and thermal conductivity enhancement of the multifunctional PEG/diatomite composite phase change material. Acs Appl. Mater. Interfaces 2019, 11, 29698–29707. [Google Scholar] [CrossRef]
- Xu, G.; Leng, G.; Yang, C.; Qin, Y.; Wu, Y.; Chen, H.; Cong, L.; Ding, Y. Sodium nitrate—Diatomite composite materials for thermal energy storage. Sol. Energy 2017, 146, 494–502. [Google Scholar] [CrossRef]
- Xiao, L.; Zhao, M.; Hu, H. Study on graphene oxide modified inorganic phase change materials and their packaging behavior. J. Wuhan Univ. Technol. Mater. Sci. Ed. 2018, 33, 788–792. [Google Scholar] [CrossRef]
- Li, M.; Mu, B. Fabrication and characterization of capric acid/reduced graphene oxide decorated diatomite composite phase change materials for solar energy storage. R. Soc. Open Sci. 2019, 6, 181664. [Google Scholar] [CrossRef] [Green Version]
- Wen, R.; Zhang, X.; Huang, Z.; Fang, M.; Liu, Y.; Wu, X.; Min, X.; Gao, W.; Huang, S. Preparation and thermal properties of fatty acid/diatomite form-stable composite phase change material for thermal energy storage. Sol. Energy Mater. Sol. Cells 2018, 178, 273–279. [Google Scholar] [CrossRef]
- Anastopoulos, I.; Mittal, A.; Usman, M.; Mittal, J.; Yu, G.; Núñez-Delgado, A.; Kornaros, M. A review on halloysite-based adsorbents to remove pollutants in water and wastewater. J. Mol. Liq. 2018, 269, 855–868. [Google Scholar] [CrossRef]
- Lvov, Y.M.; Price, R.R. Halloysite nanotubules, a novel substrate for the controlled delivery of bioactive molecules. In Bio-Inorganic Hybrid Nanomaterials: Strategies, Syntheses, Characterization and Applications; Ruiz-Hitzky, E., Ariga, K., Lvov, Y.M., Eds.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2008; pp. 419–441. [Google Scholar] [CrossRef]
- Abdullayev, E.; Lvov, Y. Halloysite clay nanotubes for controlled release of protective agents. J. Nanosci. Nanotechnol. 2011, 11, 10007–10026. [Google Scholar] [CrossRef] [PubMed]
- Lvov, Y.; Wang, W.; Zhang, L.; Fakhrullin, R. Halloysite clay nanotubes for loading and sustained release of functional compounds. Adv. Mater. 2016, 28, 1227–1250. [Google Scholar] [CrossRef]
- Liu, M.; Fakhrullin, R.; Novikov, A.; Panchal, A.; Lvov, Y. Tubule nanoclay-organic heterostructures for biomedical applications. Macromol. Biosci. 2019, 19, 1800419. [Google Scholar] [CrossRef]
- Mei, D.D.; Zhang, B.; Liu, R.C.; Zhang, H.Q.; Liu, J.D. Preparation of stearic acid/halloysite nanotube composite as form-stable PCM for thermal energy storage. Int. J. Energy Res. 2011, 35, 828–834. [Google Scholar] [CrossRef]
- Mei, D.D.; Zhang, B.; Liu, R.C.; Zhang, Y.T.; Liu, J.D. Preparation of capric acid/halloysite nanotube composite as form-stable phase change material for thermal energy storage. Sol. Energy Mater. Sol. Cells 2011, 95, 2772–2777. [Google Scholar] [CrossRef]
- Zhang, J.S.; Zhang, X.; Wan, Y.Z.; Mei, D.D.; Zhang, B. Preparation and thermal energy properties of paraffin/halloysite nanotube composite as form-stable phase change material. Sol. Energy 2012, 86, 1142–1148. [Google Scholar] [CrossRef]
- Zhao, Y.F.; Thapa, S.; Weiss, L.; Lvov, Y. Phase change heat insulation based on wax-clay nanotube composites. Adv. Eng. Mater. 2014, 16, 1391–1399. [Google Scholar] [CrossRef]
- Liang, W.D.; Wu, Y.; Sun, H.X.; Zhu, Z.Q.; Chen, P.S.; Yang, B.P.; Li, A. Halloysite clay nanotubes based phase change material composites with excellent thermal stability for energy saving and storage. RSC Adv. 2016, 6, 19669–19675. [Google Scholar] [CrossRef]
- Thanakkasaranee, S.; Seo, J. Effect of halloysite nanotubes on shape stabilities of polyethylene glycol-based composite phase change materials. Int. J. Heat Mass Transf. 2019, 132, 154–161. [Google Scholar] [CrossRef]
- Xiang, H.X.; Zhou, J.L.; Zhang, Y.K.; Innocent, M.T.; Zhu, M.F. Polyethylene glycol infused acid-etched halloysite nanotubes for melt-spun polyamide-based composite phase change fibers. Appl. Clay Sci. 2019, 182, 9. [Google Scholar] [CrossRef]
- Zhu, X.L.; Shchukin, D. Crystallohydrate loaded halloysite nanocontainers for thermal energy storage. Adv. Eng. Mater. 2018, 20, 8. [Google Scholar] [CrossRef]
- Song, S.K.; Qiu, F.; Zhu, W.T.; Guo, Y.; Zhang, Y.; Ju, Y.Y.; Feng, R.; Liu, Y.; Chen, Z.; Zhou, J.; et al. Polyethylene glycol/halloysite@Ag nanocomposite PCM for thermal energy storage: Simultaneously high latent heat and enhanced thermal conductivity. Sol. Energy Mater. Sol. Cells 2019, 193, 237–245. [Google Scholar] [CrossRef]
- Zhao, Y.F.; Kong, W.X.; Jin, Z.L.; Fu, Y.; Wang, W.C.; Zhang, Y.T.; Liu, J.D.; Zhang, B. Storing solar energy within Ag-Paraffin@Halloysite microspheres as a novel self-heating catalyst. Appl. Energy 2018, 222, 180–188. [Google Scholar] [CrossRef]
- Zhou, Y.; Sheng, D.K.; Liu, X.D.; Lin, C.H.; Ji, F.; Dong, L.; Xu, S.B.; Yang, Y.M. Synthesis and properties of crosslinking halloysite nanotubes/polyurethanebased solid-solid phase change materials. Sol. Energy Mater. Sol. Cells 2018, 174, 84–93. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, X.J.; Liu, X.D.; Sheng, D.K.; Ji, F.C.; Dong, L.; Xu, S.B.; Wu, H.H.; Yang, Y.M. Polyurethane-based solid-solid phase change materials with halloysite nanotubes-hybrid graphene aerogels for efficient light- and electro-thermal conversion and storage. Carbon 2019, 142, 558–566. [Google Scholar] [CrossRef]
PCM | Preparation Method and Composition | PCM/montmorillonite Composite | Reference | |||||||
---|---|---|---|---|---|---|---|---|---|---|
PCM | LHS, J/g | Tm/Ts, °C | λ, W/mK | LHS, J/g | Loading, wt% | Tm/Ts, °C | λ, W/mK | |||
RT20 | 136.3 | 23.24 | Blending | 79.25 | 58 | 23 | [53] | |||
n-Hexadecane | 209 | 17–25 | Surfactant-mediated intercalation | 82 93 126 98 | 39 45 60 47 | 16–30 17–39 17–28 17–31 | [55] | |||
Lauric Acid | 161.56 | 43–44 | Melting intercalation | 35.2 | 40.7 | [56] | ||||
Stearic Acid | 212.8 | 64.5 | Vacuum impregnation | 118.6 | 63.2 | [57] | ||||
Stearic Acid | 177.8 | 60.2 | Melting Impregnation Dissolving impregnation | 84.48 3.6 | 47.5 46.9 | 59.9/ 55.15 8.2/ 54.6 | [58] | |||
Stearic Acid | 208 | 54.9 | Self-assembly of MTT sheets on stearic acid core Vacuum impregnation | 110 59 | 59 35 | [59] | ||||
N-Dodecane | 243 | 28 | two-stage intercalation method | 199.7 | [60] | |||||
Stearic Acid | 208 | -/68 | 0.20 | Self-assembly of MTT sheets on stearic acid core | 184.88 163.69 151.83 | 88.9 78.7 73.0 | -/65.66 -/64.86 -/63.89 | 0.29 0.26 0.21 | [40] | |
Stearic Acid | 208 | 69.85/ 67.12 | 0.20 | Vacuum impregnation into 3D MTT sheets network | 198.78 | 95.2 | 69.91/ 68.07 | 0.31 | [63] | |
Paraffin | 128.5 | 41–44 | 0.20 | Molten intercalation method with addition of extended graphite (4:36:1 for EG/paraffin/MMT) | 112.21 | 87.78 | 41.6 | [65] | ||
n-Hexadecane n-Octadecane | 254.7 247.6 | 20.84 30.4 | Vacuum impregnation with the addition of 5 wt% of exfoliated graphite nanoplatelets | 68.95 80.16 | 26.60 31.82 | 20.96/ 12.13 30.31/ 22.80 | 1.11 (0.48w/o EG) 2.12 (0.83w/o EG) | [66] | ||
Stearic Acid | 208 | 69.85/ 67.12 | 0.20 | Self-assembly of MTT sheets on a stearic acid core with the inclusion of Ag NPs | 188.7 | 90.26 | 0.82 (0.25 w/o Ag NPs) | [69] |
PCM | Preparation Method and Composition | PCM/sepiolite composite | Reference | ||||||
---|---|---|---|---|---|---|---|---|---|
PCM | LHS, J/g | Tm/Ts, °C | λ, W/mK | LHS, J/g | Loading, wt% | Tm/Ts, °C | λ, W/mK | ||
Stearic Acid | 206.1 | 70.8/ 69.1 | 0.26 | Vacuum impregnation into α-SPL and β-SPL fibers | 118.7 (α-SPL) 95.8 (β-SPL) | 6049 | 68.0/ 60.1 67.1/ 68.2 | 0.0570.76 | [74] |
Lauric Acid | 225.4 | 43.2/ 41.1 | 0.33 | Vacuum impregnation into sepiolite treated with hydrochloric acid | 125.2 | 60 | 42.5/ 41.3° | 0.59 | [75] |
Capric Acid/Stearic Acid (83/17 wt%) Eutectic | 184.43 | 24.47/ 23.12 | Blending | 76.16 | 42 | 22.86/ 24.51 | [78] | ||
CaCl2∙6H2O | 61 | 52 | Vacuum impregnation, A 70/30 wt% CaCl2∙6H2O:sepiolite ratio was found to be the optimal | 87.9 | 70 | [79] |
PCM | Preparation Method and Composition | PCM/kaolinite Composite | Reference | ||||||
---|---|---|---|---|---|---|---|---|---|
PCM | LHS, J/g | Tm/Ts, °C | λ, W/mK | LHS, J/g | Loading, wt% | Tm/Ts, °C | λ, W/mK | ||
Lauric Acid | 161.3 | 40.7 | 0.112 | Solution intercalation into DMSO-treated KO | 72.5 | 48 | 47.3°/39.3° | 0.101 | [83] |
Capric Acid | 190.21 | 31.04 | Vacuum impregnation | 27.23 | 17.5 | 30.71/28.21 | 0.17 (0.23 with 5 wt% of EG) | [84] | |
Paraffin | 219.1 | 51.51/ 53.31 | 0.25 | Vacuum impregnation into: platelet KO Layered KO Rod KO | 107.2 94.8 84.1 | 50.9 44.0 43.7 | 50.07/ 53.65 50.57/ 53.65 50.89/ 53.46 | 0.67 0.78 0.65 | [85] |
Capric Acid/ Lauric Acid (65/35%) Mixture | 114.71 | 18.96 | Vacuum into DMSO- treated KO | 42.36 | 36.93 | 16.96 | [86] | ||
Stearic Acid | 194.3 | 68.6/ 66.4 | 0.25 | Vacuum impregnation into APTES-modified KO | 118.6 | 63.65 | 68.3/ 63.7 | 0.4 | [89] |
Na2CO3/ K2CO3 (52/48%) Eutectic Salt | 164.3 | 710.5 | Uniaxial compression with the addition of 10 wt% of KO | 52.98 | 711.6 | About 1.5 | [90] |
PCM | Preparation Method and Composition | PCM/diatomite Composite | Reference | ||||||
---|---|---|---|---|---|---|---|---|---|
PCM | LHS, J/g | Tm/Ts, °C | λ, W/mK | LHS, J/g | Loading, wt% | Tm/Ts, °C | λ, W/mK | ||
Dodecanol | 170 | 22 | Vacuum impregnation | 75.8 | 23.3–29.5°/ 21.2–16.7 | [97] | |||
NaNO3/ KNO3 (60/40 wt%) Salt Mixture | 116.0 | 225.7 | 0.7 | Melting impregnation with 80/20 wt% salt/diatomiteratio | 93.7 | 227 | [99] | ||
Stearic Acid/Palmitic Acid Eutectic | 196.9 | 54.33 | Vacuum impregnation | 106.7 | 65.2 | 52.93 | [100] | ||
Methyl Stearate | 217.7 | 36.8/ 32.7 | Blending | 111.8 | 51.3 | 36.5/ 33.1 | [92] | ||
NaCl:KCl (1:1.02) Eutectic | 259.6 | 665 | Mixing | 127 179.3 | 50 70 | 659 661 | [103] | ||
CaCl2· 6H2O CH3COONa· 3H2O Na2SO4· 10H2O | 195.7 270.9 249.4 | 28.9/ 9.0 57.4/ 26.0 31.9/ 15.4 | Mechanical impregnation | 123.1 168.3 155.1 | 65 63 63 | 29.1/ 23.5 57.7/ 50.0 31.7/ 24.2 | 0.95 (with 10 wt% of Graphite) 0.78 (with 10 wt% of Graphite) 0.85 (with 10 wt% of Graphite) | [104] | |
Pentadecane | 174.26 | 31.9/ 15.4 | Direct impregnation with 40/60 PCM/diatomiteRatio Vacuum impregnation with 40/6 PCM/diatomiteRatio Ultrasonic-assisted impregnation with 40/60 PCM/diatomite ratio | 53.71 31.61 46.45 | 11.90/5.72 10.57/3.56 11.01/3.94 | [76] |
PCM | Preparation Method and Composition | PCM/halloysite Composite | Reference | ||||||
---|---|---|---|---|---|---|---|---|---|
PCM | LHS, J/g | Tm/Ts, °C | λ, W/mK | LHS, J/g | Loading, wt% | Tm/Ts, °C | λ, W/mK | ||
Paraffin Wax | 171 | 51–54 | Melting impregnationp araffin wax/HNT/graphite (45/45/10 wt%) | 68.4 | 52.9 | 1.40 | [121] | ||
Paraffin Wax Myristic Acid Palmitic Acid Stearic Acid | 106.7 172.4 187.3 166 | 54.7 54.1 62.4 55.2 | Melting impregnation into PDMS-treated HNT | 44.7 72.1 58.4 70.3 | 62.9 45.6 51.3 58.4 | 52.3 48.1 46.2 52.7 | [122] | ||
PEG 35000 | 174.0 | 64.4/48.9 | Melt-extrusion with PEG/HNT ratio of 90/10 wt% 80/20 wt% 70/30 wt% 60/40 wt% 50/50 wt% | 152.5 138.9 115.9 103.8 96.8 | 64.3/47.8 63.7/47.7 63.7/47.0 63.3/45.8 63.3/45.8 | [123] | |||
Na2HPO4∙12H2O/ Na2SO4∙10H2O (1:1) Eutectic | 211 | 38.5 | Vacuum impregnation | 142 | 67 | 35.8 | [125] | ||
PEG 1000 | 162.6 | 38.4/24.2 | 0.29 | Vacuum impregnation into Ag-decorated (3 wt%) HNT | 71.3 | 45 | 33.6/25.7 | 0.90 (0.55 w/o Ag) | [126] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
V. Voronin, D.; Ivanov, E.; Gushchin, P.; Fakhrullin, R.; Vinokurov, V. Clay Composites for Thermal Energy Storage: A Review. Molecules 2020, 25, 1504. https://doi.org/10.3390/molecules25071504
V. Voronin D, Ivanov E, Gushchin P, Fakhrullin R, Vinokurov V. Clay Composites for Thermal Energy Storage: A Review. Molecules. 2020; 25(7):1504. https://doi.org/10.3390/molecules25071504
Chicago/Turabian StyleV. Voronin, Denis, Evgenii Ivanov, Pavel Gushchin, Rawil Fakhrullin, and Vladimir Vinokurov. 2020. "Clay Composites for Thermal Energy Storage: A Review" Molecules 25, no. 7: 1504. https://doi.org/10.3390/molecules25071504
APA StyleV. Voronin, D., Ivanov, E., Gushchin, P., Fakhrullin, R., & Vinokurov, V. (2020). Clay Composites for Thermal Energy Storage: A Review. Molecules, 25(7), 1504. https://doi.org/10.3390/molecules25071504