Study of the Quality Parameters and the Antioxidant Capacity for the FTIR-Chemometric Differentiation of Pistacia Vera Oils
Abstract
:1. Introduction
2. Results and Discussion
2.1. Oil Extraction
2.2. Evaluation of Antioxidant Capacity
2.3. UV-Vis Spectroscopic Assessment
2.4. Acid (AV) and FFA Values
2.5. Tocopherol Analysis
2.6. FTIR Spectroscopy Study
2.7. Statistical Analysis
2.7.1. Discrimination Based on Antioxidant Capacity
2.7.2. Discrimination Based on R-Value Study
2.7.3. Discrimination Based on Acid Value and Free Fatty Acid
2.7.4. Discrimination Based on the Tocopherol Analysis
2.7.5. Discrimination Based on FTIR Spectroscopy Study
2.7.6. Statistical Models Comparison
3. Materials and Methods
3.1. Samples
3.2. Reagents
3.3. Oil Extraction
3.4. Evaluation of the Antioxidant Capacity
3.4.1. DPPH Assay
3.4.2. ABTS Assay
3.5. Quality Assessment of Pistachio Oil
3.5.1. UV–Vis Assessment
3.5.2. Determination of AV and FFA
3.6. Tocopherol Analysis
3.6.1. Apparatus and Chromatographic Conditions
3.6.2. Standard Solutions
3.6.3. Validation Method
3.7. FTIR Spectra Recording
3.8. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gentile, C.; Tesoriere, L.; Butera, D.; Fazzari, M.; Monastero, M.; Allegra, M.; Livrea, M.A. Antioxidant Activity of Sicilian Pistachio (Pistacia vera L. Var. Bronte) Nut Extract and Its Bioactive Components. J. Agric. Food Chem. 2007, 55, 643–648. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Bencomo, J.J.; Kelebek, S.; Ahmet, S.S.; Rodríguez-Alcalá, L.M.; Fontecha, J.; Selli, S. Characterization of the Aroma-Active, Phenolic, and Lipid Profiles of the Pistachio (Pistacia vera L.) Nut as Affected by the Single and Double Roasting Process. J. Agric. Food Chem. 2015, 63, 7830–7839. [Google Scholar]
- Halvorsen, B.L.; Carlsen, M.H.; Phillips, K.M.; Bøhn, S.K.; Holte, K.; Jacobs, D.R., Jr.; Blomhoff, R. Content of redox-active compounds (ie, antioxidants) in foods consumed in the United States. Am. J. Clin. Nutr. 2006, 84, 95–135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- John, J.A.; Shahidi, F. Phenolic compounds and antioxidant activity of Brazil nut (Bertholletia excelsa). J Funct. Foods 2010, 2, 196–209. [Google Scholar] [CrossRef]
- Desamparados, S.; Ojeda-Amador, R.; Fregapane, G. Virgin Pistachio (Pistachia vera L.) Oil. In Fruit Oils: Chemistry and Functionality; Ramadan, M., Ed.; Springer: Cham, Switzerland, 2019; p. 183. [Google Scholar]
- Tsantili, E.; Takidelli, C.; Christopoulos, M.V.; Lambrinea, E.; Rouskas, D.; Roussos, P.A. Physical, compositional and sensory differences in nuts among pistachio (Pistachia vera L.) varieties. Sci. Hortic. 2010, 125, 562–568. [Google Scholar] [CrossRef]
- Ojeda-Amador, R.M.; Fregapane, G.; Desamparados, S.M. Composition and properties of virgin pistachio oils and their by-products from different cultivars. Food Chem. 2018, 240, 123–130. [Google Scholar] [CrossRef]
- Aceña, L.; Vera, L.; Guasch, J.; Busto, O.; Mestres, M. Comparative study of two extraction techniques to obtain representative aroma extracts for being analysed by gas chromatography-olfactometry: Application to roasted pistachio aroma. J. Chromatogr. A 2010, 1217, 7781–7787. [Google Scholar] [CrossRef]
- Kay, C.D.; Gebauer, S.K.; West, S.G.; Kris-Etherton, P.M. Pistachios Increase Serum Antioxidants and Lower Serum Oxidized-LDL in Hypercholesterolemic Adults. J. Nutr. 2010, 140, 1093–1098. [Google Scholar] [CrossRef] [Green Version]
- Martorana, M.; Arcoraci, T.; Rizza, L.; Cristani, M.; Bonina, F.P.; Saija, A.; Trombetta, D.; Tomaino, A. In vitro antioxidant and in vivo photoprotective effect of pistachio (Pistacia vera L., variety Bronte) seed and skin extracts. Fitoterapia 2013, 85, 41–48. [Google Scholar] [CrossRef]
- Houshia, O.J.; Zaid, O.; Shqair, H.; Zaid, M.; Fashafsheh, N.; Bzoor, R. Effect of Olive Oil Adulteration on Peroxide Value, Delta-K and on the Acidity Nabali-Baladi Olive Oil Quality. Adv. Life Sci. 2014, 4, 235–244. [Google Scholar]
- El-Abassy, R.M.; Donfack, P.; Materny, A. Rapid Determination of Free Fatty Acid in Extra Virgin Olive Oil by Raman Spectroscopy and Multivariate Analysis. J. Am. Oil Chem. Soc. 2009, 86, 507–511. [Google Scholar] [CrossRef]
- Servili, M.; Montedoro, G. Contribution of phenolic compounds to virgin olive oil. Eur. J. Lipid Sci. Technol. 2002, 104, 602–613. [Google Scholar] [CrossRef]
- Juhaimi, F.A.; Ozcan, M.M.; Ghafoor, K.; Babiker, E.E.; Hussain, S. Comparison of cold-pressing and soxhlet extraction systems for bioactive compounds, antioxidant properties, polyphenols, fatty acids and tocopherols in eight nut oils. J. Food Sci. Technol. 2018, 55, 3163–3173. [Google Scholar] [CrossRef] [PubMed]
- Geana, E.I.; Ciucure, C.T.; Apetrei, C.; Artem, V. Application of Spectroscopic UV-Vis and FT-IR Screening Techniques Coupled with Multivariate Statistical Analysis for Red Wine Authentication: Varietal and Vintage Year Discrimination. Molecules 2019, 24, 4166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pérez-Ràfols, C.; Subirats, X.; Serrano, N.; Díaz-Cruz, J.M. New discrimination tools for harvest year and varieties of white wines based on hydrophilic interaction liquid chromatography with amperometric detection. Talanta 2019, 201, 104–110. [Google Scholar] [CrossRef]
- Minioti, K.S.; Georgiou, C.A. Comparison of different tests used in mapping the Greek virgin olive oil production for the determination of its total antioxidant capacity. Grasas Y Aceites 2010, 61, 45–51. [Google Scholar]
- Yu, J.; Wang, H.; Zhan, J.; Huang, W. Review of recent UV-Vis and infrared spectroscopy researches on wine detection and discrimination. Appl. Spectrosc. 2017, 53, 65–86. [Google Scholar] [CrossRef]
- Rowshan, V.; Bahmanzadegan, A.; Saharkhiz, M.J. Influence of storage conditions on the essential oil composition of Thymus daenensis Celak. Ind. Crop. Prod. 2013, 49, 97–101. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.O.; Lee, K.W.; Lee, H.J.; Lee, C.Y. Vitamin C equivalent antioxidant capacity (VCEAC) of phenolic phytochemicals. J. Agric. Food Chem. 2002, 50, 3713–3717. [Google Scholar] [CrossRef]
- Floegel, A.; Kim, D.O.; Chung, S.J.; Koo, S.I.; Chun, O.K. Comparison of ABTS/DPPH assays to measure antioxidant capacity in popular antioxidant-rich US foods. J. Food Compos. Anal. 2011, 24, 1043–1048. [Google Scholar] [CrossRef]
- Otemuyiwa, I.O.; Adewusi, S.R.A. Fatty Acid, Carotenoid and Tocopherol Content of Some Fast Foods from a Nigerian Eatery. Food Nutr. Res. 2013, 1, 82–86. [Google Scholar]
- Martínez, M.L.; Fabani, M.P.; Baroni, M.V.; Huaman, R.N.M.; Ighani, M.; Maestri, D.M.; Wunderlin, D.; Tapia, A.; Feresin, G.E. Argentinian pistachio oil and flour: A potential novel approach of pistachio nut utilization. J. Food Sci. Technol. 2016, 53, 2260–2269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uncu, O.; Ozen, B.; Tokatli, F. Use of FTIR and UV–visible spectroscopy in determination of chemical characteristics of olive oils. Talanta 2019, 201, 65–73. [Google Scholar] [CrossRef] [PubMed]
- Luna, A.S.; Silva, A.P.; Ferré, J.; Boqué, R. Classification of edible oils and modeling of their physico-chemical properties by chemometric methods using mid-IR spectroscopy. Spectrochim. Acta A 2013, 100, 109–114. [Google Scholar] [CrossRef]
- Gericke, A.; Hühnerfuss, H. Investigation of Z- and E-Unsaturated Fatty Acids, Fatty Acid Esters, and Fatty Alcohols at the Air/Water Interface by Infrared Spectroscopy. Langmuir 1995, 11, 225–230. [Google Scholar] [CrossRef]
- Dymińska, L.; Calik, M.; Albegar, A.M.M.; Zając, A.; Kostyń, K.; Lorenc, J.; Hanuza, J. Quantitative determination of the iodine values of unsaturated plant oils using infrared and Raman spectroscopy methods. Int. J. Food Prop. 2017, 20, 2003–2015. [Google Scholar] [CrossRef] [Green Version]
- Rohman, A.; CheMan, Y.B. Fourier transform infrared (FTIR) spectroscopy for analysis of extra virgin olive oil adulterated with palm oil. Food Res. Int. 2010, 43, 886–892. [Google Scholar] [CrossRef]
- Moros, J.; Roth, M.; Garrigues, S.; Guardia, M. Preliminary studies about thermal degradation of edible oils through attenuated total reflectance mid-infrared spectrometry. Food Chem. 2009, 114, 1529–1536. [Google Scholar] [CrossRef]
- Christy, A.A.; Egeberg, P.K. Quantitative determination of saturated and unsaturated fatty acids in edible oils by infrared spectroscopy and chemometrics. Chemom. Intell. Lab. Syst. 2006, 82, 130–136. [Google Scholar] [CrossRef]
- Gutiérrez, L.F.; Quiñones-Segura, Y.; Sanchez-Reinoso, Z.; Leonardo, D.D.; Abril, J.I. Physicochemical properties of oils extracted from γ-irradiated Sacha Inchi (Plukenetiavolubilis L.) seeds. Food Chem. 2017, 237, 581–587. [Google Scholar]
- Bullo, M.; Juanola-Falgarona, M.; Hernandez-Alonso, P.; Salas-Salvado, J. Nutrition attributes and health effects of pistachio nuts. Br. J. Nutr. 2015, 113, 879–893. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmed, M.K.; Daun, J.K.; Przybylski, R. FT-IR based methodology for quantitation of total tocopherols, tocotrienols and plastochromanol-8 in vegetable oils. J. Food Compos. Anal. 2005, 18, 359–364. [Google Scholar] [CrossRef]
- Rosenkrantz, H. Infra-red absorption spectra of tocopherols and related structure. J. Biol. Chem. 1948, 173, 439–447. [Google Scholar] [PubMed]
- Rajaei, A.; Barzegar, M.; Mobarez, A.M.; Sahari, M.A.; Esfahani, Z.H. Antioxidant, anti-microbial and antimutagenicity activities of pistachio (Pistachia vera) green hull extract. Food Chem. Toxicol. 2010, 48, 107–112. [Google Scholar] [CrossRef]
- Torres-Martínez, R.; García-Rodríguez, Y.M.; Ríos-Chávez, P.; Saavedra-Molina, A.; López-Meza, J.E.; Ochoa-Zarzosa, A.; Garciglia, R.S. Antioxidant Activity of the Essential Oil and its Major Terpenes of Satureja macrostema (Moc. and Sessé ex Benth.) Briq. Pharm. Mag. 2018, 13, 875–880. [Google Scholar]
Sample Availability: Samples of the compounds are available from the authors. |
Samples No | Origin | Year of Harvest | TAC | Scavenging Capacity | ||
---|---|---|---|---|---|---|
DPPH | ABTS | DPPH | ABTS | |||
1 | AEGINA | 2017 | 6.05 | 7.10 | 37.69 | 68.14 |
2 | AEGINA | 2017 | 6.45 | 8.63 | 41.76 | 82.85 |
3 | AEGINA | 2017 | 6.35 | 8.60 | 44.29 | 84.95 |
4 | AEGINA | 2017 | 3.11 | 9.45 | 32.17 | 91.79 |
5 | AEGINA | 2017 | 3.17 | 4.92 | 32.44 | 45.28 |
6 | AEGINA | 2017 | 5.62 | 7.44 | 41.44 | 74.74 |
7 | AEGINA | 2017 | 3.82 | 5.46 | 34.94 | 48.50 |
8 | MEGARA | 2017 | 5.95 | 9.32 | 39.68 | 90.03 |
9 | MEGARA | 2017 | 5.36 | 9.01 | 37.82 | 85.15 |
10 | MEGARA | 2017 | 3.21 | 9.44 | 28.75 | 90.84 |
11 | MEGARA | 2017 | 6.70 | 5.02 | 39.02 | 42.53 |
12 | PHTHIOTIS | 2017 | 3.59 | 10.02 | 31.51 | 97.25 |
13 | PHTHIOTIS | 2017 | 6.45 | 9.02 | 39.42 | 88.70 |
14 | PHTHIOTIS | 2017 | 4.96 | 7.85 | 37.07 | 73.33 |
15 | TRIZINA | 2017 | 4.68 | 8.73 | 35.33 | 81.85 |
16 | AEGINA | 2018 | 2.12 | 9.63 | 39.30 | 82.26 |
17 | AEGINA | 2018 | 7.92 | 8.23 | 37.97 | 76.33 |
18 | AEGINA | 2018 | 7.10 | 8.91 | 42.70 | 83.65 |
19 | AEGINA | 2018 | 6.49 | 8.58 | 40.40 | 84.02 |
20 | AEGINA | 2018 | 1.99 | 7.99 | 40.52 | 74.89 |
21 | AEGINA | 2018 | 8.44 | 8.61 | 47.87 | 82.05 |
22 | AEGINA | 2018 | 4.83 | 8.38 | 34.05 | 77.05 |
23 | AEGINA | 2018 | 5.86 | 9.46 | 40.19 | 90.34 |
24 | AEGINA | 2018 | 5.30 | 7.71 | 34.84 | 66.41 |
25 | AEGINA | 2018 | 7.47 | 8.27 | 38.43 | 75.91 |
26 | AEGINA | 2018 | 6.70 | 8.72 | 41.40 | 86.10 |
27 | AEGINA | 2018 | 5.69 | 7.96 | 36.21 | 73.62 |
28 | EVIA | 2018 | 5.51 | 7.07 | 36.83 | 64.38 |
29 | EVIA | 2018 | 3.80 | 9.49 | 28.96 | 91.06 |
30 | EVIA | 2018 | 6.67 | 9.22 | 40.32 | 88.08 |
31 | MEGARA | 2018 | 0.28 | 9.61 | 32.01 | 91.97 |
32 | MEGARA | 2018 | 6.47 | 8.58 | 24.12 | 81.59 |
33 | MEGARA | 2018 | 7.35 | 8.98 | 38.53 | 85.76 |
34 | MEGARA | 2018 | 5.34 | 8.76 | 35.45 | 80.68 |
35 | MEGARA | 2018 | 7.45 | 9.63 | 43.20 | 94.15 |
36 | TRIZINA | 2018 | 7.65 | 8.47 | 44.10 | 77.16 |
37 | PHTHIOTIS | 2018 | 5.84 | 9.80 | 38.83 | 93.99 |
38 | PHTHIOTIS | 2018 | 6.04 | 6.78 | 40.30 | 61.75 |
39 | PHTHIOTIS | 2018 | 0.10 | 9.22 | 31.87 | 87.01 |
40 | PHTHIOTIS | 2018 | 1.35 | 9.83 | 36.60 | 94.10 |
41 | PHTHIOTIS | 2018 | 1.40 | 8.28 | 36.50 | 74.18 |
42 | PHTHIOTIS | 2018 | 5.82 | 10.00 | 36.09 | 96.60 |
43 | VOLOS | 2018 | 10.28 | 9.95 | 52.29 | 96.31 |
44 | THIVA | 2018 | 7.34 | 9.87 | 43.04 | 95.39 |
45 | AVLONAS | 2018 | 8.43 | 9.16 | 45.60 | 88.19 |
Samples No | k232 | k268 | k270 | k274 | Δk | R | AV 1 (as oleic acid) | % FFA 1 |
---|---|---|---|---|---|---|---|---|
EVOO | ≤2.50 | ≤0.22 | ≤0.22 | ≤0.22 | ≤0.01 | ≤11.36 | ≤4.000 | ≤0.350 |
1 | 0.126 | 0.009 | 0.009 | 0.010 | 0.000 | 14.073 | 6.615 ± 0.000 | 3.327 ± 0.000 |
2 | 0.129 | 0.015 | 0.015 | 0.015 | 0.000 | 8.547 | 3.186 ± 0.325 | 1.603 ± 0.163 |
3 | 0.146 | 0.010 | 0.011 | 0.011 | 0.000 | 13.759 | 2.249 ± 0.000 | 1.131 ± 0.000 |
4 | 0.148 | 0.011 | 0.011 | 0.011 | 0.000 | 13.550 | 1.676 ± 0.019 | 0.843 ± 0.010 |
5 | 0.145 | 0.017 | 0.018 | 0.018 | 0.000 | 8.155 | 1.676 ± 0.019 | 0.843 ± 0.010 |
6 | 0.172 | 0.020 | 0.020 | 0.021 | 0.000 | 8.430 | 1.676 ± 0.019 | 0.843 ± 0.010 |
7 | 0.164 | 0.010 | 0.011 | 0.011 | 0.000 | 15.537 | 3.373 ± 0.000 | 1.697 ± 0.000 |
8 | 0.156 | 0.013 | 0.013 | 0.014 | 0.000 | 11.672 | 1.687 ± 0.000 | 0.848 ± 0.000 |
9 | 0.166 | 0.020 | 0.020 | 0.021 | 0.000 | 8.308 | 0.532 ± 0.001 | 0.268 ± 0.000 |
10 | 0.132 | 0.014 | 0.014 | 0.015 | 0.000 | 9.277 | 1.102 ± 0.000 | 0.555 ± 0.000 |
11 | 0.173 | 0.027 | 0.027 | 0.027 | 0.000 | 12.281 | 2.509 ± 0.336 | 1.262 ± 0.169 |
12 | 0.159 | 0.018 | 0.019 | 0.019 | 0.000 | 8.550 | 1.687 ± 0.000 | 0.848 ± 0.000 |
13 | 0.142 | 0.009 | 0.009 | 0.009 | 0.000 | 15.987 | 1.124 ± 0.000 | 0.566 ± 0.000 |
14 | 0.157 | 0.013 | 0.013 | 0.013 | 0.000 | 11.996 | 1.102 ± 0.000 | 0.555 ± 0.000 |
15 | 0.173 | 0.025 | 0.025 | 0.025 | 0.000 | 6.854 | 1.676 ± 0.019 | 0.843 ± 0.010 |
16 | 0.070 | 0.011 | 0.011 | 0.012 | 0.000 | 6.190 | 0.821 ± 0.007 | 0.413 ± 0.003 |
17 | 0.075 | 0.016 | 0.016 | 0.016 | 0.000 | 4.699 | 0.805 ± 0.269 | 0.405 ± 0.135 |
18 | 0.069 | 0.011 | 0.011 | 0.011 | 0.000 | 6.248 | 1.171 ± 0.166 | 0.589 ± 0.083 |
19 | 0.071 | 0.011 | 0.011 | 0.012 | 0.000 | 6.179 | 0.994 ± 0.161 | 0.500 ± 0.081 |
20 | 0.052 | 0.007 | 0.008 | 0.008 | 0.000 | 6.806 | 0.982 ± 0.164 | 0.494 ± 0.082 |
21 | 0.068 | 0.011 | 0.012 | 0.012 | 0.000 | 5.842 | 1.087 ± 0.009 | 0.547 ± 0.004 |
22 | 0.056 | 0.012 | 0.012 | 0.013 | 0.000 | 4.524 | 1.362 ± 0.270 | 0.685 ± 0.136 |
23 | 0.073 | 0.014 | 0.014 | 0.014 | 0.000 | 5.254 | 0.989 ± 0.148 | 0.498 ± 0.074 |
24 | 0.059 | 0.020 | 0.020 | 0.020 | 0.000 | 2.879 | 8.116 ± 0.191 | 4.082 ± 0.096 |
25 | 0.071 | 0.011 | 0.011 | 0.012 | 0.000 | 6.202 | 0.807 ± 0.014 | 0.406 ± 0.007 |
26 | 0.053 | 0.008 | 0.008 | 0.008 | 0.000 | 6.933 | 1.279 ± 0.163 | 0.643 ± 0.082 |
27 | 0.074 | 0.015 | 0.015 | 0.016 | 0.000 | 4.831 | 0.995 ± 0.166 | 0.500 ± 0.083 |
28 | 0.068 | 0.012 | 0.012 | 0.012 | 0.000 | 5.647 | 1.079 ± 0.015 | 0.543 ± 0.008 |
29 | 0.070 | 0.013 | 0.014 | 0.014 | 0.000 | 5.197 | 0.800 ± 0.251 | 0.402 ± 0.126 |
30 | 0.075 | 0.019 | 0.019 | 0.018 | 0.000 | 4.067 | 0.709 ± 0.614 | 0.357 ± 0.309 |
31 | 0.073 | 0.015 | 0.015 | 0.016 | 0.000 | 4.865 | 1.004 ± 0.156 | 0.505 ± 0.078 |
32 | 0.070 | 0.011 | 0.011 | 0.011 | 0.000 | 6.431 | 1.078 ± 0.023 | 0.542 ± 0.011 |
33 | 0.054 | 0.011 | 0.012 | 0.012 | 0.000 | 4.666 | 0.978 ± 0.151 | 0.492 ± 0.076 |
34 | 0.069 | 0.014 | 0.014 | 0.014 | 0.000 | 4.871 | 0.819 ± 0.277 | 0.412 ± 0.139 |
35 | 0.072 | 0.014 | 0.014 | 0.015 | 0.000 | 5.050 | 1.007 ± 0.157 | 0.506 ± 0.079 |
36 | 0.072 | 0.017 | 0.017 | 0.018 | 0.000 | 4.228 | 0.982 ± 0.161 | 0.494 ± 0.081 |
37 | 0.070 | 0.012 | 0.012 | 0.013 | 0.000 | 5.764 | 0.898 ± 0.151 | 0.452 ± 0.076 |
38 | 0.054 | 0.009 | 0.009 | 0.009 | 0.000 | 6.118 | 1.004 ± 0.157 | 0.505 ± 0.079 |
39 | 0.053 | 0.010 | 0.011 | 0.011 | 0.000 | 5.009 | 0.808 ± 0.016 | 0.406 ± 0.008 |
40 | 0.072 | 0.013 | 0.014 | 0.014 | 0.000 | 5.316 | 0.632 ± 0.155 | 0.318 ± 0.078 |
41 | 0.053 | 0.011 | 0.011 | 0.011 | 0.000 | 4.969 | 1.009 ± 0.160 | 0.507 ± 0.080 |
42 | 0.068 | 0.012 | 0.012 | 0.012 | 0.000 | 5.690 | 0.913 ± 0.164 | 0.459 ± 0.083 |
43 | 0.070 | 0.012 | 0.012 | 0.013 | 0.000 | 5.771 | 0.821 ± 0.004 | 0.413 ± 0.002 |
44 | 0.070 | 0.010 | 0.010 | 0.011 | 0.000 | 6.848 | 0.821 ± 0.007 | 0.413 ± 0.003 |
45 | 0.053 | 0.010 | 0.010 | 0.010 | 0.000 | 5.476 | 0.911 ± 0.166 | 0.458 ± 0.083 |
Samples No | Concentration 1 | Repeatability (CV %, n = 3) | ||||||
---|---|---|---|---|---|---|---|---|
α-Τ | β-Τ | γ-Τ 2 | δ-Τ | α-Τ | β-Τ | γ-Τ | δ-Τ | |
1 | 1.57 ± 0.16 | 1.07 ± 0.24 | 186.77 ± 3.65 | 1.79 ± 0.04 | 10.52 | 22.26 | 1.95 | 2.13 |
2 | 1.32 ± 0.10 | 1.14 ± 0.19 | 202.72 ± 12.77 | 1.73 ± 0.13 | 7.45 | 16.60 | 6.30 | 7.35 |
3 | 0.99 ± 0.05 | 0.63 ± 0.09 | 191.13 ± 4.38 | 1.57 ± 0.02 | 4.94 | 13.88 | 2.29 | 1.62 |
4 | 1.73 ± 0.15 | 0.39 ± 0.05 | 222.09 ± 10.95 | 1.59 ± 0.05 | 8.54 | 12.38 | 4.93 | 3.09 |
5 | 1.86 ± 0.30 | 0.45 ± 0.24 | 187.09 ± 3.09 | 1.80 ± 0.15 | 16.21 | 52.60 | 1.65 | 8.10 |
6 | 3.12 ± 0.29 | 1.13 ± 0.46 | 235.06 ± 7.77 | 2.11 ± 0.07 | 9.27 | 40.99 | 3.31 | 3.42 |
7 | 2.13 ± 0.12 | 1.10 ± 0.10 | 210.49 ± 18.33 | 1.77 ± 0.14 | 5.86 | 8.88 | 8.71 | 7.83 |
8 | 1.53 ± 0.16 | 1.06 ± 0.04 | 174.01 ± 6.78 | 1.37 ± 0.09 | 10.31 | 4.14 | 3.89 | 6.62 |
9 | 0.59 ± 0.17 | 0.97 ± 0.17 | 173.56 ± 11.78 | 1.41 ± 0.11 | 29.47 | 17.01 | 6.79 | 8.17 |
10 | 1.24 ± 0.07 | 0.38 ± 0.03 | 173.29 ± 5.46 | 1.06 ± 0.09 | 5.72 | 7.18 | 3.15 | 8.38 |
11 | 1.71 ± 0.27 | 0.98 ± 0.12 | 170.07 ± 12.59 | 1.78 | 15.60 | 12.51 | 7.41 | 0.10 |
12 | 1.32 ± 0.18 | 0.83 ± 0.31 | 134.59 ± 4.15 | 0.84 ± 0.22 | 13.46 | 37.48 | 3.08 | 26.52 |
13 | 1.80 ± 0.13 | 0.33 ± 0.20 | 199.49 ± 7.96 | 1.60 ± 0.06 | 7.49 | 60.45 | 3.99 | 3.48 |
14 | 3.37 ± 0.44 | 0.55 ± 0.15 | 231.93 ± 9.84 | 1.17 ± 0.19 | 12.96 | 26.87 | 4.24 | 16.08 |
15 | 1.87 ± 0.17 | 0.48 ± 0.07 | 199.88 ± 6.87 | 1.58 ± 0.12 | 9.16 | 14.98 | 3.44 | 7.35 |
16 | 2.29 ± 0.06 | 1.25 ± 0.06 | 193.13 ± 5.12 | 2.01 ± 0.14 | 2.75 | 4.69 | 2.65 | 7.11 |
17 | 1.59 ± 0.08 | 0.86 ± 0.11 | 184.07 ± 9.59 | 1.81 ± 0.01 | 5.20 | 13.06 | 5.21 | 0.39 |
18 | 4.10 ± 0.08 | 1.68 ± 0.11 | 223.82 ± 2.45 | 2.20 ± 0.09 | 2.04 | 6.45 | 1.09 | 4.24 |
19 | 2.83 ± 0.20 | 1.26 ± 0.11 | 201.78 ± 9.48 | 1.89 ± 0.22 | 7.16 | 8.61 | 4.70 | 11.67 |
20 | 2.78 ± 0.35 | 0.87 ± 0.15 | 204.80 ± 2.12 | 2.31 ± 0.28 | 12.65 | 17.70 | 1.04 | 12.12 |
21 | 3.22 ± 0.67 | 0.77 ± 0.07 | 195.44 ± 5.02 | 1.97 ± 0.04 | 20.91 | 8.57 | 2.57 | 1.91 |
22 | 1.72 ± 0.14 | 1.33 ± 0.03 | 152.10 ± 2.14 | 1.73 ± 0.13 | 8.33 | 2.01 | 1.41 | 7.36 |
23 | 1.73 ± 0.02 | 0.65 ± 0.12 | 157.93 ± 4.27 | 1.79 ± 0.03 | 1.04 | 18.85 | 2.70 | 1.79 |
24 | 2.15 ± 0.20 | 0.83 ± 0.11 | 213.88 ± 3.55 | 2.12 ± 0.04 | 9.29 | 13.35 | 1.66 | 1.99 |
25 | 0.53 ± 0.03 | 1.01 ± 0.28 | 114.45 ± 39.60 | 1.43 ± 0.43 | 6.62 | 27.72 | 34.60 | 30.02 |
26 | 2.56 ± 0.17 | 1.79 ± 0.34 | 196.23 ± 2.86 | 1.99 ± 0.10 | 6.73 | 19.18 | 1.46 | 5.07 |
27 | 1.88 ± 0.25 | 0.96 ± 0.08 | 203.79 ± 2.77 | 2.13 ± 0.08 | 13.14 | 8.17 | 1.36 | 3.78 |
28 | 4.39 ± 0.15 | 1.79 ± 0.11 | 216.32 ± 7.47 | 1.88 ± 0.07 | 3.35 | 6.38 | 3.45 | 3.52 |
29 | 3.07 ± 0.28 | 2.25 ± 0.14 | 174.04 ± 4.57 | 1.79 ± 0.11 | 9.03 | 6.40 | 2.63 | 6.02 |
30 | 3.51 ± 0.22 | 1.37 ± 0.16 | 178.60 ± 6.09 | 1.73 ± 0.13 | 6.36 | 11.48 | 3.41 | 7.28 |
31 | 2.93 ± 0.12 | 0.66 ± 0.07 | 160.22 ± 2.28 | 1.41 ± 0.17 | 4.15 | 11.13 | 1.42 | 12.27 |
32 | 1.98 ± 0.20 | 1.75 ± 0.21 | 191.41 ± 7.90 | 2.17 ± 0.31 | 10.17 | 12.13 | 4.13 | 14.22 |
33 | 0.70 ± 0.11 | 1.11 ± 0.08 | 119.08 ± 4.32 | 1.29 ± 0.03 | 15.51 | 7.03 | 3.62 | 2.64 |
34 | 2.26 ± 0.41 | 0.45 ± 0.00 | 156.43 ± 1.80 | 1.33 ± 0.04 | 18.36 | 0.56 | 1.15 | 3.26 |
35 | 2.23 ± 0.48 | 1.58 ± 0.16 | 203.53 ± 5.74 | 1.96 ± 0.24 | 21.50 | 9.91 | 2.82 | 12.24 |
36 | 1.56 ± 0.22 | 1.07 ± 0.32 | 97.56 ± 8.15 | 1.58 ± 0.03 | 14.41 | 30.46 | 8.36 | 2.11 |
37 | 3.28 ± 0.07 | 0.62 ± 0.02 | 157.49 ± 5.24 | 1.20 ± 0.12 | 2.22 | 3.61 | 3.33 | 10.15 |
38 | 4.15 ± 0.04 | 0.78 ± 0.07 | 185.36 ± 11.25 | 1.50 ± 0.04 | 1.03 | 9.21 | 6.07 | 2.41 |
39 | 2.11 ± 0.19 | 1.82 ± 0.21 | 164.57 ± 23.70 | 1.96 ± 0.74 | 9.01 | 11.51 | 14.40 | 37.91 |
40 | 1.47 ± 0.13 | 1.96 ± 0.06 | 169.36 ± 7.54 | 1.79 ± 0.10 | 8.67 | 3.24 | 4.45 | 5.86 |
41 | 2.47 ± 0.43 | 0.71 ± 0.09 | 158.31 ± 14.51 | 1.46 ± 0.32 | 17.35 | 12.85 | 9.16 | 21.66 |
42 | 4.20 ± 0.07 | 2.22 ± 0.65 | 170.70 ± 2.42 | 1.90 ± 0.02 | 1.68 | 29.47 | 1.42 | 1.20 |
43 | 5.90 ± 0.22 | 1.56 ± 0.37 | 225.78 ± 5.51 | 1.99 ± 0.05 | 3.69 | 23.81 | 2.44 | 2.76 |
44 | 1.98 ± 0.19 | 0.70 ± 0.02 | 157.50 ± 4.63 | 1.59 ± 0.05 | 9.69 | 2.29 | 2.94 | 2.99 |
45 | 2.58 ± 0.11 | ND 3 | 216.02 ± 3.06 | 1.98 ± 1.12 | 4.47 | - | 1.42 | 56.55 |
Oils | α-T | β-T | γ-T | δ-T | Total |
---|---|---|---|---|---|
almond | 20–545 | ND 1–10 | 5–104 | ND–5 | 20–600 |
hazelnut | 100–420 | 6–12 | 18–194 | ND–10 | 200–600 |
walnut | ND–170 | ND–110 | 120–400 | ND–60 | 309–455 |
pistachio | 10–330 | ND | 0–100 | ND–50 | 100–600 |
flax/linseed | 2–20 | ND | 100–712 | 3–14 | 150–905 |
avocado | 50–450 | ND | 10–20 | ND–10 | 50–450 |
Wavenumber (cm−1) | Function Group | Abbreviations | Reference |
---|---|---|---|
3007 | C-H symmetric stretching vibration of -CH3 | vs(CH3) | [24,25,26] |
2956 | C-H asymmetric stretching vibration of -CH3 | vas(CH3) | [27] |
2922 | C-H asymmetric stretching vibration of -CH2- | vas(CH2) | [24,25,26,28,29,30] |
2853 | C-H symmetric stretching vibration of -CH2- | vs(CH2) | [24,26,27,28,30] |
1744 | C=O stretching vibration | v(C=O) | [24,25,28,29] |
1654 | >C=C< cis-olefinic stretching vibration | v(C=C) | [24] |
1461 | C-H in-plane bending vibration of -CH2- (scissoring) | δs(CH2) | [24,26,30,31] |
1374 | C-H symmetric bending vibration of -CH3 | δ(CH3) | [25,27,28,30] |
1345, 1313 | -CH2- out-of-plane bending vibration (wagging) | ω(CH2) | [27] |
1236, 1160, 1117 | C-O asymmetric stretching vibration | νas(C-O) | [25,27,28,30,31] |
1095, 1029 | in-phase-C-C stretching vibration | ν(C-C) | [27,30] |
965 | C-H in-plane bending vibration (scissoring) | δs(C=C=C) | [27,28] |
911, 857 | -CH2- plane vibration | γ(CH2) | [27,28] |
722 | -CH=CH- cis-stretching vibration | v(C=C) | [24,28,29] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valasi, L.; Arvanitaki, D.; Mitropoulou, A.; Georgiadou, M.; Pappas, C.S. Study of the Quality Parameters and the Antioxidant Capacity for the FTIR-Chemometric Differentiation of Pistacia Vera Oils. Molecules 2020, 25, 1614. https://doi.org/10.3390/molecules25071614
Valasi L, Arvanitaki D, Mitropoulou A, Georgiadou M, Pappas CS. Study of the Quality Parameters and the Antioxidant Capacity for the FTIR-Chemometric Differentiation of Pistacia Vera Oils. Molecules. 2020; 25(7):1614. https://doi.org/10.3390/molecules25071614
Chicago/Turabian StyleValasi, Lydia, Dimitra Arvanitaki, Angeliki Mitropoulou, Maria Georgiadou, and Christos S. Pappas. 2020. "Study of the Quality Parameters and the Antioxidant Capacity for the FTIR-Chemometric Differentiation of Pistacia Vera Oils" Molecules 25, no. 7: 1614. https://doi.org/10.3390/molecules25071614
APA StyleValasi, L., Arvanitaki, D., Mitropoulou, A., Georgiadou, M., & Pappas, C. S. (2020). Study of the Quality Parameters and the Antioxidant Capacity for the FTIR-Chemometric Differentiation of Pistacia Vera Oils. Molecules, 25(7), 1614. https://doi.org/10.3390/molecules25071614