Determination of Alternaria Toxins in Sunflower Oil by Liquid Chromatography Isotope Dilution Tandem Mass Spectrometry
Abstract
:1. Introduction
2. Results
2.1. General Conditions for LC-ID-MS/MS Separation
2.2. Development of Sample Preparation
2.2.1. Sample Preparation without SPE Clean-Up
2.2.2. Sample Preparation with Mixed-mode SPE Clean-Up
2.2.3. Sample Preparation With Normal-Phase SPE Clean-Up
2.3. Method Validation
2.4. Analysis of Sunflower Oil Samples
2.5. Analysis of Sunflower Seed QC Samples
3. Discussion
3.1. Method Development for LC-MS/MS Separation
3.2. Method Development for Sample Preparation
3.3. Real Sample Analysis
4. Materials and Methods
4.1. Standards, Reagents, Equipment, Samples
4.2. Sample Extraction
4.3. Sample Pre-Concentration
4.4. Sample Clean-Up on Mixed-Mode Cation Exchange Cartridges
4.5. Sample Clean-Up on Silica Cartridges
4.6. Sample Preparation for Sunflower Seed Samples
4.7. LC-ID-MS/MS Separation
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- De Ruyck, K.; De Boevre, M.; Huybrechts, I.; De Saeger, S. Dietary mycotoxins, co-exposure, and carcinogenesis in humans: Short review. Mutat. Res. Rev. Mutat. Res. 2015, 766, 32–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zöllner, P.; Mayer-Helm, B. Trace mycotoxin analysis in complex biological and food matrices by liquid chromatography–atmospheric pressure ionisation mass spectrometry. J. Chromatogr. A 2006, 1136, 123–169. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Commission Regulation (EC), No 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs. Off. J. Eur. Union 2006, 364, 5. [Google Scholar]
- EFSA, European Food Safety Authority. Scientific Opinion on the risks for public and animal health related to the presence of Alternaria toxins in food and feed. EFSA J. 2011, 9, 1–97. [Google Scholar]
- Zwickel, T.; Fauhl-Hassek, C.; Genrich, C.; Klaffke, H.; Pydde, E.; Rychlik, M. Report on the Proficiency Test about Alternaria Toxins in Food. In Proceedings of the Poster Presentation at the 36th Mycotoxin Workshop, Göttingen, Germany, June 2014. [Google Scholar]
- Tölgyesi, Á.; Stroka, J. Collaborative Study Report: Determination of Alternaria toxins in Cereals, Tomato Juice and Sunflower Seeds by Liquid Chromatography Tandem Mass Spectrometry. 2016. Available online: https://ec.europa.eu/jrc/en/publication/collaborative-study-report-determination-alternaria-toxins-cereals-tomato-juice-and-sunflower-seeds (accessed on 26 July 2019).
- Goncalves, C.; Joint Research Centre, Geel, Belgium. Personal communication, 2019.
- Liu, Y.; Rychlik, M. Development of a Stable Isotope Dilution LC–MS/MS Method for the Alternaria Toxins Tentoxin, Dihydrotentoxin, and Isotentoxin. J. Agric. Food Chem. 2013, 61, 2970–2978. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Rychlik, M. Biosynthesis of seven carbon-13 labeled Alternaria toxins including altertoxins, alternariol, and alternariol methyl ether, and their application to a multiple stable isotope dilution assay. Anal. Bioanal. Chem. 2015, 407, 1357–1369. [Google Scholar] [CrossRef]
- López, P.; Venema, D.; de Rijk, T.; de Kok, A.; Scholten, J.M.; Mol, H.G.J.; de Nijs, M. Occurrence of Alternaria toxins in food products in The Netherlands. Food Control 2016, 60, 196–204. [Google Scholar] [CrossRef]
- López, P.; Venema, D.; Mol, H.; Spanjer, M.; de Stoppelaar, J.; Pfeiffer, E.; de Nijs, M. Alternaria toxins and conjugates in selected foods in the Netherlands. Food Control 2016, 69, 153–159. [Google Scholar] [CrossRef]
- Hickert, S.; Bergmann, M.; Ersen, S.; Cramer, B.; Humpf, H.-U. Survey of Alternaria toxin contamination in food from the German market, using a rapid HPLC-MS/MS approach. Mycotoxin Res. 2016, 32, 7–18. [Google Scholar] [CrossRef] [Green Version]
- Tölgyesi, Á.; Stroka, J.; Tamosiunas, V.; Zwickel, T. Simultaneous analysis of Alternaria toxins and citrinin in tomato: An optimised method using liquid chromatography-tandem mass spectrometry. Food Addit. Contam. 2015, 32, 1512–1522. [Google Scholar] [CrossRef] [Green Version]
- Di Mavungu, J.D.; Monbaliu, S.; Scippo, M.-L.; Maghuin-Rogister, G.; Schneider, Y.-J.; Larondelle, Y.; Callebaut, A.; Robbens, J.; Van Peteghem, C.; De Saeger, S. LC-MS/MS multi-analyte method for mycotoxin determination in food supplements. Food Addit. Contam. 2009, 26, 885–895. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scott, P.M.; Lawrence, G.A.; Lau, B.P.Y. Analysis of wines, grape juices and cranberry juices for Alternaria toxins. Mycotoxin Res. 2006, 22, 142–147. [Google Scholar] [CrossRef] [PubMed]
- Prelle, A.; Spadaro, D.; Garibaldi, A.; Gullino, M.L. A new method for detection of five Alternaria toxins in food matrices based on LC–APCI-MS. Food Chem. 2013, 140, 161–167. [Google Scholar] [CrossRef] [PubMed]
- Magnani, R.; De Souza, G.D.; Rodrigues-Filho, E. Analysis of alternariol and alternariol monomethyl ether on flavedo and albedo tissues of tangerines (Citrus reticulata) with symptoms of alternaria brown spot. J. Agric. Food Chem. 2007, 55, 4980–4986. [Google Scholar] [CrossRef] [PubMed]
- Asam, S.; Konitzer, K.; Schieberle, P.; Rychlik, M. Stable isotope dilution assays of alternariol and alternariol monomethyl ether in beverages. J. Agric. Food Chem. 2009, 57, 5152–5160. [Google Scholar] [CrossRef]
- Asam, S.; Liu, Y.; Konitzer, K.; Rychlik, M. Development of a stable isotope dilution assay for tenuazonic acid. J. Agric. Food Chem. 2011, 59, 2980–2987. [Google Scholar] [CrossRef]
- Siegel, D.; Rasenko, T.; Koch, M.; Nehls, I. Determination of the Alternaria mycotoxin tenuazonic acid in cereals by high-performance liquid chromatography–electrospray ionization iontrap multistage mass spectrometry after derivatization with 2,4-dinitrophenylhydrazine. J. Chromatogr. A 2009, 1216, 4582–4588. [Google Scholar] [CrossRef]
- Puntscher, H.; Cobankovic, I.; Marko, D.; Warth, W. Quantitation of free and modified Alternaria mycotoxins in European food products by LC-MS/MS. Food Control 2019, 102, 157–165. [Google Scholar] [CrossRef]
- Gambacorta, L.; Darra, N.E.; Fakhoury, R.; Logrieco, A.F.; Solfrizzo, M. Incidence and levels of Alternaria mycotoxins in spices and herbs produced worldwide and commercialized in Lebanon. Food Control 2019, 106, 106724. [Google Scholar] [CrossRef]
- Gotthardt, M.; Asam, S.; Gunkel, K.; Moghaddam, A.F.; Baumann, E.; Kietz, R.; Rychlik, M. Quantitation of Six Alternaria Toxins in Infant Foods Applying Stable Isotope Labeled Standards. Front. Microbiol. 2019, 10, 109. [Google Scholar] [CrossRef] [Green Version]
- De Berardis, S.; De Paola, E.L.; Montevecchi, G.; Garbini, D.; Masino, F.; Antonelli, A.; Melucci, D. Determination of four Alternaria alternata mycotoxins by QuEChERS approach coupled with liquid chromatography-tandem mass spectrometry in tomato-based and fruit-based products. Food Res. Int. 2018, 106, 677–685. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.; Xian, Y.; Xiao, K.; Wu, Y.; Zhu, L.; He, J. Development and comparison of single-step solid phase extraction and QuEChERS clean-up for the analysis of 7 mycotoxins in fruits and vegetables during storage by UHPLC-MS/MS. Food Chem. 2019, 274, 471–479. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.T.T.; Kim, J.; Jeon, S.J.; Lee, C.W.; Magan, N.; Lee, H.B. Mycotoxin production of Alternaria strains isolated from Korean barley grains determined by LC-MS/MS. Int. J. Food Microbiol. 2018, 268, 44–52. [Google Scholar] [CrossRef] [Green Version]
- Ediage, E.N.; Van Poucke, C.; De Saeger, S. A multi-analyte LC–MS/MS method for the analysis of 23 mycotoxins in different sorghum varieties: The forgotten sample matrix. Food Chem. 2015, 177, 397–404. [Google Scholar] [CrossRef] [PubMed]
- Walravens, J.; Mikula, H.; Rychlik, M.; Asam, S.; Devos, T.; Njumbe Ediage, E.; Diana Di Mavungu, J.; Jacxsens, L.; Van Landschoot, A.; Vanhaecke, L.; et al. Validated UPLC-MS/MS methods to quantitate free and conjugated Alternaria toxins in commercially available tomato products and fruit and vegetable juices in Belgium. J. Agric. Food Chem. 2016, 64, 5101–5109. [Google Scholar] [CrossRef] [Green Version]
- Walravens, J.; Mikula, H.; Rychlik, M.; Asam, S.; Ediage, E.N.; Di Mavungu, J.D.; Van Landschoot, A.; Vanhaecke, L.; De Saeger, S. Development and validation of a ultra-high performance liquid chromatography tandem mass spectrometric method for the simultaneous determination of free and conjugated Alternaria toxins in cereal-based foodstuffs. J. Chromatogr. A 2014, 1372, 91–101. [Google Scholar] [CrossRef]
- Zwickel, T.; Klaffke, H.; Richards, K.; Rychlik, M. Development of a high performance liquid chromatography tandem mass spectrometry based analysis for the simultaneous quantification of various Alternaria toxins in wine, vegetable juices and fruit juices. J. Chromatogr. A 2016, 1455, 74–85. [Google Scholar] [CrossRef]
- Rico-Yuste, A.; Walravens, J.; Urraca, J.L.; Abou-Hany, R.A.G.; Descalzo, A.B.; Orellana, G.; Rychlik, M.; De Saeger, S.; Moreno-Bondi, M. Analysis of alternariol and alternariol monomethyl ether in foodstuffs by molecularly imprinted solid-phase extraction and ultra-high-performance liquid chromatography tandem mass spectrometry. Food Chem. 2018, 243, 357–364. [Google Scholar] [CrossRef]
- Rodríguez-Carrasco, Y.; Mañes, J.; Berrada, H.; Juan, C.; Wang, M. Development and Validation of a LC-ESI-MS/MS Method for the Determination of Alternaria Toxins Alternariol, Alternariol Methyl-Ether and Tentoxin in Tomato and Tomato-Based Products. Toxins 2016, 8, 328. [Google Scholar] [CrossRef] [Green Version]
- Zhao, K.; Shao, B.; Yang, D.; Li, F. Natural occurrence of four Alternaria mycotoxins in tomato- and citrus-based foods in China. J. Agric. Food Chem. 2015, 63, 343–348. [Google Scholar] [CrossRef]
- Wei, D.; Wang, Y.; Jiang, D.; Feng, X.; Li, J.; Wang, M. Survey of Alternaria Toxins and Other Mycotoxins in Dried Fruits in China. Toxins 2017, 9, 200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, C.; Fan, Y.; He, W.; Hu, D.; Wu, A.; Wu, W. Development and Application of a QuEChERS-Based Liquid Chromatography Tandem Mass Spectrometry Method to Quantitate Multi-Component Alternaria Toxins in Jujube. Toxins 2018, 10, 382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Houissa, E.; Lasram, S.; Sulyok, M.; Šarkanj, B.; Fontana, A.; Strub, C.; Krska, R.; Schorr-Galindo, S.; Ghorbel, A. Multimycotoxin LC-MS/MS analysis in pearl millet (Pennisetum glaucum) from Tunisia. Food Control 2019, 106, 106738. [Google Scholar] [CrossRef]
- Matuszewski, B.K.; Constanzer, M.L.; Chavez-Eng, C.M. Strategies for the assessment of matrix effect in quantitative bioanalytical methods based on HPLC–MS/MS. Anal. Chem. 2003, 75, 3019–3030. [Google Scholar] [CrossRef]
- European Commission. Commission Decision of 12 August 2002 implementing Council Directive 96/23/EC concerning the performance of analytical methods and the interpretation of results. 2002/657/EC. Off. J. Eur. Union 2002, 221, 8. [Google Scholar]
- CEN/TR 16059:2016 Food Analysis. Performance Criteria for Single Laboratory Validated Methods of analysis for the Determination of Mycotoxins. Available online: infostore.saiglobal.com/preview/98697665123.pdf?sku=874908_saig_nsai_nsai_2079941, (accessed on 1 November 2010).
- Malachova, A.; Sulyok, M.; Beltran, E.; Berthiller, F.; Krska, R. Multi-Toxin Determination in Food—The Power of “Dilute and Shoot” Approaches in LC–MS–MS. LCGC Eur. 2015, 28, 542–555. [Google Scholar]
- Sulyok, M.; Berthiller, F.; Krska, R.; Schuhmacher, R. Development and validation of a liquid chromatography/tandem mass spectrometric method for the determination of 39 mycotoxins in wheat and maize. Rapid Commun. Mass Spectrom. 2006, 20, 2649–2659. [Google Scholar] [CrossRef]
- Asam, S.; Rychlik, M. Recent developments in stable isotope dilution assays in mycotoxin analysis with special regard to Alternaria toxins. Anal. Bioanal. Chem. 2015, 407, 7563–7577. [Google Scholar] [CrossRef]
- Chulze, S.N.; Torres, A.M.; Dalcero, A.M.; Etcheverry, M.G.; Ramirez, M.L.; Farnochi, M.C. Alternaria mycotoxins in sunflower seeds: Incidence and distribution of the toxins in oil and meal. J. Food Prot. 1995, 58, 1133–1135. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are not available from the authors. |
Compounds | Ionization Mode | Precursor Ion (m/z) | Product Ion (m/z) | Dwell Time (ms) | Declustering Potential (V) | Entrance Potential (V) | Cell Exit Potential (V) | Collision Energy (V) | Collision Cell Exit Potential (V) |
---|---|---|---|---|---|---|---|---|---|
TEA | negative | 196 | 83 | 50 | −70 | −9 | −12 | −32 | 0 |
139 | 50 | −26 | 0 | ||||||
TEA-13C2 | 198 | 141 | 50 | −70 | −9 | −12 | −26 | 0 | |
ALT | 291 | 161 | 50 | −80 | −10 | −22 | −52 | 0 | |
203 | 50 | −40 | 0 | ||||||
ALT-d6 | 296 | 203 | 50 | −80 | −10 | −22 | −40 | 0 | |
AOH | 257 | 147 | 50 | −65 | −6 | −22 | −46 | 0 | |
213 | 50 | −30 | −5 | ||||||
AOH-d3 | 260 | 218 | 50 | −65 | −6 | −22 | −30 | −5 | |
TEN | 413 | 141 | 50 | −80 | −5 | −14 | −28 | 0 | |
271 | 50 | −20 | −2 | ||||||
TEN-d3 | 416 | 274 | 50 | −80 | −5 | −14 | −20 | −2 | |
AME | 271 | 228 | 50 | −60 | −2 | −16 | −36 | −2 | |
256 | 50 | −30 | −2 | ||||||
AME-d3 | 274 | 259 | 50 | −60 | −2 | −16 | −30 | −2 | |
TEA | positive | 198 | 139 | 50 | 66 | 10 | 12 | 19 | 4 |
153 | 50 | 17 | 4 | ||||||
TEA-13C2 | 200 | 155 | 50 | 66 | 10 | 12 | 17 | 4 | |
ALT | 293 | 139 | 50 | 61 | 12 | 16 | 79 | 4 | |
257 | 50 | 19 | 4 | ||||||
ALT-d6 | 299 | 262 | 50 | 61 | 12 | 16 | 19 | 4 | |
AOH | 259 | 128 | 50 | 116 | 9 | 14 | 57 | 4 | |
185 | 50 | 14 | 4 | ||||||
AOH-d3 | 262 | 131 | 50 | 116 | 9 | 14 | 57 | 4 | |
TEN | 415 | 119 | 50 | 91 | 8 | 20 | 23 | 4 | |
132 | 50 | 53 | 4 | ||||||
TEN-d3 | 418 | 135 | 50 | 91 | 8 | 20 | 53 | 4 | |
AME | 273 | 115 | 50 | 126 | 9 | 16 | 69 | 4 | |
128 | 50 | 71 | 4 | ||||||
AME-d3 | 276 | 131 | 50 | 126 | 9 | 16 | 71 | 4 |
TEA | ALT | AOH | TEN | AME | |
---|---|---|---|---|---|
Preparation without SPE clean-up and evaluation without ISTD correction | |||||
ME% (sample 1) | 8 | −7 | −20 | 4 | −75 |
ME% (sample 2) | −3 | −3 | −40 | −13 | −86 |
ME% (sample 3) | −5 | −18 | −48 | −14 | −88 |
Relative ME% | 7 | 9 | 22 | 11 | 42 |
Preparation without SPE clean-up and evaluation with ISTD correction | |||||
ME% (sample 1) | 11 | −4 | 11 | 10 | −6 |
ME% (sample 2) | 4 | −6 | 10 | 0 | −11 |
ME% (sample 3) | 5 | −19 | 31 | 2 | 5 |
Relative ME% | 4 | 9 | 10 | 5 | 5 |
Preparation with mixed-mode SPE clean-up and evaluation without ISTD correction | |||||
ME% (sample 1) | 2 | 10 | −45 | 10 | −57 |
ME% (sample 2) | −10 | −8 | −57 | −15 | −50 |
ME% (sample 3) | −13 | 3 | −46 | −18 | −62 |
Relative ME% | 9 | 11 | 14 | 17 | 14 |
Preparation with mixed-mode SPE clean-up and evaluation with ISTD correction | |||||
ME% (sample 1) | 8 | 1 | 2 | 9 | 6 |
ME% (sample 2) | −6 | −7 | 4 | −12 | −3 |
ME% (sample 3) | −6 | 3 | −18 | −4 | −8 |
Relative ME% | 8 | 5 | 13 | 11 | 7 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tölgyesi, Á.; Kozma, L.; K. Sharma, V. Determination of Alternaria Toxins in Sunflower Oil by Liquid Chromatography Isotope Dilution Tandem Mass Spectrometry. Molecules 2020, 25, 1685. https://doi.org/10.3390/molecules25071685
Tölgyesi Á, Kozma L, K. Sharma V. Determination of Alternaria Toxins in Sunflower Oil by Liquid Chromatography Isotope Dilution Tandem Mass Spectrometry. Molecules. 2020; 25(7):1685. https://doi.org/10.3390/molecules25071685
Chicago/Turabian StyleTölgyesi, Ádám, Luca Kozma, and Virender K. Sharma. 2020. "Determination of Alternaria Toxins in Sunflower Oil by Liquid Chromatography Isotope Dilution Tandem Mass Spectrometry" Molecules 25, no. 7: 1685. https://doi.org/10.3390/molecules25071685
APA StyleTölgyesi, Á., Kozma, L., & K. Sharma, V. (2020). Determination of Alternaria Toxins in Sunflower Oil by Liquid Chromatography Isotope Dilution Tandem Mass Spectrometry. Molecules, 25(7), 1685. https://doi.org/10.3390/molecules25071685