The Effect of Vitamin Supplementation on Subclinical Atherosclerosis in Patients without Manifest Cardiovascular Diseases: Never-ending Hope or Underestimated Effect?
Abstract
:1. Introduction
2. Vitamins and Subclinical Atherosclerosis
2.1. Vitamin E
2.2. Vitamin D
2.3. Vitamin C
2.4. Vitamin B
2.4.1. Vitamin B1, or Thiamine (Aneurin)
2.4.2. Vitamin B2, or Riboflavin
2.4.3. Vitamin B3, or Niacin or Nicotinic Acid (NA)
2.4.4. Vitamin B5, or Pantothenic Acid (PA)
2.4.5. Vitamin B6
2.4.6. Vitamin B7, or Biotin
2.4.7. Vitamin B9, or Folic Acid
2.4.8. Vitamin B12, or Cobalamin
2.5. Vitamin A
2.6. Vitamin Supplementation Summary
3. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hansson, G.K.; Robertson, A.K.; Söderberg-Nauclér, C. Inflammation and Atherosclerosis. Annu. Rev. Pathol. 2006, 1, 297–329. [Google Scholar] [CrossRef] [PubMed]
- Resnick, H.E.; Lindsay, R.S.; McDermott, M.M.; Devereux, R.B.; Jones, K.L.; Fabsitz, R.R.; Howard, B.V. Relationship of high and low ankle brachial index to all-cause and cardiovascular disease mortality: The Strong Heart Study. Circulation. 2004, 109, 733–739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, S.S.; Pilkerton, C.S.; Shrader, C.D., Jr.; Frisbee, S.J. Subclinical Atherosclerosis, Cardiovascular Health, and Disease Risk: Is There a Case for the Cardiovascular Health Index in the Primary Prevention Population? BMC Public. Health 2018, 18, 429. [Google Scholar] [CrossRef] [PubMed]
- Apryatin, S.A.; Mzhel’skaya, K.V.; Balakina, A.S.; Soto, S.J.; Beketova, N.A.; Kosheleva, O.V.; Kodentsova, V.M.; Gmoshinsky, I. V. Sex and Line Differences in Biochemical Indices and Fat Soluble Vitamins Sufficiency in Rats on in Vivo Model of Metabolic Syndrome. Vopr. Pitan. 2018, 87, 51–62. [Google Scholar] [PubMed]
- Nagy, K.; Kerrihard, A.L.; Beggio, M.; Craft, B.D.; Pegg, R.B. Modeling the Impact of Residual Fat-Soluble Vitamin (FSV) Contents on the Oxidative Stability of Commercially Refined Vegetable Oils. Food Res. Int. 2016, 84, 26–32. [Google Scholar] [CrossRef]
- Shahidi, F.; Camargo, A.C. Tocopherols and Tocotrienols: Sources, Analytical Methods, and Effects in Food and Biological Systems. Encycl. Food Chem. 2019, 1, 561–570. [Google Scholar]
- Meganathan, P.; FU, J.Y. Biological Properties of Tocotrienols: Evidence in Human Studies. Int. J. Mol. Sci. 2016, 17, 1682. [Google Scholar] [CrossRef]
- Parker, R.A.; Pearce, B.C.; Clark, R.W.; Gordon, D.A.; Wright, J.J. Tocotrienols regulate cholesterol production in mammalian cells by post-transcriptional suppression of 3-hydroxy-3-methylglutaryl-coenzyme A reductase. J. Biol. Chem. 1993, 268, 11230–11238. [Google Scholar]
- Khor, H.T.; Chieng, D.Y.; Ong, K.K. Tocotrienols inhibit liver HMG CoA reductase activity in the guinea pig. Nutr. Res. 1995, 15, 537–544. [Google Scholar] [CrossRef]
- Schwenke, D.C.; Rudel, L.L.; Sorci-Thomas, M.G.; Thomas, M.J. α-Tocopherol Protects against Diet Induced Atherosclerosis in New Zealand White Rabbits. J. Lipid Res. 2002, 43, 1927–1938. [Google Scholar] [CrossRef] [Green Version]
- Miller, E.R.; Pastor-Barriuso, R.; Dalal, D.; Riemersma, R.A.; Appel, L.J.; Guallar, E. Meta-Analysis: High-Dosage Vitamin E Supplementation May Increase All-Cause Mortality. Ann. Intern. Med. 2005, 142, 37. [Google Scholar] [CrossRef] [Green Version]
- Weinberg, P.D. Analysis of the Variable Effect of Dietary Vitamin E Supplements on Experimental Atherosclerosis. J. Plant Physiol. 2005, 162, 823–833. [Google Scholar] [CrossRef] [PubMed]
- De Waart, F.G.; Moser, U.; Kok, F.J. Vitamin E Supplementation in Elderly Lowers the Oxidation Rate of Linoleic Acid in LDL. Atherosclerosis 1997, 133, 255–263. [Google Scholar] [CrossRef]
- Barzegar-Amini, M.; Ghazizadeh, H.; Seyedi, S.M.R.; Sadeghnia, H.R.; Mohammadi, A.; Hassanzade-Daloee, M. Serum Vitamin E as a Significant Prognostic Factor in Patients with Dyslipidemia Disorders. Diabetes Metab. Syndr. 2019, 13, 666–671. [Google Scholar] [CrossRef] [PubMed]
- Schmölz, L.; Birringer, M.; Lorkowski, S.; Wallert, M. Complexity of Vitamin E Metabolism. World J. Biol. Chem. 2016, 7, 14. [Google Scholar] [CrossRef] [PubMed]
- Etzl, R.P.; Vrekoussis, T.; Kuhn, C.; Schulze, S.; Pöschl, J.M.; Makrigiannakis, A. Oxidative Stress Stimulates α-Tocopherol Transfer Protein in Human Trophoblast Tumor Cells BeWo. J. Perinat. Med. 2012, 40, 373–378. [Google Scholar] [CrossRef] [Green Version]
- Waniek, S.; di Giuseppe, R.; Plachta-Danielzik, S.; Ratjen, I.; Jacobs, G.; Koch, M. Association of Vitamin E Levels with Metabolic Syndrome, and MRI-Derived Body Fat Volumes and Liver Fat Content. Nutrients 2017, 9, 1143. [Google Scholar] [CrossRef] [Green Version]
- Salonen, J.T.; Nyyssönen, K.; Salonen, R.; Lakka, H.M.; Kaikkonen, J.; Porkkala-Sarataho, E. Antioxidant Supplementation in Atherosclerosis Prevention (ASAP) Study: A Randomized Trial of the Effect of Vitamins E and C on 3-Year Progression of Carotid Atherosclerosis. J. Intern. Med. 2000, 248, 377–386. [Google Scholar] [CrossRef] [Green Version]
- Munteanu, A.; Zingg, J.M. Cellular, Molecular and Clinical Aspects of Vitamin E on Atherosclerosis Prevention. Mol. Asp. Med. 2007, 28, 538–590. [Google Scholar] [CrossRef]
- Eidelman, R.S.; Hollar, D.; Hebert, P.R.; Lamas, G.A.; Hennekens, C.H. Randomized Trials of Vitamin E in the Treatment and Prevention of Cardiovascular Disease. Arch. Intern. Med. 2004, 164, 1552–1556. [Google Scholar] [CrossRef] [Green Version]
- Mozos, I.; Stoian, D.; Luca, T.C. Crosstalk between Vitamins A, B12, D, K, C, and E Status and Arterial Stiffness. Dis Markers 2017, 2017, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Cordero, Z.; Drogan, D.; Weikert, C.; Boeing, H. Vitamin E and Risk of Cardiovascular Diseases: A Review of Epidemiologic and Clinical Trial Studies. Crit. Rev. Food Sci. Nutr. 2010, 50, 420–440. [Google Scholar] [CrossRef]
- Wallert, M.; Schmolz, L.; Galli, F.; Birringer, M.; Lorkowski, S. Regulatory metabolites of vitamin E and their putative relevance for atherogenesis. Redox Biol. 2014, 2, 495–503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rasool, A.H.; Rahman, A.R.; Yuen, K.H.; Wong, A.R. Arterial Compliance and Vitamin E Blood Levels with a Self Emulsifying Preparation of Tocotrienol Rich Vitamin E. Arch. Pharm. Res. 2008, 31, 1212–1217. [Google Scholar] [CrossRef] [PubMed]
- Hodis, H.N.; Mack, W.J.; LaBree, L.; Mahrer, P.R.; Sevanian, A.; Liu, C.R. Alpha-Tocopherol Supplementation in Healthy Individuals Reduces Low-Density Lipoprotein Oxidation but Not Atherosclerosis. Circulation 2002, 106, 1453–1459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skyrme-Jones, R.A.; O’Brien, R.C.; Berry, K.L.; Meredith, I. T. Vitamin E Supplementation Improves Endothelial Function in Type I Diabetes Mellitus: A Randomized, Placebo-Controlled Study. J. Am. Coll. Cardiol. 2000, 36, 94–102. [Google Scholar] [CrossRef] [Green Version]
- Zechner, C.; Towler, D.A. Vitamin D: Cardiovascular Effects and Vascular Calcification. Health Dis. Ther. 2018, 2, 549–570. [Google Scholar] [CrossRef]
- Gracia, M.; Betriu, A.; Martínez-Alonso, M.; Arroyo, D.; Abajo, M.; Fernández, E. Predictors of Subclinical Atheromatosis Progression over 2 Years in Patients with Different Stages of CKD. Clin. J. Am. Soc. Nephrol. 2015, 11, 287–296. [Google Scholar] [CrossRef]
- Munoz-Aguirre, P.; Flores, M.; Macias, N.; Quezada, A.D.; Denova-Gutiérrez, E.; Salmerón, J. The Effect of Vitamin D Supplementation on Serum Lipids in Postmenopausal Women with Diabetes: A Randomized Controlled Trial. Clin. Nutr. 2015, 34, 799–804. [Google Scholar] [CrossRef]
- Pilz, S.; Verheyen, N.; Grübler, M.R.; Tomaschitz, A.; März, W. Vitamin D and Cardiovascular Disease Prevention. Nat. Rev. Cardiol. 2016, 13, 404–417. [Google Scholar] [CrossRef]
- Greco, D.; Kocyigit, D.; Adorni, M.P.; Marchi, C.; Ronda, N.; Bernini, F. Vitamin D Replacement Ameliorates Serum Lipoprotein Functions, Adipokine Profile and Subclinical Atherosclerosis in Pre-Menopausal Women. Nutr. Metab. Cardiovasc. Dis. 2018, 28, 822–829. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.Y.; Kim, M.K.; Jung, S.; Shin, J.; Choi, B.Y. The Cross-Sectional Relationships of Dietary and Serum Vitamin D with Cardiometabolic Risk Factors: Metabolic Components, Subclinical Atherosclerosis, and Arterial Stiffness. Nutrition 2016, 32, 1048–1056. [Google Scholar] [CrossRef] [PubMed]
- Berenson, G.S.; Srinivasan, S.R.; Nicklas, T.A. Atherosclerosis: A Nutritional Disease of Childhood. Am. J. Cardiol. 1998, 82, 22–29. [Google Scholar] [CrossRef]
- Asghari, G.; Mirmiran, P.; Yuzbashian, E.; Dehghan, P.; Mahdavi, M.; Tohidi, M. Association of Circulating 25-Hydroxyvitamin D and Parathyroid Hormone with Carotid Intima Media Thickness in Children and Adolescents with Excess Weight. J. Steroid Biochem. Mol. Biol. 2019, 188, 117–123. [Google Scholar] [CrossRef] [PubMed]
- Costanzo, S.; De Curtis, A.; Di Castelnuovo, A.; Persichillo, M.; Bonaccio, M.; Pounis, G. Serum Vitamin D Deficiency and Risk of Hospitalization for Heart Failure: Prospective Results from the Moli-Sani Study. Nutr. Metab. Cardiovasc. Dis. 2018, 28, 298–307. [Google Scholar] [CrossRef] [PubMed]
- Schottker, B.; Jorde, R.; Peasey, A. Vitamin D and mortality: Meta-analysis of individual participant data from a large consortium of cohort studies from Europe and the United States. BMJ 2014, 348, g3656. [Google Scholar] [CrossRef] [Green Version]
- Mozos, I.; Marginean, O. Links between Vitamin D Deficiency and Cardiovascular Diseases. BioMed. Res. Int. 2015, 2015, 1–2. [Google Scholar] [CrossRef]
- Gjødesen, C.U.; Jørgensen, M.E.; Bjerregaard, P.; Dahl-Petersen, I.K.; Larsen, C.V.L.; Noël, M. Associations between Vitamin D Status and Atherosclerosis among Inuit in Greenland. Atherosclerosis 2018, 268, 145–151. [Google Scholar] [CrossRef]
- Borgi, L.; McMullan, C.; Wohlhueter, A.; Curhan, G.C.; Fisher, N.D.; Forman, J.P. Effect of Vitamin D on Endothelial Function: A Randomized, Double-Blind, Placebo-Controlled Trial. Am. J. Hypertens. 2017, 38, 124–129. [Google Scholar] [CrossRef] [Green Version]
- Kumar, V.; Yadav, A.K.; Lal, A.; Kumar, V.; Singhal, M.; Billot, L. A Randomized Trial of Vitamin D Supplementation on Vascular Function in CKD. J. Am. Soc. Nephrol. 2017, 28, 3100–3108. [Google Scholar] [CrossRef] [Green Version]
- Raed, A.; Bhagatwala, J.; Zhu, H.; Pollock, N.K.; Parikh, S.J.; Huang, Y. Dose Responses of Vitamin D3 Supplementation on Arterial Stiffness in Overweight African Americans with Vitamin D Deficiency: A Placebo Controlled Randomized Trial. PLoS ONE 2017, 12, 29216203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bressendorff, I.; Brandi, L.; Schou, M.; Nygaard, B.; Frandsen, N.E.; Rasmussen, K.; Ødum, L.; Østergaard, O.V.; Hansen, D. The Effect of High Dose Cholecalciferol on Arterial Stiffness and Peripheral and Central Blood Pressure in Healthy Humans: A Randomized Controlled Trial. PLoS ONE 2016, 11, e0160905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bressendorff, I.; Brandi, L.; Schou, M.; Nygaard, B.; Frandsen, N.E.; Rasmussen, K. Effects of Vitamin D2 or D3 Supplementation on Glycaemic Control and Cardiometabolic Risk among People at Risk of Type 2 Diabetes: Results of a Randomized Double-Blind Placebo-Controlled Trial. Diab. Obes. Metab. 2016, 18, 392–400. [Google Scholar]
- Zaleski, A.; Panza, G.; Swales, H.; Arora, P.; Newton-Cheh, C.; Wang, T. High-Dose versus Low-Dose Vitamin D Supplementation and Arterial Stiffness among Individuals with Prehypertension and Vitamin D Deficiency. Dis. Markers 2015, 2015, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martins, D.; Meng, Y.X.; Tareen, N.; Artaza, J.; Lee, J.E.; Farodolu, C. The Effect of Short Term Vitamin D Supplementation on the Inflammatory and Oxidative Mediators of Arterial Stiffness. Health 2014, 6, 1503–1511. [Google Scholar] [CrossRef] [Green Version]
- Breslavsky, A.; Frand, J.; Matas, Z.; Boaz, M.; Barnea, Z.; Shargorodsky, M. Effect of High Doses of Vitamin D on Arterial Properties, Adiponectin, Leptin and Glucose Homeostasis in Type 2 Diabetic Patients. Clin. Nutr. 2016, 32, 970–975. [Google Scholar] [CrossRef]
- Yiu, Y.F.; Yiu, K.H.; Siu, C.W.; Chan, Y.H.; Li, S.W.; Wong, L.Y. Randomized Controlled Trial of Vitamin D Supplement on Endothelial Function in Patients with Type 2 Diabetes. Atherosclerosis 2013, 227, 140–146. [Google Scholar] [CrossRef]
- Harris, R.A.; Pedersen-White, J.; Guo, D.H.; Stallmann-Jorgensen, I.S.; Keeton, D.; Huang, Y. Vitamin D3 Supplementation for 16 Weeks Improves Flow-Mediated Dilation in Overweight African-American Adults. Am. J. Hypertens. 2011, 24, 557–562. [Google Scholar] [CrossRef] [Green Version]
- Sugden, J.A.; Davies, J.I.; Witham, M.D.; Morris, A.D.; Struthers, A.D. Vitamin D Improves Endothelial Function in Patients with Type 2 Diabetes Mellitus and Low Vitamin D Levels. Diabet. Med. 2008, 25, 320–325. [Google Scholar] [CrossRef]
- Padayatty, S.J.; Katz, A.; Wang, Y.; Eck, P.; Kwon, O.; Lee, J.H. Vitamin C as an Antioxidant: Evaluation of Its Role in Disease Prevention. J. Am. Coll. Nutr. 2003, 22, 18–35. [Google Scholar] [CrossRef]
- Hodges, R.E.; Hood, J.; Canham, J.E.; Sauberlich, H.E.; Baker, E.M. Clinical Manifestations of Ascorbic Acid Deficiency in Man. Am. J. Clin. Nutr. 1971, 24, 432–443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harrison, F.E.; May, J.M. Vitamin C Function in the Brain: Vital Role of the Ascorbate Transporter SVCT2. Free Radic. Biol. Med. 2009, 46, 719–730. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dann, C.E.; Bruick, R.K.; Deisenhofer, J. Nonlinear Partial Differential Equations and Applications: Structure of Factor-Inhibiting Hypoxia-Inducible Factor 1: An Asparaginyl Hydroxylase Involved in the Hypoxic Response Pathway. Proc. Natl. Acad. Sci. USA. 2002, 99, 15351–15356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Padayatty, S.J.; Levine, M. Vitamin C: The Known and the Unknown and Goldilocks. Oral Dis. 2016, 22, 463–493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yun, J.; Mullarky, E.; Lu, C.; Bosch, K.N.; Kavalier, A.; Rivera, K.; Roper, J.; Chio, I.I.; Giannopoulou, E.G.; Rago, C.; et al. Vitamin C Selectively Kills KRAS and BRAF Mutant Colorectal Cancer Cells by Targeting GAPDH. Science 2015, 350, 1391–1396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heinecke, J.W. Oxidants and Antioxidants in the Pathogenesis of Atherosclerosis: Implications for the Oxidized Low Density Lipoprotein Hypothesis. Atherosclerosis 1998, 141, 1–15. [Google Scholar] [CrossRef]
- Crawford, R.S.; Kirk, E.A.; Rosenfeld, M.E.; LeBoeuf, R.C.; Chait, A. Dietary Antioxidants Inhibit Development of Fatty Streak Lesions in the LDL Receptor–Deficient Mouse. Arterioscler. Thromb. Vasc. Biol. 1998, 18, 1506–1513. [Google Scholar] [CrossRef] [Green Version]
- Joshipura, K.J.; Hu, F.B.; Manson, J.E.; Stampfer, M.J.; Rimm, E.B.; Speizer, F.E. The Effect of Fruit and Vegetable Intake on Risk for Coronary Heart Disease. Ann. Intern. Med. 2001, 134, 1106–1114. [Google Scholar] [CrossRef]
- Salvayre, R.; Negre-Salvayre, A.; Camaré, C. Oxidative Theory of Atherosclerosis and Antioxidants. Biochimie 2016, 125, 281–296. [Google Scholar] [CrossRef]
- Li, D.; Mehta, J.L. Oxidized LDL, a critical factor in atherogenesis. Cardiovasc. Res. 2005, 68, 353–354. [Google Scholar] [CrossRef]
- Weber, C.; Erl, W.; Weber, K.; Weber, P.C. Increased Adhesiveness of Isolated Monocytes to Endothelium Is Prevented by Vitamin C Intake in Smokers. Circulation 1996, 93, 1488–1492. [Google Scholar] [CrossRef] [PubMed]
- Eskurza, I.; Monahan, K.D.; Robinson, J.A.; Seals, D.R. Ascorbic acid does not affect large elastic artery compliance or central blood pressure in young and older men. Am. J. Physiol. Heart Circ. Physiol. 2004, 286, H1528–H1534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dimmeler, S.; Haendeler, J.; Galle, J.; Zeiher, A.M. Oxidized Low-Density Lipoprotein Induces Apoptosis of Human Endothelial Cells by Activation of CPP32-Like Proteases. Circulation 1997, 95, 1760–1763. [Google Scholar] [CrossRef] [PubMed]
- Siow, R.C.; Richards, J.P.; Pedley, K.C.; Leake, D.S.; Mann, G.E. Vitamin C Protects Human Vascular Smooth Muscle Cells Against Apoptosis Induced by Moderately Oxidized LDL Containing High Levels of Lipid Hydroperoxides. Arterioscler. Thromb. Vasc. Biol. 1999, 19, 2387–2394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chun, O.K.; Floegel, A.; Chung, S.J.; Chung, C.E.; Song, W.O.; Koo, S.I. Estimation of Antioxidant Intakes from Diet and Supplements in U.S. Adults. J. Nutr. 2010, 140, 317–324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moser, M.A.; Chun, O.K. Vitamin C and Heart Health: A Review Based on Findings from Epidemiologic Studies. Int. J. Mol. Sci. 2016, 17, 1328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maio, R.; Perticone, M.; Sciacqua, A.; Tassone, E.J.; Naccarato, P.; Bagnato, C. Oxidative Stress Impairs Endothelial Function in Nondipper Hypertensive Patients. Cardiovasc. Therap. 2016, 30, 85–92. [Google Scholar] [CrossRef]
- Ellulu, M.S.; Rahmat, A.; Patimah, I.; Khaza’ai, H.; Abed, Y. Effect of vitamin C on inflammation and metabolic markers in hypertensive and/or diabetic obese adults: A randomized controlled trial. Drug Des. Dev. Ther. 2015, 9, 3405–3412. [Google Scholar] [CrossRef] [Green Version]
- Brody, S.; Preut, R.; Schommer, K.; Schürmeyer, T.H. A Randomized Controlled Trial of High Dose Ascorbic Acid for Reduction of Blood Pressure, Cortisol, and Subjective Responses to Psychological Stress. Psychopharmacology 2001, 159, 319–324. [Google Scholar] [CrossRef]
- Sesso, H.D. Vitamins E and C in the Prevention of Cardiovascular Disease in Men. Jama 2008, 300, 2123. [Google Scholar] [CrossRef] [Green Version]
- Ashor, A.W.; Lara, J.; Mathers, J.C.; Siervo, M. Effect of vitamin C on endothelial function in health and disease: A systematic review and meta-analysis of randomized controlled trials. Atherosclerosis 2014, 235, 9–20. [Google Scholar] [CrossRef] [PubMed]
- Osganian, S.K.; Stampfer, M.J.; Rimm, E.; Spiegelman, D.; Hu, F.B.; Manson, J.E.; Willett, W.C. Vitamin C and risk of coronary heart disease in women. J. Am. Coll. Cardiol. 2003, 42, 246–252. [Google Scholar] [CrossRef] [Green Version]
- Hildreth, K.L.; Kohrt, W.M.; Moreau, K.L. Oxidative Stress Contributes to Large Elastic Arterial Stiffening across the Stages of the Menopausal Transition. Menopause 2014, 21, 624–632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mullan, B.A.; Young, I.S.; Fee, H.; McCance, D.R. Ascorbic Acid Reduces Blood Pressure and Arterial Stiffness in Type 2 Diabetes. Hypertension 2002, 40, 804–809. [Google Scholar] [CrossRef] [Green Version]
- Wilkinson, I.B.; Megson, I.L.; MacCallum, T.; Rooijmans, D.F.; Johnson, S.M.; Boyd, J.L. Acute Methionine Loading Does Not Alter Arterial Stiffness in Humans. J. Cardiovasc. Pharmacol. 2001, 37, 1–5. [Google Scholar] [CrossRef]
- Kennedy, D.O. B vitamins and the brain: Mechanisms, dose and efficacy—A review. Nutrients 2016, 8, 68. [Google Scholar] [CrossRef] [Green Version]
- Lindschinger, M.; Tatzber, F.; Schimetta, W.; Schmid, I.; Lindschinger, B.; Cvirn, G. A Randomized Pilot Trial to Evaluate the Bioavailability of Natural versus Synthetic Vitamin B Complexes in Healthy Humans and Their Effects on Homocysteine, Oxidative Stress, and Antioxidant Levels. Oxid. Med. Cell. Longev. 2019, 2019, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Lonsdale, D. A Review of the Biochemistry, Metabolism and Clinical Benefits of Thiamin(e) and Its Derivatives. Evid. Based Complement. Alternat. Med. 2006, 3, 49–59. [Google Scholar] [CrossRef]
- Seligmann, H.; Halkin, H.; Rauchfleisch, S.; Kaufmann, N.; Motro, M.; Vered, Z. Thiamine Deficiency in Patients with Congestive Heart Failure on Long Term Furosemide Therapy. Am. J. Med. 1991, 91, 151–155. [Google Scholar] [CrossRef]
- Avena, R.; Arora, S.; Carmody, B.J.; Cosby, K.; Sidawy, A.N. Thiamine (Vitamin B1) Protects against Glucose- and Insulin-Mediated Proliferation of Human Infragenicular Arterial Smooth Muscle Cells. Ann. Vasc. Surg. 2000, 14, 37–43. [Google Scholar] [CrossRef]
- Arora, S.; Lidor, A.; Abularrage, C.J.; Weiswasser, J.M.; Nylen, E.; Kellicut, D. Thiamine (Vitamin B1) Improves Endothelium-Dependent Vasodilatation in the Presence of Hyperglycemia. Ann. Vasc. Surg. 2006, 20, 653–658. [Google Scholar] [CrossRef] [PubMed]
- Al-Attas, O.; Al-Daghri, N.; Alokail, M.; Abd-Alrahman, S.; Vinodson, B.; Sabico, S. Metabolic Benefits of Six-Month Thiamine Supplementation in Patients with and without Diabetes Mellitus Type 2. Clin. Med. Insights Endocrinol. Diabetes 2014, 7, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eshak, E.S.; Arafa, A.E. Thiamine Deficiency and Cardiovascular Disorders. Nutr. MEtab. Cardiovasc. Dis. 2018, 28, 965–972. [Google Scholar] [CrossRef] [PubMed]
- Mahan, L.K.; Escott-Stump, S.; Raymond, J.L.; Krause, M.V. Krause’s Food & the Nutrition Care Process, 13th ed.; Saunders: St. Louis, MI, USA; Seattle, WA, USA, 2013; Chapter 3; pp. 76–78. ISBN 9780323266901. [Google Scholar]
- Powers, H.J.; Thurnham, D.I. Riboflavin Deficiency in Man: Effects on Haemoglobin and Reduced Glutathione in Erythrocytes of Different Ages. Br. J. Nutr. 1981, 46, 257–266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- George, B.; Ojegbemi, O. Oxidative stress and the effect of riboflavin supplementation in individuals with uncomplicated malaria infection. Afr. J. Biotechnol. 2009, 8, 849–853. [Google Scholar]
- Ashoori, M.; Saedisomeolia, A. Riboflavin (Vitamin B2) and Oxidative Stress: A Review. Br. J. Nutr. 2014, 111, 1985–1991. [Google Scholar] [CrossRef] [Green Version]
- Rasti, G.; Simonet, N.G.; Vaquero, A. Niacin. In Principles of Nutrigenetics and Nutrigenomics, 1st ed.; Caterina, R.D.E., Martinez, J.A., Kohlmeier, M., Eds.; Academic Press: San Diego, CA, USA, 2020; pp. 287–293. [Google Scholar]
- Faranak, I.; Hosseini, B.; Saedisomeolia, A. Niacin and Oxidative Stress: A Mini-Review. J. Nutr. Med. Diet Care 2016, 2, 1–5. [Google Scholar]
- Aziz, M.; Yadav, K.S. Role of Traditional Risk Factors, Inflammation and DMARDs in Cardiovascular Diseases in Rheumatoid Arthritis and Management of Lipid Profile. J. Autoimm. Disord. 2016, 2, 1–8. [Google Scholar]
- Tavintharan, S.; Sivakumar, M.; Lim, S.C.; Sum, C.F. Niacin Affects Cell Adhesion Molecules and Plasminogen Activator Inhibitor-1 in HepG2 Cells. Clin. Chim. Acta. 2007, 376, 41–44. [Google Scholar] [CrossRef]
- Montastier, E.; Beuzelin, D.; Martins, F.; Mir, L.; Marqués, M.A.; Thalamas, C. Niacin Induces MiR-502–3p Expression Which Impairs Insulin Sensitivity in Human Adipocytes. Int. J. Obes. 2017, 43, 1485–1490. [Google Scholar] [CrossRef]
- Bruckert, E.; Labreuche, J.; Amarenco, P. Meta-Analysis of the Effect of Nicotinic Acid Alone or in Combination on Cardiovascular Events and Atherosclerosis. Atherosclerosis 2010, 2, 353–361. [Google Scholar] [CrossRef] [PubMed]
- Thoenes, M.; Oguchi, A.; Nagamia, S.; Vaccari, C.S.; Hammoud, R.; Umpierrez, G.E. The Effects of Extended-Release Niacin on Carotid Intimal Media Thickness, Endothelial Function and Inflammatory Markers in Patients with the Metabolic Syndrome. Int. J. Clin. Pract. 2007, 61, 1942–1948. [Google Scholar] [CrossRef] [PubMed]
- Takeaki, N.; Onodera, K. The Linkage Between Coenzyme A Metabolism and Inflammation: Roles of Pantetheinase. J. Pharmacol. Sci. 2013, 123, 1–8. [Google Scholar]
- Slyshenkov, V.S.; Dymkowska, D.; Wojtczak, L. Pantothenic Acid and Pantothenol Increase Biosynthesis of Glutathione by Boosting Cell Energetics. FEBS Lett. 2004, 569, 169–172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peter, L.; Ridker, P.M. Inflammation and Atherosclerosis: Role of C-Reactive Protein in Risk Assessment. Am. J. Med. 2004, 116, 9–16. [Google Scholar]
- Jung, S.; Kim, M.K.; Choi, B.Y. The Long-Term Relationship between Dietary Pantothenic Acid (Vitamin B5) Intake and C-Reactive Protein Concentration in Adults Aged 40 Years and Older. Nutr. Metab. Cardiovasc. Dis. 2017, 27, 806–816. [Google Scholar] [CrossRef]
- Cighetti, G.; Del Puppo, M.; Paroni, R.; Galli Kienle, M. Modulation of HMG-CoA Reductase Activity by Pantetheine/Pantethine. Biochim. Biophys. Acta. 1988, 963, 389–393. [Google Scholar] [CrossRef]
- Evans, M.; Rumberger, J.A.; Azumano, I.; Napolitano, J.J.; Citrolo, D.; Kamiya, T. Pantethine, a Derivative of Vitamin B5, Favorably Alters Total, LDL and Non-HDL Cholesterol in Low to Moderate Cardiovascular Risk Subjects Eligible for Statin Therapy: A Triple-Blinded Placebo and Diet-Controlled Investigation. Vasc. Health Risk Manag. 2014, 10, 89–100. [Google Scholar] [CrossRef] [Green Version]
- Page, J.H.; Ma, J.; Chiuve, S.E.; Stampfer, M.J.; Selhub, J.; Manson, J.E. Plasma Vitamin B6and Risk of Myocardial Infarction in Women. Circulation 2009, 120, 649–655. [Google Scholar] [CrossRef] [Green Version]
- Dierkes, J.; Weikert, C.; Klipstein-Grobusch, K.; Westphal, S.; Luley, C.; Möhlig, M. Plasma Pyridoxal-5-Phosphate and Future Risk of Myocardial Infarction in the European Prospective Investigation into Cancer and Nutrition Potsdam Cohort. Am. J. Clin. Nutr. 2007, 86, 214–220. [Google Scholar]
- Hron, G.; Lombardi, R.; Eichinger, S.; Lecchi, A.; Kyrle, P.A.; Cattaneo, M. Low Vitamin B6 Levels and the Risk of Recurrent Venous Thromboembolism. Haematologica 2007, 92, 1250–1253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wasilewska, A.; Narkiewicz, M.; Rutkowski, B.; Łysiak-Szydłowska, W. Is There Any Relationship between Lipids and Vitamin B Levels in Persons with Elevated Risk of Atherosclerosis. Med. Sci. Monit. 2003, 9, 147–151. [Google Scholar]
- Dalto, D.B.; Matte, J.J. Pyridoxine (Vitamin B6) and the Glutathione Peroxidase System; a Link between One-Carbon Metabolism and Antioxidation. Nutrients 2017, 9, 189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, P.; Suda, T.; Suidasari, S.; Kumrungsee, T.; Yanaka, N.; Kato, N. Novel Preventive Mechanisms of Vitamin B6 against Inflammation, Inflammasome, and Chronic Diseases. Molec. Nutr. 2020, 283–299. [Google Scholar]
- Staggs, C.G.; Sealey, W.M.; McCabe, B.J.; Teague, A.M.; Mock, D.M. Determination of the Biotin Content of Select Foods Using Accurate and Sensitive HPLC/Avidin Binding. J. Food Composit. Anal. 2004, 17, 767–776. [Google Scholar] [CrossRef] [Green Version]
- Bowen, R.; Benavides, R.; Colón-Franco, J.M.; Katzman, B.M.; Muthukumar, A.; Sadrzadeh, H. Best Practices in Mitigating the Risk of Biotin Interference with Laboratory Testing. Clin. Biochem. 2019, 74, 1–11. [Google Scholar] [CrossRef]
- Mangoni, A.A. Folic Acid, Inflammation, and Atherosclerosis: False Hopes or the Need for Better Trials? Clin. Chim. Acta. 2006, 367, 11–19. [Google Scholar] [CrossRef]
- Mangoni, A.A.; Sherwood, R.A.; Swift, C.G.; Jackson, S.H. Folic Acid Enhances Endothelial Function and Reduces Blood Pressure in Smokers: A Randomized Controlled Trial. J. Intern. Med. 2002, 252, 497–503. [Google Scholar] [CrossRef]
- Mangoni, A.A.; Arya, R.; Ford, E.; Asonganyi, B.; Sherwood, R.A.; Ouldred, E. Effects of Folic Acid Supplementation on Inflammatory and Thrombogenic Markers in Chronic Smokers. A Randomised Controlled Trial. Thromb. Res. 2003, 110, 13–17. [Google Scholar] [CrossRef]
- Durga, J.; van Tits, L.J.; Schouten, E.G.; Kok, F.J.; Verhoef, P. Effect of Lowering of Homocysteine Levels on Inflammatory Markers. Arch. Intern. Med. 2005, 165, 1388–1394. [Google Scholar] [CrossRef] [Green Version]
- Andres, E.; Dali-Youcef, N. Cobalamin (Vitamin B12) Malabsorption. In Molecular Nutrition: Vitamins; Academic Press: Cambridge, CA, USA, 2020; pp. 367–386. [Google Scholar]
- Dali-Youcef, N.; Andres, E. An Update on Cobalamin Deficiency in Adults. Qjm. 2009, 102, 17–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vermeulen, E.G.; Stehouwer, C.D.; Twisk, J.W.; van den Berg, M.; de Jong, S.C.; Mackaay, A.J. Effect of Homocysteine-Lowering Treatment with Folic Acid plus Vitamin B6 on Progression of Subclinical Atherosclerosis: A Randomised, Placebo-Controlled Trial. Lancet. 2000, 355, 517–522. [Google Scholar] [CrossRef]
- Cohen, E.; Margalit, I.; Shochat, T.; Goldberg, E.; Krause, I. Gender Differences in Homocysteine Concentrations, a Population-Based Cross-Sectional Study. Nutr. Metab. Cardiovasc. Dis. 2019, 29, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Wong, C.W. Vitamin B12 Deficiency in the Elderly: Is It Worth Screening? Hong Kong Med. J. 2015, 21, 155–164. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, Z.Y.; Qin, Y.Y.; Yu, F.F.; Zhou, Y.H. Associatian between B Vitamins Supplementation and Risk of Cardiovascular Outcomes: A Cumulative Meta-Analysis of Randomized Controlled Trials. PLoS ONE 2014, 9, e107060. [Google Scholar]
- Hodis, H.N.; Mack, W.J.; Dustin, L.; Mahrer, P.R.; Azen, S.P.; Detrano, R. High-Dose B Vitamin Supplementation and Progression of Subclinical Atherosclerosis. Stroke 2009, 40, 730–736. [Google Scholar] [CrossRef] [Green Version]
- Sporn, M.B.; Dunlop, N.M.; Newton, D.L.; Smith, J.M. Prevention of chemical carcinogenesis by vitamin A and its synthetic analogs (retinoids). Fed. Proc. 1976, 35, 1332–1338. [Google Scholar]
- Costache, I.I.; Miron, A.; Hancianu, M.; Aursulesei, V.; Costache, A.D.; Aprotosoaie, A.C. Pharmacokinetic Interactions between Cardiovascular Medicines and Plant Products. Cardiovasc Ther. 2019, 9402781. [Google Scholar] [CrossRef] [Green Version]
- Napoli, J.L. Cellular Retinoid Binding-Proteins, CRBP, CRABP, FABP5: Effects on Retinoid Metabolism, Function and Related Diseases. Pharmacol. Ther. 2017, 173, 19–33. [Google Scholar] [CrossRef] [Green Version]
- Blaner, W.S. Vitamin A Signaling and Homeostasis in Obesity, Diabetes, and Metabolic Disorders. Pharmacol. Ther. 2019, 197, 153–178. [Google Scholar] [CrossRef]
- Neuville, P.; Yan, Z.; Gidlöf, A.; Pepper, M.S.; Hansson, G.K.; Gabbiani, G.; Sirsjö, A. Retinoic Acid Regulates Arterial Smooth Muscle Cell Proliferation and Phenotypic Features In Vivo and In Vitro Through an RARα-Dependent Signaling Pathway. Arterioscler. Thromb. Vasc. Biol. 1999, 19, 1430–1436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noy, N. Between Death and Survival: Retinoic Acid in Regulation of Apoptosis. Annu. Rev. Nutr. 2010, 30, 201–217. [Google Scholar] [CrossRef]
- Watanabe, A.; Kanai, H.; Arai, M.; Sekiguchi, K.; Uchiyama, T.; Nagai, R. Retinoids Induce the PAI-1 Gene Expression Through Tyrosine Kinase-Dependent Pathways in Vascular Smooth Muscle Cells. J. Cardiovasc. Pharmacol. 2002, 39, 503–512. [Google Scholar] [CrossRef] [PubMed]
- Chadwick, C.; Shaw, L.J.; Winneker, R.C. TNF-α and 9-Cis-Retinoic Acid Synergistically Induce ICAM-1 Expression: Evidence for Interaction of Retinoid Receptors with NF-ΚB. Exp. Cell Res. 1998, 239, 423–429. [Google Scholar] [CrossRef] [PubMed]
- Sultan, S.; Murarka, S.; Jahangir, A.; Mookadam, F.; Tajik, J.; Jahangir, A. Vitamins for Cardiovascular Diseases: Is the Expense Justified? Cardiol. Rev. 2017, 25, 298–308. [Google Scholar] [CrossRef] [PubMed]
- Howard, A.N.; Thurnham, D.I. Lutein and atherosclerosis: Belfast versus Toulouse revisited. Med Hypotheses 2017, 98, 63–68. [Google Scholar] [CrossRef]
- Bobbert, T.; Raila, J.; Schwarz, F.; Mai, K.; Henze, A.; Pfeiffer, A.F. Relation between Retinol, Retinol-Binding Protein 4, Transthyretin and Carotid Intima Media Thickness. Atherosclerosis 2010, 213, 549–551. [Google Scholar] [CrossRef]
- Ingelsson, E.; Lind, L. Circulating Retinol-Binding Protein 4 and Subclinical Cardiovascular Disease in the Elderly. Diab. Care. 2008, 32, 733–735. [Google Scholar] [CrossRef] [Green Version]
- Balagopal, P.; Graham, T.E.; Kahn, B.B.; Altomare, A.; Funanage, V.; George, D. Reduction of Elevated Serum Retinol Binding Protein in Obese Children by Lifestyle Intervention: Association with Subclinical Inflammation. J. Clin. Endocrinol. Metab. 2007, 92, 1971–1974. [Google Scholar] [CrossRef] [Green Version]
- Huang, G.; Wang, D.; Khan, U.I. Associations Between Retinol-Binding Protein 4 and Cardiometabolic Risk Factors and Subclinical Atherosclerosis in Recently Postmenopausal Women: Cross-Sectional Analysis from the KEEPS Study. Cardiovasc Diabetol 2012, 11, 52. [Google Scholar] [CrossRef] [Green Version]
Trial | Year | Follow-up | Dose | Population | Age | Results |
---|---|---|---|---|---|---|
Rasool et al. [24] | 2008 | 2 months | 112, 224, 448 IU vitamin E, daily | 36 healthy subjects | 23.9 ± 0.39 years | Improvement of pulse wave velocity (PWV) at doses of 224 and 448 IU/day |
Hodis et al. (VEAPS) [25] | 2002 | 3 years | 400 IU vitamin E, daily | 353 healthy subjects with high LDLc | 56.2 years (range 40–82 years) | No effect on cIMT progression |
Skyrme-Jones et al. [26] | 2000 | 3 months | 1000 IU vitamin E, daily | 41 type 1 diabetic subjects | 23 ± 6 years | Improvement of endothelial vasodilatation function |
Salonen et al. (ASAP) [18] | 2000 | 3 years | 272 IU vitamin E, daily | 115 healthy subjects | range 45–69 years | Improvement of cIMT |
Trial | Year | Follow-up | Dose | Population | Age | Results |
---|---|---|---|---|---|---|
Borgi et al. [39] | 2017 | 8 weeks | 50.000 IU D2 | 84 overweight/obese adults | 37 ± 12.3 years | No improvement on endothelial function |
Kumar et al. [40] | 2017 | 16 weeks | 2 doses of 300.000 IU D3 | 117 subjects with chronic kidney disease | 43.17 ± 11.79 years | Improvement on FMD and PWV |
Raed et al. [41] | 2017 | 16 weeks | 600, 2000, 4000 IU/day D3 | 70 overweight patients | 26.2 ± 9.8, 24.4 ± 8.7, 25.5 ± 9.0 years | Improvement on PWV |
Bressendorff et al. [42] | 2016 | 16 weeks | 3000 IU D3 | 40 healthy subjects | 41.0 ± 9.05 years | No effect on PWV |
Farouhi et al. [43] | 2016 | 16 weeks | 100.000 IU D2 / 100.000 IU D3 | 160 type 2 diabetic subjects | 53.5 ± 8.7 years (D2); 52.5 ± 8.2 years (D3) | Improvement on PWV |
Zaleski et al. [44] | 2015 | 6 months | 400 IU/day vs. 4000 IU/day D3 | 40 prehypertensive subjects | 34.8 ± 12.8 years (low dose); 40.4 ± 7.5 years (high dose) | No effect on PWV |
Martins et al. [45] | 2014 | 12 weeks | 100.000 IU D3 | 130 overweight/obese subjects | range 18–70 years | No effect on augmentation index |
Breslavsky et al. [46] | 2013 | 1 year | 1000 IU D3 | 32 type 2 diabetic subjects | 69 ± 9 years | Improved augmentation index |
You et al. [47] | 2013 | 3 months | 5000 IU D3 | 12 type 2 diabetic subjects | 65 ± 8 years | No effect on FMD |
Harris et al. [48] | 2011 | 4 months | 60.000 IU D3 | 45 overweight patients | 29 ± 2 years | Improved FMD |
Sugden et al. [49] | 2008 | 8 weeks | 100.000 IU single dose D2 | 34 type 2 diabetic patients | 64.9 ± 10.3 years | Improved FMD |
Trial | Year | Follow-up | Dose | Population | Age | Results |
---|---|---|---|---|---|---|
Hildreth et al. [73] | 2014 | 6 months | 0.06 g/kg of fat free mass–max 7.5 g vitamin C, intravenous single dose | 97 healthy women | 22–70 years | Improvement of arterial stiffness (measured by carotid artery compliance) |
Mullan et al. [74] | 2002 | 4 weeks | 500 mg vitamin C/day, orally | 30 type 2 diabetic subjects | 61.0 ± 6.5 years | Improvement of arterial stiffness (augmentation index; time to wave reflection) |
Wilkinson et al. [75] | 2001 | 6 h | 2000 mg vitamin C, orally | 8 healthy subjects | 29 (20–42) years | Improvement of augmentation index, but not on PWV |
Trial | Year | Population | Age | Results |
---|---|---|---|---|
Huang et al. [133] | 2012 | 709 postmenopausal women | 52.9 ± 2.6 years | No improvement on cIMT |
Inglesson et al. [131] | 2008 | 1008 healthy subjects | 70 years | Improvement on arterial stiffness (cIMT) |
Vitamin Supplementation | Level of Evidence | Recommendation for Subclinical Atherosclerosis Improvement | Main Implications in Atherogenesis | |
---|---|---|---|---|
E | +++ | +++ | ↓ LDLc ↓ oxidative stress ↓ cellular aggregability | ↓ smooth muscle cell proliferation ↑atheroma plaque stabilization |
D | +++++ | ++ | ↓ inflammation ↓ oxidative stress ↓ smooth muscle cell proliferation | ↓ renin-angiotensin-aldosterone system activity |
C | +++ | +++ | ↓ oxidized LDLc ↓ oxidative stress ↓ inflammation | ↓ monocyte endothelial adhesion ↑ nitric oxide ↑ antioxidant effect |
B complex | + | + | ↓ homocysteine ↓ LDLc ↓ inflammation | ↓ cellular aggregability ↑ endothelial-dependent vasodilatation ↑ nitric oxide |
A | + | + | ↓ oxidized LDLc ↓ inflammation | ↓ smooth muscle cell proliferation ↑ nitric oxide |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mitu, O.; Cirneala, I.A.; Lupsan, A.I.; Iurciuc, M.; Mitu, I.; Dimitriu, D.C.; Costache, A.D.; Petris, A.O.; Costache, I.I. The Effect of Vitamin Supplementation on Subclinical Atherosclerosis in Patients without Manifest Cardiovascular Diseases: Never-ending Hope or Underestimated Effect? Molecules 2020, 25, 1717. https://doi.org/10.3390/molecules25071717
Mitu O, Cirneala IA, Lupsan AI, Iurciuc M, Mitu I, Dimitriu DC, Costache AD, Petris AO, Costache II. The Effect of Vitamin Supplementation on Subclinical Atherosclerosis in Patients without Manifest Cardiovascular Diseases: Never-ending Hope or Underestimated Effect? Molecules. 2020; 25(7):1717. https://doi.org/10.3390/molecules25071717
Chicago/Turabian StyleMitu, Ovidiu, Ioana Alexandra Cirneala, Andrada Ioana Lupsan, Mircea Iurciuc, Ivona Mitu, Daniela Cristina Dimitriu, Alexandru Dan Costache, Antoniu Octavian Petris, and Irina Iuliana Costache. 2020. "The Effect of Vitamin Supplementation on Subclinical Atherosclerosis in Patients without Manifest Cardiovascular Diseases: Never-ending Hope or Underestimated Effect?" Molecules 25, no. 7: 1717. https://doi.org/10.3390/molecules25071717
APA StyleMitu, O., Cirneala, I. A., Lupsan, A. I., Iurciuc, M., Mitu, I., Dimitriu, D. C., Costache, A. D., Petris, A. O., & Costache, I. I. (2020). The Effect of Vitamin Supplementation on Subclinical Atherosclerosis in Patients without Manifest Cardiovascular Diseases: Never-ending Hope or Underestimated Effect? Molecules, 25(7), 1717. https://doi.org/10.3390/molecules25071717