Copper-Promoted One-Pot Approach: Synthesis of Benzimidazoles
Abstract
:1. Introduction
2. Results and Discussion
3. Experimental
3.1. Material and Methods
3.2. General Procedure for the Synthesis of 2-(N-arylamino)Benzimidazole
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ansari, K.; Lal, C. Synthesis and evaluation of some new benzimidazole derivatives as potential antimicrobial agents. Eur. J. Med. Chem. 2009, 44, 2294–2299. [Google Scholar] [CrossRef]
- Devivar, R.V.; Kawashima, E.; Revankar, G.R.; Breitenbach, J.M.; Kreske, E.D.; Drach, J.C.; Townsend, L.B. BenzimidazoleRibonucleosides: Design, Synthesis, and Antiviral Activity of Certain 2-(Alkylthio)-and 2-(Benzylthio)-5, 6-dichloro-1-(. beta.-D-ribofuranosyl) benzimidazoles. J. Med. Chem. 1994, 37, 2942–2949. [Google Scholar] [CrossRef]
- Katiyar, A.; Rai, J.; Gangwar, S.; Mohanty, A.K.; Mishra, A.P. Biological Activities of Substituted Benzimidazole Derivatives. J. Drug Discov. Dev. 2018, 2, 2–10. [Google Scholar]
- Kumar, B.; Rao, P. Synthesis and structural studies on transition metal complexes derived from 1-(2-thienyl)-1-ethanole-1H-benzimidazole. Asian J. Chem. 2006, 18, 3060–3064. [Google Scholar]
- Baudy, R.B.; Fletcher, H., III; Yardley, J.P.; Zaleska, M.M.; Bramlett, D.R.; Tasse, R.P.; Kowal, D.M.; Katz, A.H.; Moyer, J.A.; Abou-Gharbia, M. Design, synthesis, SAR, and biological evaluation of highly potent benzimidazole-spaced phosphono-α-amino acid competitive NMDA antagonists of the AP-6 type. J. Med. Chem. 2001, 44, 1516–1529. [Google Scholar] [CrossRef] [PubMed]
- Carcanague, D.; Shue, Y.-K.; Wuonola, M.A.; Uria-Nickelsen, M.; Joubran, C.; Abedi, J.K.; Jones, J.; Kühler, T.C. Novel Structures Derived from 2-[[(2-Pyridyl) methyl] thio]-1 H-benzimidazole as Anti-Helicobacter p ylori Agents, Part 2. J. Med. Chem. 2002, 45, 4300–4309. [Google Scholar] [CrossRef]
- Gaba, M.; Singh, S.; Mohan, C. Benzimidazole: An emerging scaffold for analgesic and anti-inflammatory agents. Eur. J. Med. Chem. 2014, 76, 494–505. [Google Scholar] [CrossRef]
- Alaqeel, S.I. Synthetic approaches to benzimidazoles from o-phenylenediamine: A literature review. J. Saudi Chem. Soc. 2017, 21, 229–237. [Google Scholar] [CrossRef] [Green Version]
- Arnaiz, D.O.; Griedel, B.; Sakata, S.; Dallas, J.L.; Whitlow, M.; Trinh, L.; Post, J.; Liang, A.; Morrissey, M.M.; Shaw, K.J. Design, synthesis, and in vitro biological activity of benzimidazole based factor Xa inhibitors. Bioorgan. Med. Chem. Lett. 2000, 10, 963–966. [Google Scholar] [CrossRef]
- White, A.W.; Almassy, R.; Calvert, A.H.; Curtin, N.J.; Griffin, R.J.; Hostomsky, Z.; Maegley, K.; Newell, D.R.; Srinivasan, S.; Golding, B.T. Resistance-modifying agents. 9. Synthesis and biological properties of benzimidazole inhibitors of the DNA repair enzyme poly (ADP-ribose) polymerase. J. Med. Chem. 2000, 43, 4084–4097. [Google Scholar] [CrossRef]
- Hauel, N.H.; Nar, H.; Priepke, H.; Ries, U.; Stassen, J.-M.; Wienen, W. Structure-based design of novel potent nonpeptide thrombin inhibitors. J. Med. Chem. 2002, 45, 1757–1766. [Google Scholar] [CrossRef] [PubMed]
- Benincori, T.; Sannicolo, F. New benzimidazole synthesis. J. Heterocycl. Chem. 1988, 25, 1029–1033. [Google Scholar] [CrossRef]
- Zornik, D.; Meudtner, R.M.; El Malah, T.; Thiele, C.M.; Hecht, S. Designing Structural Motifs for Clickamers: Exploiting the 1, 2, 3-Triazole Moiety to Generate Conformationally Restricted Molecular Architectures. Chem. A Eur. J. 2011, 17, 1473–1484. [Google Scholar] [CrossRef] [PubMed]
- Lim, H.-J.; Myung, D.; Lee, I.Y.C.; Jung, M.H. Microwave-assisted synthesis of benzimidazoles, benzoxazoles, and benzothiazoles from resin-bound esters. J. Comb. Chem. 2008, 10, 501–503. [Google Scholar] [CrossRef]
- Yang, D.; Fokas, D.; Li, J.; Yu, L.; Baldino, C.M. A versatile method for the synthesis of benzimidazoles from o-nitroanilines and aldehydes in one step via a reductive cyclization. Synthesis 2005, 2005, 47–56. [Google Scholar] [CrossRef]
- Wu, Z.; Rea, P.; Wickham, G. ‘One-pot’nitro reduction–cyclisation solid phase route to benzimidazoles. Tetrahedron Lett. 2000, 41, 9871–9874. [Google Scholar] [CrossRef]
- Ma, D.; Cai, Q. Copper/amino acid catalyzed cross-couplings of aryl and vinyl halides with nucleophiles. Acc. Chem. Res. 2008, 41, 1450–1460. [Google Scholar] [CrossRef]
- Chemler, S.R.; Fuller, P.H. Heterocycle synthesis by copper facilitated addition of heteroatoms to alkenes, alkynes and arenes. Chem. Soc. Rev. 2007, 36, 1153–1160. [Google Scholar] [CrossRef]
- Minatti, A.; Buchwald, S.L. Synthesis of indolines via a domino Cu-catalyzed amidation/cyclization reaction. Org. Lett. 2008, 10, 2721–2724. [Google Scholar] [CrossRef] [Green Version]
- Jones, C.P.; Anderson, K.W.; Buchwald, S.L. Sequential Cu-catalyzed amidation-base-mediated camps cyclization: A two-step synthesis of 2-aryl-4-quinolones from o-halophenones. J. Organ. Chem. 2007, 72, 7968–7973. [Google Scholar] [CrossRef]
- Zheng, N.; Buchwald, S.L. Copper-catalyzed regiospecific synthesis of N-alkylbenzimidazoles. Org. Lett. 2007, 9, 4749–4751. [Google Scholar] [CrossRef]
- Lu, B.; Wang, B.; Zhang, Y.; Ma, D. CuI-catalyzed domino process to 2, 3-disubstituted benzofurans from 1-bromo-2-iodobenzenes and β-keto esters. J. Organ. Chem. 2007, 72, 5337–5341. [Google Scholar] [CrossRef] [PubMed]
- Zou, B.; Yuan, Q.; Ma, D. Cascade coupling/cyclization process to N-substituted 1, 3-dihydrobenzimidazol-2-ones. Org. Lett. 2007, 9, 4291–4294. [Google Scholar] [CrossRef] [PubMed]
- Zou, B.; Yuan, Q.; Ma, D. Synthesis of 1, 2-disubstituted benzimidazoles by a Cu-catalyzed cascade aryl amination/condensation process. Angew. Chem. Int. Ed. 2007, 46, 2598–2601. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Lu, B.; Jiang, Y.; Zhang, Y.; Ma, D. Assembly of isoquinolines via CuI-catalyzed coupling of β-Keto esters and 2-halobenzylamines. Org. Lett. 2008, 10, 2761–2763. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Q.; Ma, D. A one-pot coupling/hydrolysis/condensation process to pyrrolo [1–a] quinoxaline. J. Organ. Chem. 2008, 73, 5159–5162. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, Y.; Sun, Z.; Ma, D. Elaboration of 2-(Trifluoromethyl) indoles via a cascade coupling/condensation/deacylation Process. Org. Lett. 2008, 10, 625–628. [Google Scholar] [CrossRef]
- Chen, Y.; Xie, X.; Ma, D. Facile access to polysubstituted indoles via a cascade Cu-catalyzed arylation− condensation process. J. Organ. Chem. 2007, 72, 9329–9334. [Google Scholar] [CrossRef]
- Evindar, G.; Batey, R.A. Parallel synthesis of a library of benzoxazoles and benzothiazoles using ligand-accelerated copper-catalyzed cyclizations of ortho-halobenzanilides. J. Organ. Chem. 2006, 71, 1802–1808. [Google Scholar] [CrossRef]
- Evindar, G.; Batey, R.A. Copper-and palladium-catalyzed intramolecular aryl guanidinylation: An efficient method for the synthesis of 2-aminobenzimidazoles. Org. Lett. 2003, 5, 133–136. [Google Scholar] [CrossRef]
- Deng, X.; McAllister, H.; Mani, N.S. CuI-catalyzed amination of arylhalides with guanidines or amidines: A facile synthesis of 1-H-2-substituted benzimidazoles. J. Organ. Chem. 2009, 74, 5742–5745. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; Ye, M.; Zong, C.; Hu, F.; Feng, L.; Wang, X.; Wang, Y.; Chen, C. Copper-catalyzed intramolecular C− N bond formation: A straightforward synthesis of benzimidazole derivatives in water. J. Organ. Chem. 2011, 76, 716–719. [Google Scholar] [CrossRef] [PubMed]
- Brain, C.T.; Steer, J.T. An improved procedure for the synthesis of benzimidazoles, using palladium-catalyzed aryl-amination chemistry. J. Organ. Chem. 2003, 68, 6814–6816. [Google Scholar] [CrossRef]
- Saha, P.; Ali, M.A.; Ghosh, P.; Punniyamurthy, T. Cobalt-catalyzed intramolecular C–N and C–O cross-coupling reactions: Synthesis of benzimidazolesand benzoxazoles. Organ. Biomol. Chem. 2010, 8, 5692–5699. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, S.; Payra, S.; Saha, A.; Sereda, G. ZnOnanoparticles: A green efficient catalyst for the room temperature synthesis of biologically active 2-aryl-1, 3-benzothiazole and 1, 3-benzoxazole derivatives. Tetrahedron Lett. 2014, 55, 5515–5520. [Google Scholar] [CrossRef]
- Ramachandran, R.; Prakash, G.; Selvamurugan, S.; Viswanathamurthi, P.; Malecki, J.G.; Ramkumar, V. Efficient and versatile catalysis of N-alkylation of heterocyclic amines with alcohols and one-pot synthesis of 2-aryl substituted benzazoles with newly designed ruthenium (II) complexes of PNS thiosemicarbazones. Dalton Trans. 2014, 43, 7889–7902. [Google Scholar] [CrossRef] [PubMed]
- Kondraganti, L.; Manabolu, S.b.; Dittakavi, R. Synthesis of Benzimidazoles via Domino Intra and Intermolecular C-N Cross-Coupling Reaction. Chem. Sel. 2018, 3, 11744–11748. [Google Scholar] [CrossRef]
- Boddapati, S.N.M.; Kola, A.E.; Kesana, S.B.; Bollikolla, H.B. Temperature dependent regioselective synthesis of aryl tetrazole amines using copper source. J. Organomet. Chem. 2018, 866, 177–183. [Google Scholar] [CrossRef]
- Boddapati, S.N.M.; Kurmarayuni, C.M.; Mutchu, B.R.; Tamminana, R.; Bollikolla, H.B. Copper-catalyzed synthesis of 2-aminophenyl benzothiazoles: A novel approach. Organ. Biomol. Chem. 2018, 16, 8267–8272. [Google Scholar] [CrossRef]
- Ramana, T.; Punniyamurthy, T. Preparation of 2-Azido-1-Substituted-1 H-Benzo [d] imidazoles Using a Copper-Promoted Three-Component Reaction and Their Further Conversion into 2-Amino and 2-Triazolyl Derivatives. Chem. A Eur. J. 2012, 18, 13279–13283. [Google Scholar] [CrossRef]
- Guin, S.; Rout, S.K.; Gogoi, A.; Nandi, S.; Ghara, K.K.; Patel, B.K. Desulfurization strategy in the construction of azoles possessing additional nitrogen, oxygen or sulfur using a copper (I) catalyst. Adv. Synth. Catal. 2012, 354, 2757–2770. [Google Scholar] [CrossRef]
- Yella, R.; Khatun, N.; Rout, S.K.; Patel, B.K. Tandem regioselective synthesis of tetrazoles and related heterocycles using iodine. Organ. Biomol. Chem. 2011, 9, 3235–3245. [Google Scholar] [CrossRef] [PubMed]
- Bowmaker, G.A.; Hanna, J.V.; Pakawatchai, C.; Skelton, B.W.; Thanyasirikul, Y.; White, A.H. For the reduction of copper (II) salts to copper (I) species using thiourea, see: Crystal structures and vibrational spectroscopy of copper (I) thiourea complexes. Inorg. Chem. 2009, 48, 350–368. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Kuang, C.; Yang, Q. Copper-Catalyzed Synthesis of 4-Aryl-1H-1, 2, 3-triazoles from 1, 1-Dibromoalkenes and Sodium Azide. Eur. J. Org. Chem. 2012, 2012, 424–428. [Google Scholar] [CrossRef]
- Chiba, S.; Zhang, L.; Ang, G.Y.; Hui, B.W.-Q. Generation of iminyl copper species from α-azido carbonyl compounds and their catalytic C–C bond cleavage under an oxygen atmosphere. Org. Lett. 2010, 12, 2052–2055. [Google Scholar] [CrossRef] [PubMed]
- Tan, B.Y.-H.; Teo, Y.-C. Efficient cobalt-catalyzed C–N cross-coupling reaction between benzamide and aryl iodide in water. Organ. Biomol. Chem. 2014, 12, 7478–7481. [Google Scholar] [CrossRef]
- Ma, D.; Lu, X.; Shi, L.; Zhang, H.; Jiang, Y.; Liu, X. Domino Condensation/S-Arylation/Heterocyclization Reactions: Copper-Catalyzed Three-Component Synthesis of 2-N-Substituted Benzothiazoles. Angew. Chem. Int. Ed. 2011, 50, 1118–1121. [Google Scholar] [CrossRef]
- Cahiez, G.; Moyeux, A. Cobalt-catalyzed cross-coupling reactions. Chem. Rev. 2010, 110, 1435–1462. [Google Scholar] [CrossRef]
- Boddapati, S.N.M.; Polam, N.; Mutchu, B.R.; Bollikolla, H.B. The synthesis of arylcyanamides: A copper catalyzed consecutive desulfurization and C-N cross coupling strategy. N. J. Chem. 2018, 42, 918–922. [Google Scholar] [CrossRef]
- Boddapati, S.N.M.; Saketi, J.M.R.; Mutchu, B.R.; Bollikolla, H.B.; Adil, S.F.; Khan, M. Copper promoted desulfurization and C-N cross coupling reactions: Simple approach to the synthesis of substituted 2-aminobenzoxazoles and 2,5-disubstituted tetrazole amines. Arab. J. Chem. 2020, 13, 4477–4494. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are not available from the authors. |
Entry | Copper Salt | Base | Temp °C | Ligand | Conversion e 1a | Yield (%) g |
---|---|---|---|---|---|---|
1 | CuI | K2CO3 | RT | L4 | n.d. f | - |
2 | CuI | K2CO3 | 50 | L4 | n.d. f | - |
3 | CuI | K2CO3 | 80 | L4 | 20 | 15 |
4 | CuI | K2CO3 | 100 | L4 | 55 | 52 |
5 | CuI | K2CO3 | 120 | L4 | 100 | 96 |
6 | CuI | KOH | 120 | L4 | 71 | 66 |
7 | CuI | Cs2CO3 b | 120 | L4 | 100 | 96 |
8 | CuBr | K2CO3 | 120 | L4 | 100 | 94 |
9 | CuCl | K2CO3 | 120 | L4 | 100 | 96 |
10 | CuSO4·5H2O | K2CO3 | 120 | L4 | 100 | 95 |
11 | Cu(OAc)2·H2O | K2CO3 | 120 | L4 | 100 | 96 |
12 | CuSO4·5H2O | K2CO3 | 120 | - | 10 | 6 |
13 | CuSO4·5H2O | K2CO3 | 120 | L1 | 30 | 24 |
14 | CuSO4·5H2O | K2CO3 | 120 | L2 | 50 | 56 |
15 | CuSO4·5H2O | K2CO3 | 120 | L3 | 15 | 11 |
16 | CuSO4·5H2O | K2CO3 | 120 | L5 | 55 | 48 |
17 | CuSO4·5H2O c | K2CO3 | 120 | L4 | 40 | 36 |
18 | CuSO4·5H2O | K2CO3 d | 120 | L4 | 55 | 52 |
19 | - | K2CO3 | 120 | L4 | n.d. f | - |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boddapati, S.N.M.; Tamminana, R.; Gollapudi, R.K.; Nurbasha, S.; Assal, M.E.; Alduhaish, O.; Siddiqui, M.R.H.; Bollikolla, H.B.; Adil, S.F. Copper-Promoted One-Pot Approach: Synthesis of Benzimidazoles. Molecules 2020, 25, 1788. https://doi.org/10.3390/molecules25081788
Boddapati SNM, Tamminana R, Gollapudi RK, Nurbasha S, Assal ME, Alduhaish O, Siddiqui MRH, Bollikolla HB, Adil SF. Copper-Promoted One-Pot Approach: Synthesis of Benzimidazoles. Molecules. 2020; 25(8):1788. https://doi.org/10.3390/molecules25081788
Chicago/Turabian StyleBoddapati, S. N. Murthy, Ramana Tamminana, Ravi Kumar Gollapudi, Sharmila Nurbasha, Mohamed E. Assal, Osamah Alduhaish, Mohammed Rafiq H. Siddiqui, Hari Babu Bollikolla, and Syed Farooq Adil. 2020. "Copper-Promoted One-Pot Approach: Synthesis of Benzimidazoles" Molecules 25, no. 8: 1788. https://doi.org/10.3390/molecules25081788
APA StyleBoddapati, S. N. M., Tamminana, R., Gollapudi, R. K., Nurbasha, S., Assal, M. E., Alduhaish, O., Siddiqui, M. R. H., Bollikolla, H. B., & Adil, S. F. (2020). Copper-Promoted One-Pot Approach: Synthesis of Benzimidazoles. Molecules, 25(8), 1788. https://doi.org/10.3390/molecules25081788