Natural Bioactive Compounds from Fungi as Potential Candidates for Protease Inhibitors and Immunomodulators to Apply for Coronaviruses
Abstract
:1. Introduction
2. Protease Inhibitor Drugs for CoVs
3. Potential of Fungal Antiviral Bioactive Compounds as Protease Inhibitors to Treat CoVs
3.1. HIV-1 Protease Inhibitors Isolated from Fungi
3.2. HCV NS3/4A Protease Inhibitors Isolated from Fungi
4. Potential of Fungal Bioactive Compounds for Immunomodulators
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cauchemez, S.; Van Kerkhove, M.D.; Riley, S.; Donnelly, C.A.; Fraser, C.; Ferguson, N.M. Transmission scenarios for middle east respiratory syndrome coronavirus (MERS-CoV) and how to tell them apart. Eurosurveillance 2013, 18, 18. [Google Scholar]
- Cui, J.; Li, F.; Shi, Z.-L. Origin and evolution of pathogenic coronaviruses. Nat. Rev. Genet. 2018, 17, 181–192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; et al. A novel coronavirus from patients with pneumonia in China, 2019. New Engl. J. Med. 2020, 382, 727–733. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Zhao, S.; Teng, T.; Abdalla, A.E.; Zhu, W.; Xie, L.; Wang, Y.; Guo, X. Systematic comparison of two animal-to-human transmitted human coronaviruses: SARS-CoV-2 and SARS-CoV. Viruses 2020, 12, 244. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Clinical management of severe acute respiratory infection when novel coronavirus (2019-nCoV) infection is suspected; WHO: Geneva, Switzerland, 2020; Available online: https://www.who.int/ (accessed on 8 March 2020).
- Li, Q.; Guan, X.; Wu, P.; Wang, X.; Zhou, L.; Tong, Y.; Ren, R.; Leung, K.S.; Lau, E.H.; Wong, J.Y.; et al. Early transmission dynamics in Wuhan, China, of novel coronavirus–infected pneumonia. New Engl. J. Med. 2020, 382, 1199–1207. [Google Scholar] [CrossRef]
- Fernández-Montero, J.V.; Barreiro, P.; Soriano, V. HIV Protease inhibitors: recent clinical trials and recommendations on use. Expert Opin. Pharmacother. 2009, 10, 1615–1629. [Google Scholar] [CrossRef]
- Pokorná, J.; Machala, L.; Řezáčová, P.; Konvalinka, J. Current and novel inhibitors of HIV protease. Viruses 2009, 1, 1209–1239. [Google Scholar] [CrossRef] [Green Version]
- Goetz, D.H.; Choe, Y.; Hansell, E.; Chen, Y.T.; McDowell, M.; Jonsson, C.B.; Roush, W.R.; McKerrow, J.; Craik, C.S. Substrate specificity profiling and identification of a new class of inhibitor for the major protease of the SARS coronavirus. Biochemistry 2007, 46, 8744–8752. [Google Scholar] [CrossRef]
- Anderson, J.; Schiffer, C.; Lee, S.K.; Swanstrom, R. Viral Protease Inhibitors. In Pharmacology and Therapeutics of Cough; Springer Science and Business Media LLC: New York, NY, USA, 2009; Vol. 189, pp. 85–110. [Google Scholar]
- Hosseini, F.S.; Amanlou, M. Simeprevir, Potential candidate to repurpose for coronavirus infection: virtual screening and molecular docking study. Preprints 2020. [Google Scholar]
- Ziebuhr, J.; Gorbalenya, A.E.; Snijder, E.J. Virus-encoded proteinases and proteolytic processing in the Nidovirales. J. Gen. Virol. 2000, 81, 853–879. [Google Scholar] [CrossRef]
- Mielech, A.M.; Kilianski, A.; Baez-Santos, Y.M.; Mesecar, A.D.; Baker, S.C. MERS-CoV papain-like protease has delSGylating and deubiquitinating activities. Virology 2014, 450–451, 64–70. [Google Scholar] [CrossRef] [PubMed]
- Sheahan, T.P.; Sims, A.C.; Graham, R.L.; Menachery, V.D.; Gralinski, L.E.; Case, J.B.; Leist, S.R.; Pyrc, K.; Feng, J.Y.; Trantcheva, I.; et al. Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses. Sci. Transl. Med. 2017, 9, 3653. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dayer, M.R.; Taleb-Gassabi, S.; Dayer, M.S. Lopinavir; A potent drug against coronavirus infection: insight from molecular docking study. Arch. Clin. Infect. Dis. 2017, 12, 13823. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Wang, X.-J. Potential inhibitors for 2019-nCoV coronavirus M protease from clinically approved medicines. J. Genet. Genom. 2020. [Google Scholar] [CrossRef]
- Lim, J.; Jeon, S.; Shin, H.Y.; Kim, M.J.; Seong, Y.M.; Lee, W.J.; Choe, K.-W.; Kang, Y.M.; Lee, B.; Park, S.J. Case of the index patient who caused tertiary transmission of coronavirus disease 2019 in Korea: the application of lopinavir/ritonavir for the treatment of COVID-19 pneumonia monitored by quantitative RT-PCR. J. Korean Med. Sci. 2020, 35, 79. [Google Scholar] [CrossRef]
- Wang, M.; Cao, R.; Zhang, L.; Yang, X.; Liu, J.; Xu, M.; Shi, Z.; Hu, Z.; Zhong, W.; Xiao, G. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 2020, 30, 269–271. [Google Scholar] [CrossRef]
- Chang, Y.C.; Tung, Y.A.; Lee, K.H.; Chen, T.F.; Hsiao, Y.C.; Chang, H.C.; Hsieh, T.T.; Su, C.H.; Chan-Hung, S.; Su-Shia, W.; et al. Potential therapeutic agents for COVID-19 based on the analysis of protease and RNA polymerase docking. Preprints 2020. [Google Scholar] [CrossRef]
- Contini, A. Virtual screening of an FDA approved drugs database on two COVID-19 coronavirus proteins. ChemRxiv 2020. [Google Scholar] [CrossRef]
- Del Rio, C.; Malani, P.N. COVID-19—New insights on a rapidly changing epidemic. JAMA 2020. [Google Scholar] [CrossRef] [Green Version]
- Mulangu, S.; Dodd, L.E.; Davey, R.T.; Mbaya, O.T.; Proschan, M.; Mukadi, D.; Manzo, M.L.; Nzolo, D.; Oloma, A.T.; Ibanda, A.; et al. A randomized, controlled trial of ebola virus disease therapeutics. New Engl. J. Med. 2019, 381, 2293–2303. [Google Scholar] [CrossRef]
- Sheahan, T.P.; Sims, A.C.; Leist, S.R.; Schäfer, A.; Won, J.; Brown, A.J.; Montgomery, S.A.; Hogg, A.; Babusis, D.; Clarke, M.O.; et al. Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV. Nat. Commun. 2020, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, F.; Shi, N.; Shan, F.; Zhang, Z.; Shen, J.; Lu, H.; Ling, Y.; Jiang, Y.; Shi, Y. Emerging 2019 novel coronavirus (2019-nCoV) pneumonia. Radiology 2020, 295, 210–217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guan, Z.; Collado, J.; Singh, S.; Jayasuriya, H.; Dewey, R.; Polishook, J.D.; Dombrowski, A.W.; Zink, D.L.; Platas, G.; Pelaez, F.; et al. Isolation, structure, and HIV-1-integrase inhibitory activity of structurally diverse fungal metabolites. J. Ind. Microbiol. Biotechnol. 2003, 30, 721–731. [Google Scholar] [CrossRef] [PubMed]
- Isaka, M.; Berkaew, P.; Intereya, K.; Komwijit, S.; Sathitkunanon, T. Antiplasmodial and antiviral cyclohexadepsipeptides from the endophytic fungus Pullularia sp. BCC 8613. Tetrahedron 2007, 63, 6855–6860. [Google Scholar] [CrossRef]
- Linnakoski, R.; Reshamwala, D.; Veteli, P.; Cortina-Escribano, M.; Vanhanen, H.; Marjomäki, V.S. Antiviral agents from fungi: diversity, mechanisms and potential applications. Front. Microbiol. 2018, 9, 2325. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.S.; Eo, S.K.; Oh, K.W.; Lee, C.; Han, S.-S. Antiherpetic activities of acidic protein bound polysacchride isolated from Ganoderma lucidum alone and in combinations with interferons. J. Ethnopharmacol. 2000, 72, 451–458. [Google Scholar] [CrossRef]
- Wang, H.X.; Ng, T. Isolation of a novel ubiquitin-like protein from Pleurotus ostreatus mushroom with anti-human immunodeficiency virus, translation-inhibitory, and ribonuclease activities. Biochem. Biophys. Res. Commun. 2000, 276, 587–593. [Google Scholar] [CrossRef]
- Gu, C.Q.; Li, J.W.; Chao, F.; Jin, M.; Wang, X.; Shen, Z.Q. Isolation, identification and function of a novel anti-HSV-1 protein from Grifola frondosa. Antivir. Res. 2007, 75, 250–257. [Google Scholar] [CrossRef]
- Faccin, L.C.; Benati, F.; Rincao, V.P.; Mantovani, M.S.; Soares, S.A.; Gonzaga, M.L.; Nozawa, C.; Carvalho Linhares , R.E. Antiviral activity of aqueous and ethanol extracts and of an isolated polysaccharide from Agaricus brasiliensis against poliovirus type 1. Lett. Appl. Microbiol. 2007, 45, 24–28. [Google Scholar] [CrossRef]
- Zhang, D.; Tao, X.; Chen, R.; Liu, J.; Li, L.; Fang, X.; Yu, L.; Dai, J. Pericoannosin A, a Polyketide synthase–nonribosomal peptide synthetase hybrid metabolite with new carbon skeleton from the endophytic fungus Periconia sp. Org. Lett. 2015, 17, 4304–4307. [Google Scholar] [CrossRef]
- Roy, B.G. Potential of small-molecule fungal metabolites in antiviral chemotherapy. Antivir. Chem. Chemother. 2017, 25, 20–52. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wei, X.; Lü, X.; Xu, F.; Wan, J.; Lin, X.; Zhou, X.F.; Liao, S.; Yang, B.; Tu, Z.; et al. Eight new polyketide metabolites from the fungus Pestalotiopsis vaccinii endogenous with the mangrove plant Kandelia candel (L.) Druce. Tetrahedron 2014, 70, 9695–9701. [Google Scholar] [CrossRef]
- Fang, W.; Lin, X.; Zhou, X.; Wan, J.; Lu, X.; Yang, B.; Ai, W.; Zhang, T.; Tu, Z.; Liu, Y. Cytotoxic and antiviral nitrobenzyl sesquiterpenoids from the marine-derived fungus Aspergillus ochraceus Jcma1F17. Med. Chem. Communn. 2014, 5, 701–705. [Google Scholar] [CrossRef]
- Jia, Y.L.; Guan, F.F.; Ma, J.; Wang, C.Y.; Shao, C.L. Pestalotiolide A, a new antiviral phthalide derivative from a soft coral-derived fungus Pestalotiopsis sp. Nat. Prod. Sci. 2015, 21, 227. [Google Scholar] [CrossRef] [Green Version]
- Pang, X.; Lin, X.; Tian, Y.; Liang, R.; Wang, J.; Yang, B.; Zhou, X.F.; Kaliyaperumal, K.; Luo, X.W.; Tu, Z.; et al. Three new polyketides from the marine sponge-derived fungus Trichoderma sp. SCSIO41004. Nat. Prod. Res. 2017, 32, 105–111. [Google Scholar] [CrossRef]
- Zhang, S.P.; Huang, R.; Li, F.F.; Wei, H.X.; Fang, X.W.; Xie, X.S.; Lin, D.G.; Wu, S.; He, J. Antiviral anthraquinones and azaphilones produced by an endophytic fungus Nigrospora sp. from Aconitum carmichaeli. Fitoterapia 2016, 112, 85–89. [Google Scholar] [CrossRef]
- Zhao, J.; Liu, J.; Shen, Y.; Tan, Z.; Zhang, M.; Chen, R.; Zhao, J.; Zhang, D.; Yu, L.; Dai, J. Stachybotrysams A–E, prenylated isoindolinone derivatives with anti-HIV activity from the fungus Stachybotrys chartarum. Phytochem. Lett. 2017, 20, 289–294. [Google Scholar] [CrossRef]
- Sarkar, S.; Koga, J.; Whitley, R.J.; Chatterjee, S. Antiviral effect of the extract of culture medium of Lentinus edodes mycelia on the replication of herpex simplex virus type I. Antiviral Res. 1993, 20, 293–303. [Google Scholar] [CrossRef]
- Razumov, I.A.; Kosogova, T.A.; Kazachinskaia, E.I.; Puchkova, L.I.; Shcherbakova, N.S.; Gorbunova, I.A.; Mikhaĭlovskaia, I.N.; Loktev, V.B.; Tepliakova, T.V. Antiviral activity of aqueous extracts and polysaccharide fractions from mycelium and fruit bodies of higher fungi. Antibiot. chemoterapy 2010, 55, 14–18. [Google Scholar]
- Yamamoto, K.A.; Galhardi, L.C.F.; Rincao, V.P.; Soares, S.; Vieira, I.G.; Ricardo, N.M.P.S.; Nozawa, C.; Linhares, R.E.C. Antiherpetic activity of an Agaricus brasiliensis polysaccharide, its sulfated derivative and fractions. Int. J. Boil. Macromol. 2013, 52, 9–13. [Google Scholar] [CrossRef] [Green Version]
- Puente, X.S.; Sanchez, L.M.; Overall, C.M.; Lopez-Otin, C. Human and mouse proteases: A comparative genomic approach. Nat. Rev. 2003, 4, 544–558. [Google Scholar] [CrossRef] [PubMed]
- Drag, M.; Salvesen, G.S. Emerging principles in protease-based drug discovery. Nat. Rev. Drug Discov. 2010, 9, 690–701. [Google Scholar] [CrossRef] [Green Version]
- Turk, B. Targeting proteases: Successes, failures and future prospects. Nat. Rev. Drug Discov. 2006, 5, 785–799. [Google Scholar] [CrossRef] [PubMed]
- Brik, A.; Wong, C.H. HIV-1 protease: Mechanism and drug discovery. Org. Biomol. Chem. 2003, 1, 5–14. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.L.; Morgenstern, K.A.; Lin, C.; Fox, T.; Dwyer, M.D.; Landro, J.A.; Chambers, S.P.; Markland, W.; Lepre, C.A.; O’Malley, E.T.; et al. Crystal structure of the hepatitis C virus NS3 protease domain complexed with a synthetic NS4A cofactor peptide. Cell 1996, 87, 343–355. [Google Scholar] [CrossRef] [Green Version]
- Love, R.A.; Parge, H.E.; Wickersham, J.A.; Hostomsky, Z.; Habuka, N.; Moomaw, E.; Adachi, T.; Hostomska, Z. The crystal structure of hepatitis C virus NS3 proteinase reveals a trypsin-like fold and a structural zinc binding site. Cell 1996, 87, 331–342. [Google Scholar] [CrossRef] [Green Version]
- Urbani, A.; Bianchi, E.; Narjes, F.; Tramontano, A.; de Francesco, R.; Steinkuhler, C.; Pessi, A. Substrate specificity of the hepatitis C virus serine protease NS3. J. Biol. Chem. 1997, 272, 9204–9209. [Google Scholar] [CrossRef] [Green Version]
- Xue, X.; Yu, H.; Yang, H.; Xue, F.; Wu, Z.; Shen, W.; Li, J.; Zhou, Z.; Ding, Y.; Zhao, Q.; et al. Structures of two coronavirus main proteases: implications for substrate binding and antiviral drug design. J. Virol. 2008, 82, 2515–2527. [Google Scholar] [CrossRef] [Green Version]
- Anand, K.; Ziebuhr, J.; Wadhwani, P.; Mesters, J.R.; Hilgenfeld, R. Coronavirus main proteinase (3CLpro) structure: basis for design of anti-SARS drugs. Science 2003, 300, 1763–1767. [Google Scholar] [CrossRef] [Green Version]
- Tsantrizos, Y.S. Peptidomimetic therapeutic agents targeting the protease enzyme of the human immunodeficiency virus and hepatitis C virus. Acc. Chem. Res. 2008, 41, 1252–1263. [Google Scholar] [CrossRef]
- Clercq, E.D.; Li, G. Approved antiviral drugs over the past 50 years. Clin. Microbiol. Rev. 2016, 29, 695–747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blanchard, J.E.; Elowe, N.H.; Huitema, C.; Fortin, P.D.; Cechetto, J.D.; Eltis, L.D.; Brown, E.D. High-throughput screening identifies inhibitors of the SARS coronavirus main proteinase. Chem. Boil. 2004, 11, 1445–1453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamamoto, N.; Yang, R.; Yoshinaka, Y.; Amari, S.; Nakano, T.; Cinatl, J.; Rabenau, H.; Doerr, H.W.; Hunsmann, G.; Otaka, A.; et al. HIV protease inhibitor nelfinavir inhibits replication of SARS-associated coronavirus. Biochem. Biophys. Res. Commun. 2004, 318, 719–725. [Google Scholar] [CrossRef] [PubMed]
- Booth, C.; Matukas, L.M.; Tomlinson, G.; Rachlis, A.R.; Rose, D.B.; Dwosh, H.A.; Walmsley, S.; Mazzulli, T.; Avendano, M.; Derkach, P.; et al. Clinical features and short-term outcomes of 144 patients with SARS in the greater toronto area. JAMA 2003, 289, 2801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loutfy, M.R.; Blatt, L.M.; Siminovitch, K.A.; Ward, S.; Wolff, B.; Lho, H.; Pham, D.H.; Deif, H.; LaMere, E.A.; Chang, M.; et al. Interferon alfacon-1 plus corticosteroids in severe acute respiratory syndrome. JAMA 2003, 290, 3222. [Google Scholar] [CrossRef] [Green Version]
- Chu, C.M.; Cheng, V.C.C.; Hung, I.F.N.; Wong, M.M.L.; Chan, K.; Kao, R.Y.; Poon, L.L.M.; Wong, C.L.P.; Guan, Y.; Peiris, J.S.M.; et al. Role of lopinavir/ritonavir in the treatment of SARS: initial virological and clinical findings. Thorax 2004, 59, 252–256. [Google Scholar] [CrossRef] [Green Version]
- Stockman, L.J.; Bellamy, R.; Garner, P. SARS: Systematic review of treatment effects. Plos Med. 2006, 3, 343. [Google Scholar] [CrossRef] [Green Version]
- Momattin, H.; Al-Ali, A.Y.; Al-Tawfiq, J.A. A systemtic review of therapeutic agents for the treatment of the Middle East Respiratory Syndrome Coronaavirus (MERS-CoV). Travel. Med. Infect. Dis. 2019, 30, 9–18. [Google Scholar] [CrossRef]
- Stierlé, A.; Strobel, G.; Stierle, D. Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew. Science 1993, 260, 214–216. [Google Scholar] [CrossRef]
- Caruso, M.; Colombo, A.L.; Fedeli, L.; Pavesi, A.; Quaroni, S.; Saracchi, M.; Ventrella, G. Isolation of endophytic fungi and actinomycetes taxane producers. Ann. Microbiol. 2000, 50, 3–13. [Google Scholar]
- Chen, Y.J.; Zhang, Z.; Wang, Y.; Su, Y.; Zhang, R. Screening endophytic fungus to produce taxol from Taxus yunnanensis. Biotechnology 2003, 13, 10–11. [Google Scholar]
- Hoffman, A. Methods for obtaining taxanes. U.S. Patent 6638742, 2003. [Google Scholar]
- Kumaran, R.S.; Muthumary, J.; Hur, B.K. Production of Taxol from Phyllosticta spinarum, an endophytic fungus of Cupressus sp. Eng. Life Sci. 2008, 8, 438–446. [Google Scholar] [CrossRef]
- Kumaran, R.S.; Muthumary, J.; Hur, B.-K. Isolation and identification of an anticancer drug, taxol from Phyllosticta tabernaemontanae, a leaf spot fungus of an angiosperm, Wrightia tinctoria. J. Microbiol. 2009, 47, 40–49. [Google Scholar] [CrossRef]
- Flores-Bustamante, Z.R.; Rivera-Orduña, F.N.; Martínez-Cárdenas, A.; Flores-Cotera, L.B. Microbial paclitaxel: advances and perspectives. J. Antibiot. 2010, 63, 460–467. [Google Scholar] [CrossRef] [Green Version]
- Zhao, K.; Sun, L.X.; Wang, X.; Zhou, D. Screening of high taxol producing fungi by mutagenesis and construction of subtracted cDNA library by Suppression substracted hybridization for differentially expressed genes. Acta. Microbiol. Sin. 2011, 51, 923–933. [Google Scholar]
- Xiong, Z.; Yang, Y.Y.; Zhao, N.; Wang, Y. Diversity of endophytic fungi and screening of fungal paclitaxel producer from Anglojap yew, Taxus x media. Bmc Microbiol. 2013, 13, 71. [Google Scholar] [CrossRef] [Green Version]
- Heinig, U.; Scholz, S.; Jennewein, S. Getting to the bottom of Taxol biosynthesis by fungi. Fungal Divers. 2013, 60, 161–170. [Google Scholar] [CrossRef] [Green Version]
- Naik, B.S. Developments in taxol production through endophytic fungal biotechnology: a review. Orient. Pharm. Exp. Med. 2018, 19, 1–13. [Google Scholar] [CrossRef]
- Priyadarshini, K.; Keerthi, A.U. Paclitaxel Against Cancer: A Short Review. Med. Chem. 2012, 2, 7. [Google Scholar] [CrossRef] [Green Version]
- Tew, W.P. Ovarian cancer in the older woman. J. Geriatr. Oncol. 2016, 7, 354–361. [Google Scholar] [CrossRef] [PubMed]
- Ryang, J.; Yan, Y.; Song, Y.; Liu, F.; Ng, T.B. Anti-HIV, antitumor and immunomodulatory activities of paclitaxel from fermentation broth using molecular imprinting technique. Amb Express 2019, 9, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Mary, C.; Sandra, L.; Jamie, V.R.; Michelle, A.R.; Bruce, J.D.; Susan, E.K.; Joseph, A.S. Pilot study evaluating the interaction between paclitaxel and protease inhibitors in patients with human immunodeficiency virus-associated kaposi’s sarcoma: An eastern cooperative oncology group (ECOG) and AIDS malignancy consortium (AMC) trial. Cancer Chemther. Pharmacol. 2011, 68, 827–833. [Google Scholar]
- Casella, T.M.; Eparvier, V.; Mandavid, H.; Bendelac, A.; Odonne, G.; Dayan, L.; Duplais, C.; Espindola, L.S.; Stien, D. Antimicrobial and cytotoxic secondary metabolites from tropical leaf endophytes: Isolation of antibacterial agent pyrrocidine C from Lewia infectoria SNB-GTC2402. Phytochemisty 2013, 96, 370–377. [Google Scholar] [CrossRef]
- Fredenhagen, A.; Petersen, F.; Tintelnot-Blomley, M.; Rosel, J.; Mett, H.; Hug, P. Semicochiodinol A and B: inhibitors of HIV-1 protease and EGF-R protein tyrosine kinase related to asterriquinones produced by the fungus Chrysosporium merdarium. J. Antibiot. 1997, 50, 395–401. [Google Scholar] [CrossRef] [Green Version]
- El-Mekkawy, S.; Meselhy, M.R.; Nakamura, N.; Tezuka, Y.; Hattori, M.; Kakiuchi, N.; Shimotohno, K.; Kawahata, T.; Otake, T. Anti-HIV-1 and anti-HIV-1-protease substances from Ganoderma lucidum. Phytochemistry 1998, 49, 1651–1657. [Google Scholar] [CrossRef]
- Min, B.S.; Nakamura, N.; Miyashiro, H.; Bae, K.W.; Hattori, M. Triterpenes from the spores of Ganoderma lucidum and their inhibitory activity against HIV-1 protease. Chem. Pharm. Bull. 1998, 46, 1607–1612. [Google Scholar] [CrossRef] [Green Version]
- Martinez-Montemayor, M.; Ling, T.; Suárez-Arroyo, I.J.; Ortiz-Soto, G.; Santiago-Negrón, C.L.; Lacourt-Ventura, M.Y.; Valentín-Acevedo, A.; Lang, W.H.; Rivas, F. Identification of biologically Active Ganoderma lucidum compounds and synthesis of improved derivatives That confer anti-cancer activities in vitro. Front. Pharmacol. 2019, 10, 115. [Google Scholar] [CrossRef] [Green Version]
- El Dine, R.S.; Halawany, A.M.E.; Ma, C.M.; Hattori, M. Anti-HIV1- protease activity of lanostane triterpenes from the Vienamese mushroom Ganoderma colossum. J. Nat. Prod. 2008, 71, 1022–1026. [Google Scholar] [CrossRef]
- El Dine, R.S.; El-Halawany, A.; Ma, C.M.; Hattori, M. Inhibition of the dimerization and active site of HIV-1 protease by secondary metabolites from the Vietnamese Mushroom Ganoderma colossum. J. Nat. Prod. 2009, 72, 2019–2023. [Google Scholar] [CrossRef]
- Sato, N.; Zhang, Q.; Ma, C.-M.; Hattori, M. Anti-human immunodeficiency virus-1 protease activity of new lanostane-type triterpenoids from Ganoderma sinense. Chem. Pharm. Bull. 2009, 57, 1076–1080. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sillapachaiyaporn, C.; Chuchawankul, S. HIV-1 protease and reverse transcriptase inhibition by tiger milk mushroom (Lignosus rhinocerus) sclerotium extracts: In vitro and in silico studies. J. Tradit. Complement. Med. 2019. [CrossRef]
- Sillapachaiyaporn, C.; Nilkhet, S.; Ung, A.T.; Chuchawankul, S. Anti-HIV-1 protease activity of the crude extracts and isolated compounds from Auricularia polytricha. Bmc Complement. Altern. Med. 2019, 19, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Wang, H.; Ng, T. A peptide with HIV-1 reverse transcriptase inhibitory activity from the medicinal mushroom Russula paludosa. Peptides 2007, 28, 560–565. [Google Scholar] [CrossRef]
- Jiang, Y.; Wong, J.; Fu, M.; Ng, T.B.; Liu, Z.; Wang, C.; Li, N.; Qiao, W.; Wen, T.; Liu, F. Isolation of adenosine, iso-sinensetin and dimethylguanosine with antioxidant and HIV-1 protease inhibiting activities from fruiting bodies of Cordyceps militaris. Phytomedicine 2011, 18, 189–193. [Google Scholar] [CrossRef]
- Gallego, P.; Rojas, A.; Falcón, G.; Carbonero, P.; García-Lozano, M.R.; Gil, A.; Grande, L.; Cremades, O.; Romero-Gómez, M.; Bautista, J.D.; et al. Water-soluble extracts from edible mushrooms (Agaricus bisporus) as inhibitors of hepatitis C viral replication. Food Funct. 2019, 10, 3758–3767. [Google Scholar] [CrossRef]
- Hawas, U.W.; El Desouky, S.; El Kassem, L.A.; Elkhateeb, W. Alternariol derivatives from Alternaria alternata, an endophytic fungi residing in red sea soft coral, inhibit HCV NS3/4A protease. Appl. Biochem. Microbiol. 2015, 51, 579–584. [Google Scholar] [CrossRef]
- Schmutz, C.; Cenk, E.; Marko, D. The Alternaria mycotoxin alternariol triggers the immune response of IL-1β-stimulated, differentiated Caco-2 cells. Mol. Nutr. Food Res. 2019, 63, 1900341. [Google Scholar] [CrossRef] [Green Version]
- Grover, S.; Lawrence, C.B. The Alternaria alternata mycotoxin Alternariol suppresses lipopolysaccharide-induced inflammation. Int. J. Mol. Sci. 2017, 18, 1577. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Yang, M.H.; Wang, X.B.; Li, T.X.; Kong, L. Bioactive metabolites from the endophytic fungus Alternaria alternata. Fitoterapia 2014, 99, 153–158. [Google Scholar] [CrossRef]
- Hawas, U.W.; Al Farawati, R.; El Kassem, L.T.A.; Turki, A.J. Different culture metabolites of the red sea fungus Fusarium equiseti optimize the inhibition of hepatitis C virus NS3/4A protease (HIV PR). Mar. Drugs 2016, 14, 190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, L.Y.; Lin, J.; Zhou, B.; Liu, Y.; Zhu, B.Q. H1-A, a compound isolated from Fusarium oxysporum inhibits hepatitis C virus (HCV) NS3 serine protease. Chin. J. Nat. Med. 2016, 14, 299–302. [Google Scholar] [CrossRef]
- Chu, M.; Mierzwa, R.; He, L.; King, A.; Patel, M.; Pichardo, J.; Hart, A.; Butkiewicz, N.; Puar, M.S. Isolation and structure (HCV) NS3 protease inhibitor from the fungus Penicillum griseofulvum. Bioorg. Med. Chem. Lett. 1999, 9, 1949–1952. [Google Scholar] [CrossRef]
- Dai, J.R.; Carte, B.K.; Sidebottom, P.J.; Yew, A.L.S.; Ng, S.B.; Huang, Y.; Butler, M.S. Circumdatin G, a new alkaloid from the fungus Aspergillus ochraceus. J. Nat. Prod. 2001, 64, 125–126. [Google Scholar] [CrossRef] [PubMed]
- Phuong, D.T.; Ma, C.M.; Hattori, M.; Jin, J.S. Inhibitory effects of antrodins A-E from Antrodia cinnamomea and their metabolites on hepatitis C virus protease. Phytother. Res. 2009, 23, 582–584. [Google Scholar] [CrossRef] [PubMed]
- Hawas, U.W.; El Kassem, L.T.A.; Ahmed, E.F.; Emam, M. In-vitro bioassays on the metabolites of the fungus Emericella nidulans isolated from the Egyptian red sea algae. Egypt. Pharmaceut. J. 2012, 11, 124–128. [Google Scholar]
- Lee, D.; Lee, W.Y.; Jung, K.; Kwon, Y.S.; Kim, D.; Hwang, G.S.; Kim, C.E.; Lee, S.; Kang, K.S. The inhibitory effect of cordycepin on the proliferation of MCF-7 breast cancer cells, and its mechanism: An investigation using network pharmacology-based analysis. Biomolecules 2019, 9, 414. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.C.; Zhou, X.P.; Wang, X.A.; Xu, M.D.; Chen, T.; Chen, T.Y.; Zhou, P.H.; Zhang, Y.Q. Cordycepin induces apoptosis and G2/M phase arrest through the ERK pathways in esophageal cancer cells. J. Cancer 2019, 10, 2415. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.Y.; Yang, F.L.; Li, L.H.; Rao, Y.K.; Ju, T.C.; Wong, W.T.; Hsieh, C.Y.; Pivkin, M.V.; Hua, K.F.; Wu, S.H. Ergosterol peroxide from marine fungus Phoma sp. induces ROS-dependent apoptosis and autophagy in human lung adenocarcinoma cells. Sci. Rep. 2018, 8, 17956. [Google Scholar] [CrossRef] [Green Version]
- Harada, H.; Yamashita, U.; Kurihara, H.; Fukushi, E.; Kawabata, J.; Kamei, Y. Antitumer activity of palmitic acid found as a selective cytotoxic substance in a marine red alga. Anticancer Res. 2002, 22, 2587–2590. [Google Scholar]
- Ahmed, E.F.; Rateb, M.E.; El Kassem, L.T.A.; Hawas, U.W. Anti-HCV protease of diketopiperazines produced by the red sea sponge-saaociated fungus Aspergillus versicolor. Appl. Biochem. Microbiol. 2017, 53, 101–106. [Google Scholar] [CrossRef] [Green Version]
- Hawas, U.; El-Halawany, A.; Ahmede, E.F. Hepatitis C Virus NS3-NS4A protease inhibitors from the endophytic Penicillium chrysogenum isolated from the red alga Liagora viscida. Z. Für Nat. C 2013, 68, 355–366. [Google Scholar] [CrossRef]
- Zhang, K.; Hou, Q.; Zhong, Z.; Li, X.; Chen, H.; Li, W.; Wen, J.; Wang, L.; Liu, W.; Zhong, F. Porcine reproductive and respiratory syndrome virus activates inflammasomes of porcine alveolar macrophages via its small envelope protein E. Virology 2013, 442, 156–162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef] [Green Version]
- Peiris, J.M.; Lai, S.; Poon, L.L.; Guan, Y.; Yam, L.; Lim, W.; Nicholls, J.M.; Yee, W.; Yan, W.; Cheung, M.; et al. Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet 2003, 361, 1319–1325. [Google Scholar] [CrossRef] [Green Version]
- Channappanavar, R.; Perlman, S. Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology. Semin. Immunopathol. 2017, 39, 529–539. [Google Scholar] [CrossRef]
- Enshasy, H.; Hatti-Kaul, R. Mushroom immunomodulators: unique molecules with unlimited applications. Trends Biotechnol. 2013, 31, 668–677. [Google Scholar] [CrossRef]
- Kumar, D.; Arya, V.; Kaur, R.; Bhat, Z.A.; Gupta, V.K.; Kumar, V. A review of immunomodulators in the Indian traditional health care system. J. Microbiol. Immunol. Infect. 2012, 45, 165–184. [Google Scholar] [CrossRef] [Green Version]
- González-Navajas, J.M.; Lee, J.; David, M.; Raz, E. Immunomodulatory functions of type I interferons. Nat. Rev. Immunol. 2012, 12, 125–135. [Google Scholar] [CrossRef] [Green Version]
- Kak, V.; Sundareshan, V.; Modi, J.; Khardori, N.M. Immunotherapies in infectious diseases. Med. Clin. North. Am. 2012, 96, 455–474. [Google Scholar] [CrossRef]
- Labro, M.T. Immunomodulatory effects of antimicrobial agents. Part I: antibacterial and antiviral agents. Expert Rev. Anti-Infect. Ther. 2012, 10, 319–340. [Google Scholar] [CrossRef] [PubMed]
- Zapater, P.; González-Navajas, J.M.; Such, J.; Francés, R. Immunomodulating effects of antibiotics used in the prophylaxis of bacterial infections in advanced cirrhosis. World J. Gastroenterol. 2015, 21, 11493–11501. [Google Scholar] [CrossRef] [PubMed]
- Guggenheim, A.G.; Wright, K.M.; Zwickey, H.L. Immune modulation from five major Mushrooms: application to integrative oncology. Integr. Med. (Encinitas, Calif.) 2014, 13, 32–44. [Google Scholar]
- Li, Q.; Wang, X.F.; Zhou, X.W. Recent status and prospects of the fungal immunomodulatory protein family. Crit. Rev. Biotechnol. 2011, 31, 365–375. [Google Scholar] [CrossRef]
- Mallard, B.; Leach, D.N.; Wohlmuth, H.; Tiralongo, J. Synergistic immuno-modulatory activity in human macrophages of a medicinal mushroom formulation consisting of Reishi, Shiitake and Maitake. Plos One 2019, 14, e0224740. [Google Scholar] [CrossRef] [Green Version]
- Shao, K.D.; Mao, P.W.; Li, Q.Z.; Li, L.D.J.; Wang, Y.L.; Zhou, X.W. Characterization of a novel fungal immunomodulatory protein, FIP-SJ75 shuffled from Ganoderma lucidum, Flammulina velutipes and Volvariella volvacea. Food Agric. Immunol. 2019, 30, 1253–1270. [Google Scholar] [CrossRef] [Green Version]
- Lull, C.; Wichers, H.J.; Savelkoul, H. Antiinflammatory and immunomodulating properties of fungal metabolites. Mediat. Inflamm. 2005, 2005, 63–80. [Google Scholar] [CrossRef] [Green Version]
- Moradali, M.F.; Mostafavi, H.; Ghods, S.; Hedjaroude, G.A. Immunomodulating and anticancer agents in the realm of macromycetes fungi (macrofungi). Int. Immunopharmacol. 2007, 7, 701–724. [Google Scholar] [CrossRef]
- Brown, G.D.; Herre, J.; Williams, D.L.; Willment, J.A.; Marshall, A.; Gordon, S. Dectin-1 mediates the biological effects of β-glucans. J. Exp. Med. 2003, 197, 1119–1124. [Google Scholar] [CrossRef] [Green Version]
- Vetvicka, V.; Vashishta, A.; Saraswat-Ohri, S.; Vetvickova, J. Immunological effects of yeast- and mushroom-derived β-glucans. J. Med. Food. 2008, 11, 615–622. [Google Scholar] [CrossRef]
- Wasser, S. Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides. Appl. Microbiol. Biotechnol. 2002, 60, 258–274. [Google Scholar] [PubMed]
- Perveen, S. Introductory Chapter: Terpenes and Terpenoids. In Terpenes and Terpenoids; InTech Open: London, UK, 2018; pp. 1–12. [Google Scholar] [CrossRef] [Green Version]
- Jeong, Y.T.; Yang, B.K.; Jeong, S.C.; Kim, S.M.; Song, C.H. Ganoderma applanatum: a promising mushroom for antitumor and immunomodulating activity. Phytother. Res. 2008, 22, 614–619. [Google Scholar] [CrossRef] [PubMed]
- Ma, B.; Ren, W.; Zhou, Y.; Ma, J.; Ruan, Y.; Wen, C.N. Triterpenoids from the spores of Ganoderma lucidum. North. Am. J. Med. Sci. 2011, 3, 495–498. [Google Scholar] [CrossRef] [PubMed]
- Su, H.G.; Peng, X.R.; Shi, Q.Q.; Huang, Y.J.; Zhou, L.; Qiu, M.H. Lanostane triterpenoids with anti-inflammatory activities from Ganoderma lucidum. Phytochemistry 2020, 173, 112256. [Google Scholar] [CrossRef]
- Li, Q.Z.; Zheng, Y.Z.; Zhou, X.W. Fungal immunomodulatory proteins: characteristic, potential antitumor activities and their molecular mechanisms. Drug Discov. Today 2019, 24, 307–314. [Google Scholar] [CrossRef]
- Sonawane, H.; Bhosle, H.; Bapat, G.; Vikram, G. Pharmaceutical metabolites with potent bioactivity from mushrooms. J. Phar. Res. 2014, 8, 969–972. [Google Scholar]
- Sze, S.; Ho, J.; Liu, W. Volvariella volvacea lectin activates mouse T lymphocytes by a calcium dependent pathway. J. Cell. Biochem. 2004, 92, 1193–1202. [Google Scholar] [CrossRef]
- Švajger, U.; Pohleven, J.; Kos, J.; Strukelj, B.; Jeras, M. CNL, a ricin B-like lectin from mushroom Clitocybe nebularis, induces maturation and activation of dendritic cells via the toll-like receptor 4 pathway. Immunol. 2011, 134, 409–418. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.X.; Ng, T.B.; Ooi, V.E.; Liu, W.K.; Chang, S.T. Action of lectin from the mushroom Trichoderma mongolicum on macrophages, splenocytes and life-span in sarcoma-bearing mice. Anticancer Res. 1997, 17, 419–429. [Google Scholar]
- Chang, Y.C.; Chow, Y.H.; Sun, H.; Liu, Y.F.; Lee, Y.T.; Lue, K.H.; Ko, J.L. Alleviation of respiratory syncytial virus replication and inflammation by fungal immunomodulatory protein FIP-fve from Flammulina velutipes. Antivir. Res. 2014, 110, 124–131. [Google Scholar] [CrossRef]
- Paaventhan, P.; Joseph, J.S.; Seow, S.V.; Vaday, S.; Robinson, H.; Chua, K.Y.; Kolatkar, P. A 1.7A structure of Fve, a member of the new fungal immunomodulatory protein family. J. Mol. Boil. 2003, 332, 461–470. [Google Scholar] [CrossRef]
- Xu, H.; Kong, Y.Y.; Chen, X.; Guo, M.; Bai, X.H.; Lu, Y.J.; Li, W.; Zhou, X.W. Recombinant FIP-gat, a fungal immunomodulatory protein from Ganoderma atrum, induces growth inhibition and cell death in breast cancer cells. J. Agric. Food Chem. 2016, 64, 2690–2698. [Google Scholar] [CrossRef] [PubMed]
- Li, J.R.; Cheng, C.L.; Yang, W.J.; Yang, C.R.; Ou, Y.C.; Wu, M.J.; Ko, J.L. FIP-gts potentiate autophagic cell death against cisplatin-resistant urothelial cancer cells. Anticancer. Res. 2014, 34, 2973–2983. [Google Scholar] [PubMed]
- Gao, Y.; Wáng, Y.; Wu, Y.; Chen, H.; Yang, R.; Bao, D. Protective function of novel fungal immunomodulatory proteins Fip-lti1 and Fip-lti2 from Lentinus tigrinus in concanavalin A induced liver oxidative injury. Oxidative Med. Cell. Longev. 2019, 2019, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Li, S.Y.; Shi, L.J.; Ding, Y.; Nie, Y.; Tang, X. Identification and functional characterization of a novel fungal immunomodulatory protein from Postia placenta. Food Chem. Toxicol. 2015, 78, 64–70. [Google Scholar] [CrossRef]
- Hsu, H.-C.; Hsu, C.I.; Lin, R.H.; Kao, C.L.; Lin, J.Y. Fip-vvo, a new fungal immunomodulatory protein isolated from Volvariella volvacea. Biochem. J. 1997, 323, 557–565. [Google Scholar] [CrossRef] [Green Version]
- Hsin, I.L.; Ou, C.C.; Wu, M.F.; Jan, M.S.; Hsiao, Y.M.; Lin, C.H.; Ko, J.L. GMI, an immunomodulatory protein from Ganoderma microsporum, potentiates cisplatin-induced apoptosis via autophagy in lung cancer cells. Mol. Pharm. 2015, 12, 1534–1543. [Google Scholar] [CrossRef]
- Haak-Frendscho, M.; Kino, K.; Sone, T.; Jardieu, P. Ling Zhi-8: A novel T cell mitogen induces cytokine production and upregulation of ICAM-1 expression. Cell. Immunol. 1993, 150, 101–113. [Google Scholar] [CrossRef]
- Wang, S.Y.; Hsu, M.L.; Hsu, H.C.; Tzeng, C.H.; Lee, S.S.; Shiao, M.S.; Ho, C.K. The anti-tumor effect of Ganoderma lucidum is mediated by cytokines released from activated macrophages and T lymphocytes. Int. J. Cancer. 1997, 70, 699–705. [Google Scholar] [CrossRef]
- Yeh, C.H.; Chen, H.C.; Yang, J.J.; Chuang, W.I.; Sheu, F. Polysaccharides PS-G and protein LZ-8 from Reishi (Ganoderma lucidum) exhibit diverse functions in regulating murine aacrophages and T lymphocytes. Agric. Food Chem. 2010, 58, 8535–8544. [Google Scholar] [CrossRef]
- Kozarski, M.; Klaus, A.; Nikšić, M.; JakovljeviĆ, D.; Helsper, J.P.; Van Griensven, L.J.L.D. Antioxidative and immunomodulating activities of polysaccharide extracts of the medicinal mushrooms Agaricus bisporus, Agaricus brasiliensis, Ganoderma lucidum and Phellinus linteus. Food Chem. 2011, 129, 1667–1675. [Google Scholar] [CrossRef]
- Adachi, Y.; Okazaki, M.; Ohno, N.; Yadomae, T. Enhancement of cytokine production by macrophages stimulated with (l→3)-β-D-glucan, grifolan (GRN), isolated from Grifola frondosa. Biologic. Pharma. Bul. 1994, 17, 1554–1560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seo, Y.R.; Patel, D.K.; Shin, W.C.; Sim, W.S.; Lee, O.H.; Lim, K.T. Structural elucidation and immune-enhancing effects of novel polysaccharide from Grifola frondosa. Biomed. Res. Int. 2019, 2019, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Cui, H.L.; Chen, Y.; Wang, S.S.; Kai, G.Q.; Fang, Y.M. Isolation, partial characterisation and immunomodulatory activities of polysaccharide from Morchella esculenta. J. Sci. Food Agric. 2011, 91, 2180–2185. [Google Scholar] [CrossRef] [PubMed]
- Su, C.A.; Xu, X.Y.; Liu, D.Y.; Wu, M.; Zeng, F.Q.; Zeng, M.Y.; Wei, W.; Jiang, N.; Luo, X. Isolation and characterization of exopolysaccharide with immunomodulatory activity from fermentation broth of Morchella conica. Daru J. Pharm. Sci. 2013, 21, 5. [Google Scholar] [CrossRef] [Green Version]
- Murata, Y.; Shimamura, T.; Tagami, T.; Takatsuki, F.; Hamuro, J. The skewing to Th1 induced by lentinan is directed through the distinctive cytokine production by macrophages with elevated intracellular glutathione content. Int. Immunopharmacol. 2002, 2, 673–689. [Google Scholar] [CrossRef]
- Hobbs, C.R. The chemistry, nutritional value, immunopharmacology, and safety of the traditional food of medicinal split-gill fungus Schizophyllum commune Fr.:Fr. (Schizophyllaceae). A Literature Review. Int. J. Med. Mushrooms 2005, 7, 127–140. [Google Scholar] [CrossRef]
- Kim, K.H.; Moon, E.; Choi, S.U.; Kim, S.Y.; Lee, K.R. Lanostane triterpenoids from the mushroom Naematoloma fasciculare. J. Nat. Prod. 2013, 76, 845–851. [Google Scholar] [CrossRef]
- Malemud, C.J. Immunomodulators in autoimmunity and viral infections. J. Clin. Cell. Immunol. 2018, 9, 1–4. [Google Scholar] [CrossRef]
Source | Bioactive Agent | Efficacy* | Reference |
---|---|---|---|
Endophytic fungi in genera Alternaria, Aspergillus, Beauveria, Cladosporium, Chaetomella, Fusarium, Guignadia, Monochaetia, Nodulisporium, Pestlotia, Pestalotiopsis, Pithomyces, Penicillium, Phomopsis, Phyllostica, Sporormia, Taxomyces, Trichoderma, Trichothecium, Tubercularia and Xylaria | Paclitaxel | 20 μg/mL, viral inhibition was similar to positive control pepstatin A (80 μg/mL). CC50 > 50 μg/mL in human embryonic kidney 293 (HEK-293) cells | [61,62,63,64,65,66,67,68,69,70,71,74] |
Chrysosporium merdarium | Semicochliodinol A | IC50 = 0.37 μM CC50 = 0.84 μM in human lung fibroblast cells | [75,76] |
Semicochliodinol B | IC50 > 0.5 μM | [77] | |
Didemethylasterriquinone D | IC50 = 0.24 μM | [77] | |
Ganoderma lucidum | Ganolucidic acid A | IC50 = 70 μM | [78] |
Ganoderic acid A | IC50 = 430 μM CC50 > 62.5 μM on normal human fibroblast BJ cells | [78,79] | |
Ganoderic acid B | IC50 = 140 μM | [80] | |
Ganoderic acid C1 | IC50 = 240 μM | [80] | |
Ganoderic acid β | IC50 = 20 μM | [80] | |
Ganodermanondiol | IC50 = 90 μM | [80] | |
Ganodermanontriol | IC50 = 70 μM | [80] | |
Lucidumol B | IC50 = 50 μM | [80] | |
3β-5α-dihydroxy-6β-methoxyergosta-7,22-diene | IC50 = 7.8 µg/mL | [80] | |
Ganomycin B | IC50 = 7.5 µg/mL | [81,82] | |
Ganoderma colosum | Ganomycin I | IC50 = 1 µg/mL | [81,82] |
Colossolactone A | IC50 = 39 µg/mL | [81] | |
Colossolactone E | IC50 = 8 µg/mL | [81] | |
Colossolactone G | IC50 = 5 µg/mL | [81] | |
Colossolactone V | IC50 = 9 µg/mL | [81] | |
Colossolactone VII | IC50 = 13.8 µg/mL | [81] | |
Colossolactone VIII | IC50 = 31.4 µg/mL | [81] | |
Ganoderma sinnense | Ganoderic acid GS-1 | IC50 = 58 μM | [83] |
Ganoderic acid GS-2 | IC50 = 30 μM | [83] | |
Ganoderic acid DM | IC50 = 38 μM | [83] | |
Ganoderic acid β | IC50 = 116 μM | [83] | |
Ganoderiol A | IC50 = 80 μM | [83] | |
Ganoderiol F | IC50 = 22 μM | [83] | |
Ganodermadiol | IC50 = 29 μM | [83] | |
Ganodermanontriol | IC50 = 65 μM | [83] | |
Lucidumol A | IC50 = 99 μM | [83] | |
20-hydroxylucidenic acid N | IC50 = 25 μM | [83] | |
20(21)-dehydrolucidenic acid N | IC50 = 48 μM | [83] | |
Lignosus rhinocerus | Heliantriol F | Binding energy −12.57 kcal/mol | [84] |
Auricularia polytricha | Hexane extract fraction | 0.80 ± 0.08 mg/ml | [85] |
Russula paludosa | 4.5 kDa protein | IC50 = 0.25 mg/mL | [86] |
Cordycep militaris | Adenosine | No quantifiable results | [87] |
iso-sinensetin | No quantifiable results | [87] |
Source | Bioactive Agent | Efficacy* | Reference |
---|---|---|---|
Agaricus bisporus | Aqueous extract with low molecular weight (< 3 kDa) faction | 20.5 µg/mL, viral inhibition = 67.2–87.7% | [88] |
Alternaria alternata | Alternariol | IC50 = 52.0 ± 4.4 µg/mL IC50 = 52.0 ± 4.4 µg/mL CC50 > 10 µg/mL on human bronchial epithelial BEAS-2B cells | [89,90,91] |
Alternariol-9-methyl- ether-3-O-sulphate | IC50 = 32.3 ± 2.6 µg/mL | [89] | |
Alternariol-9-methyl ether | IC50 = 12.0 ± 3.8 µg/mL CC50 > 7.7 µg/mL on human bone osteosarcoma epithelial U-2 OS cells | [89,92] | |
Antrodia cinnamomea | Antrodin A | IC50 = 0.9 µg/mL | [97] |
Antrodin C | IC50 = 2.9 µg/mL | [97] | |
Antrodin D | IC50 = 20.0 µg/mL | [97] | |
Antrodin E | IC50 = 20.1 µg/mL | [97] | |
Aspergillus ochraceus | Mellein | IC50 = 35 μM | [96] |
Aspergillus versicolor | (−)-Curvularin | IC50 = 37.5 ± 3.6 µg/mL | [103] |
Cyclo(L-Pro-L-Ile) | IC50 = 13.7 ± 3.3 µg/mL | [103] | |
Cyclo(L-Tyr-L-Pro) | IC50 = 8.2 ± 1.7 µg/mL | [103] | |
Cyclo(L-Phe-L-Pro) | IC50 = 88.8 ± 4.5 µg/mL | [103] | |
Cyclo- (Phenylalanyl-Pro-Leu-Pro) | IC50 = 95.3 ± 2.7 µg/mL | [103] | |
Emericella nidulans | Cordycepin | IC50 = 24.5 ± 2.3 µg/mL CC50 > 3.2 µg/mL on human umbilical vein endothelial cells and > 100 µg/mL on HEK 293 cells | [98,99,100] |
Emericellin | IC50 = 50.0 ± 3.8 µg/mL | [98] | |
Ergosterol peroxide | IC50 = 47.0 ± 3.4 µg/mL CC50 95 µg/mL on normal lung BEAS-2B cells and > 26.7 µg/mL normal human fibroblast BJ cells | [98,101] | |
Myristic acid | IC50 = 51.0 ± 2.6 µg/mL CC50 > 50 µg/mL on human dermal fibroblast cells | [98,102] | |
Sterigmatocystin | IC50 = 48.5 ± 4.2 µg/mL | [98] | |
Fusarium equiseti | Griseoxanthone C | IC50 = 19.88 ± 1.45 μM | [93] |
ω-Hydroxyemodin | IC50 = 10.7 μM | [93] | |
Cyclo-L-ALA-L-Leu | IC50 = 58.33 ± 3.51 μM | [93] | |
Cyclo(L-Pro-L-Val) | IC50 = 23.29 ± 1.23 μM | [93] | |
Thymine | IC50 = 51.82 ± 2.49 μM | [93] | |
Cyclo-(Phenylalanyl-Pro-Leu-Pro) | IC50 = 29.45 ± 1.98 μM | [93] | |
17-Demethyl-2,11-dideoxy-rhizoxin | IC50 = 34.42 ± 1.44 μM | [93] | |
Ergostra-5,7-dien-3β-ol | IC50 = 77.14 ± 4.55 μM | [93] | |
3-O-β-Glucosylsitosterol | IC50 = 76.56 ± 3.78 μM | [93] | |
5-Chloro-3,6-dihydroxy-2-methyl-1,4-benzoquinone | IC50 = 35.15 ± 3.92 μM | [93] | |
Cyclo(L-Tyr-L-Pro) | IC50= 18.20 ± 1.7 μM | [93] | |
Perlolyrine | IC50 = 37.89 ± 2.11 μM | [93] | |
Cordycepin | IC50 = 22.35 ± 3.12 μM CC50 > 3.2 µg/mL on human umbilical vein endothelial cells and > 100 µg/mL on HEK 293 cells | [93] | |
Ara-A | IC50 = 24.53 ± 2.3 μM | [93] | |
Fusarium oxysporum | H1-A | VX950 inhibitory constant value was 3.5 μmol/L | [94] |
Penicillium chrysogenum | Alatinone | IC50 = 370 μM | [104] |
Emodin | IC50 = 80 μM | [104] | |
ω-Hydroxyemodin | IC50 = 30 μM | [104] | |
Penicillium griseofulvum | Patulin | IC50 = 24.7 µM | [95] |
Category | Bioactive Agent | Source | Immune Effects | Reference |
---|---|---|---|---|
Lectins | Concanavalin A | Volvariella volvacea | Activating T lymphocytes | [130] |
Ricin-B-like lectin (CNL) | Clitocybe nebularis | Stimulating dendritic cells (DCs) and cytokines | [131] | |
TML-1, TML-2 | Tricholoma mongolicum | Macrophages activator (TNF-α, Nitrite ions) | [132] | |
Fungal immunomodulatory proteins (FIPs) | FIP-fve | Flammulina velutipes | Stimulating lymphocyte mitogenesis, enhancing transcription of IL-2, IFN- γ, and TNF-α | [133,134] |
Fip-gat | Ganoderma atrum | Inducing apoptosis via autophagy | [135] | |
Fip-gts | Ganoderma tsugae | Inducing apoptosis via autophagy | [136] | |
FIP-gsi | Ganoderma sinensis | Cytokines regulation (IL-2, IL-3, IL-4, IFN- γ, TNF-α) | [137] | |
Fip-lti1, Fip-lti2 | Lentinus tigrinus | Cytokines regulation (TNF-α, IL-1β, and IL-6) | [138] | |
FIP-ppl | Postia placenta | Enhancing interleukin-2 (IL-2) | [139] | |
FIP-SJ75 | Ganoderma lucidum, Flammulina velutipes, Volvariella volvacea | Activating macrophage M1 polarization and initiating pro-inflammatory response | [121] | |
Fip-vvo | Volvariella volvacea | Lymphocytes activator, cytokine regulation | [140] | |
GMI | Ganoderma microsporum | Inducing apoptosis via autophagy | [141] | |
Ling Zhi-8 (Lz-8) | Ganoderma lucidum | T cell and macrophages activator, cytokine regulation | [142,143] | |
Polysaccharides | α- and β-glucans | Agaricus bisporus, Agaricus brasiliensis, Ganoderma lucidum | Inducing synthesis of IFN-γ | [144] |
β-glucan | Grifola frondosa | Activating macrophages, NK cells, lymphokines and cytokines | [145,146] | |
Polysaccharides | Galactomannan | Morchella esculenta, Morchella conica | Activating macrophages and cytokines | [147,148] |
Grifolan | Grifola frondosa | Activating macrophages and lymphokines | [149] | |
Lentinan | Lentinus edodes | T-cell-oriented adjuvant | [149] | |
PS-G | Ganoderma lucidum | Activating macrophages and T lymphocytes | [135,136] | |
Schizophyllan | Schizophyllum commune | Activating T cell, increasing interleukin and TNF-α production | [150] | |
Terpenoids | Exobiopolymers | Ganoderma applanatum | Activating NK cell | [128] |
Ganolucidoid A and B | Ganoderma lucidum | NO production, anti-inflammatory activities | [130] | |
Lanostane | Hypholoma fasciculare | NO production, anti-inflammatory activities | [151] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suwannarach, N.; Kumla, J.; Sujarit, K.; Pattananandecha, T.; Saenjum, C.; Lumyong, S. Natural Bioactive Compounds from Fungi as Potential Candidates for Protease Inhibitors and Immunomodulators to Apply for Coronaviruses. Molecules 2020, 25, 1800. https://doi.org/10.3390/molecules25081800
Suwannarach N, Kumla J, Sujarit K, Pattananandecha T, Saenjum C, Lumyong S. Natural Bioactive Compounds from Fungi as Potential Candidates for Protease Inhibitors and Immunomodulators to Apply for Coronaviruses. Molecules. 2020; 25(8):1800. https://doi.org/10.3390/molecules25081800
Chicago/Turabian StyleSuwannarach, Nakarin, Jaturong Kumla, Kanaporn Sujarit, Thanawat Pattananandecha, Chalermpong Saenjum, and Saisamorn Lumyong. 2020. "Natural Bioactive Compounds from Fungi as Potential Candidates for Protease Inhibitors and Immunomodulators to Apply for Coronaviruses" Molecules 25, no. 8: 1800. https://doi.org/10.3390/molecules25081800
APA StyleSuwannarach, N., Kumla, J., Sujarit, K., Pattananandecha, T., Saenjum, C., & Lumyong, S. (2020). Natural Bioactive Compounds from Fungi as Potential Candidates for Protease Inhibitors and Immunomodulators to Apply for Coronaviruses. Molecules, 25(8), 1800. https://doi.org/10.3390/molecules25081800