Improved Detection of Molecular Markers of Atherosclerotic Plaques Using Sub-Millimeter PET Imaging
Abstract
:1. Introduction
2. Results
2.1. Conjugation with RESCA and Radiolabelling of the Nb
2.2. Imaging with the β-CUBE and LabPET8 Systems
2.3. Ex Vivo Biodistribution and Atherosclerotic Plaque Targeting of [18F]AlF(RESCA)-cAbVCAM1-5
3. Discussion
4. Material and Methods
4.1. Nb Production
4.2. Random-Conjugation of the RESCA Chelator
4.3. [18F]NaF Production
4.4. Al18F-Labelling of the Nb-RESCA
4.5. Purification and Quality Control
4.6. In Vitro Stability Studies
4.7. Animal Model and Experimental Setup
4.8. In Vivo PET/CT Imaging and Image Processing
4.9. Ex Vivo Analysis
4.10. Data Analysis and Statistics
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lusis, A.J. Atherosclerosis. Nature 2018, 407, 233–241. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. The Top 10 Causes of Death. May 2018. Available online: https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death (accessed on 15 April 2020).
- Piepoli, M.F.; Hoes, A.W.; Agewall, S.; Albus, C.; Brotons, C.; Catapano, A.L.; Cooney, M.-T.; Corrà, U.; Cosyns, B.; Deaton, C.; et al. 2016 European Guidelines on cardiovascular disease prevention in clinical practice, Joint ESC Guidelines. Eur. Heart J. 2016, 37, 2315–2381. [Google Scholar] [CrossRef] [PubMed]
- Van Gils, M.J.; Bodde, M.C.; Cremens, L.G.; Dippel, D.W.; van der Lugt, A. Determinants of calcification growth in atherosclerotic carotid arteries; a serial multi-detector CT angiography study. Atherosclerosis 2013, 227, 95–99. [Google Scholar] [CrossRef] [Green Version]
- Guaricci, A.I.; De Santis, D.; Carbone, M.; Muscogiuri, G.; Guglielmo, M.; Baggiano, A.; Serviddio, G. Coronary Atherosclerosis Assessment by Coronary CT Angiography in Asymptomatic Diabetic Population: A Critical Systematic Review of the Literature and Future Perspectives. Biomed. Res. Int. 2018, 2018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rafailidis, V.; Charitanti, A.; Tegos, T.; Destanis, E.; Chryssogonidis, L. Contrast-enhanced ultrasound of the carotid system: A review of the current literature. J. Ultrasound 2017, 20, 97–109. [Google Scholar] [CrossRef] [PubMed]
- Katagiri, Y.; Tenekecioglu, E.; Serruys, P.W.; Collet, C.; Katsikis, A.; Asano, T.; Miyasaki, Y.; Piek, J.J.; Wykrzykowska, J.J.; Bourantas, C.; et al. What does the future hold for novel intravascular imaging devices: A focus on morphological and physiological assessment of plaque. Expert Rev. Med. Devices 2017, 14, 985–999. [Google Scholar] [CrossRef]
- Raggi, P.; Baldassarre, D.; Day, S.; de Groot, E.; Fayad, Z.A. Non-invasive imaging of atherosclerosis regression with magnetic resonance to guide drug development. Atherosclerosis 2016, 251, 476–482. [Google Scholar] [CrossRef] [Green Version]
- Eid, M.; De Cecco, C.N.; Schoepf, U.J.; Mangold, S.; Tesche, C.; Varga-Szemes, A.; Suranyi, P.; Stalcup, S.; Ball, B.D.; Caruso, D. The Role of MRI and CT in the Diagnosis of Atherosclerosis in an Aging Population. Curr. Radiol. Rep. 2016, 4, 12. [Google Scholar] [CrossRef]
- Matthews, S.D.; Frishman, W.H. A Review of the Clinical Utility of Intravascular Ultrasoundand Optical Coherence Tomography in the Assessment and Treatment of Coronary Artery Disease. Cardiol. Rev. 2017, 25, 68–76. [Google Scholar] [CrossRef]
- Evans, N.R.; Tarkin, J.M.; Chowdhury, M.M.; Warburton, E.A.; Rudd, J.H. PET Imaging of Atherosclerostic Disease: Advancing Plaque Assessment from Anatomy to Pathophysiology. Curr. Atheroscler. Rep. 2016, 18, 30. [Google Scholar] [CrossRef] [Green Version]
- Kuntner, C.; Stout, D. Quantitative preclinical PET imaging: Opportunities and challenges. Front. Phys. 2014, 2, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Krishnamoorthy, S.; Blankemeyer, E.; Mollet, P.; Surtis, S.; Van Holen, R.; Karp, J.S. Performance evaluation of the MOLECUBES b-CUBE—a high special resolution and high sensitivity small animal PET scanner utilizing monolithic LYSO scintillation detectors. Phys. Med. Biol. 2018, 63, 155013. [Google Scholar] [CrossRef] [PubMed]
- Broisat, A.; Hernot, S.; Toczek, J.; De Vos, J.; Riou, L.M.; Martin, S.; Ahmadi, M.; Thielens, N.; Wernery, U.; Caveliers, V.; et al. Nanobodies targeting mouse/human VCAM1 for the nuclear imaging of atherosclerotic lesions. Circ. Res. 2012, 110, 921–937. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Senders, M.L.; Hernot, S.; Carlucci, G.; van de Voort, J.C.; Fay, F.; Calcagno, C.; Tang, J.; Alaarg, A.; Zhao, Y.; Ishino, S.; et al. Nanobody-Facilitated Multiparametric PET/MRI Phenotyping of Atherosclerosis. JACC Cardiovasc. Imaging 2019, 12, 2015–2026. [Google Scholar] [CrossRef]
- Chakravarty, R.; Goel, S.; Cai, W. Nanobody: The « Magic Bullet » for Molecular Imaging? Theranostics 2014, 4, 386–398. [Google Scholar] [CrossRef]
- Debie, P.; Devoogdt, N.; Hernot, S. Targeted Nanobody-Based Molecular Tracers for Nuclear Imaging and Image-Guided Surgery. Antibodies 2019, 8, 12. [Google Scholar] [CrossRef] [Green Version]
- Musthakahmed, A.M.S.; Billaud, E.; Bormans, G.M.; Cleeren, F.; Lecina, J.; Verbruggen, A. Methods for low temperature fluorine-18 radiolabelling of biomolecules (WO/216/065435). Available online: patents.google.com (accessed on 15 April 2020).
- Cleeren, F.; Lecina, J.; Bridoux, J.; Devoogdt, N.; Tshibangu, T.; Xavier, C.; Bormans, G. Direct fluorine-18 labeling of heat-sensitive biomolecules for positron emission tomography imaging using the Al18F-RESCA method. Nat. Protoc. 2018, 13, 2330–2347. [Google Scholar] [CrossRef]
- Cleeren, F.; Lecina, J.; Ahamed, M.; Raes, G.; Devoogdt, N.; Caveliers, V.; McQuade, P.; Rubins, D.J.; Li, W.; Verbruggen, A.; et al. Al18F-Labelling of Heat-Sensitive Biomolecules for Positron Emission Tomography Imaging. Theranostics 2017, 14, 2924–2939. [Google Scholar] [CrossRef]
- Seo, Y.; Aparici, C.M.; Hasegawa, B.H. Technological Development and Advances in SPECT/CT. Semin. Nucl. Med. 2008, 38, 177–198. [Google Scholar] [CrossRef] [Green Version]
- Bala, G.; Blykers, A.; Xavier, C.; Descamps, B.; Broisat, A.; Ghezzi, C.; Fagret, D.; Van Camp, G.; Caveliers, V.; Vanhove, C.; et al. Targeting of vascular cell adhesion molecule-1 by 18F-labelled nanobodies for PET/CT imaging of inflamed atherosclerotic plaques. Eur. Heart J. Cardiovasc. Imaging 2016, 17, 1001–1008. [Google Scholar] [CrossRef] [Green Version]
- Bala, G.; Crauwels, M.; Blykers, A.; Remory, I.; Marschall, A.L.J.; Dübel, S.; Dumas, L.; Broisat, A.; Martin, C.; Ballet, S.; et al. Radiometal-labeled anti-VCAM-1 nanobodies as molecular tracers for atherosclerosis – impact of radiochemistry on pharmacokinetics. Biol. Chem. 2019, 400, 323–332. [Google Scholar] [CrossRef] [PubMed]
- Xavier, C.; Blykers, A.; Vaneycken, I.; D’Huyvetter, M.; Heemskerk, J.; Lahoutte, T.; Devoogdt, N.; Caveliers, V. (18)F-nanobody for PET imaging of HER2 overexpressing tumors. Nucl. Med. Biol. 2016, 43, 247–252. [Google Scholar] [CrossRef] [PubMed]
- Schaumann, D.H.; Tuischer, J.; Ebell, W.; Manz, R.A.; Lauster, R. VCAM-1-positive stromal cells from human bone marrow producing cytokines for B lineage progenitors and for plasma cells: SDF-1, flt3L, and BAFF. Mol. Immunol. 2007, 44, 1606–1612. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, K.; Saji, H. Advances in Drug Design of Radiometal-Based Imaging Agents for Bone Disorders. Int. J. Mol. Imaging. 2011, 2011, 537697. [Google Scholar] [CrossRef] [PubMed]
- van der Veen, E.L.; Suurs, F.V.; Cleeren, F.; Bormans, G.; Elsinga, P.H.; Hospers, G.A.P.; Lub-de Hooge, M.N.; de Vries, E.F.J.; Antunes, I. Development and evaluation of interleukin-2 derived radiotracers for PET imaging of T-cells in mice. JNM 2020. [Google Scholar] [CrossRef] [PubMed]
- Blake, G.M.; Puri, T.; Siddique, M.; Frost, M.L.; Moore, A.E.B.; Fogelman, I. Site specific mesurements of bone formation using [18F] sodium fluoride PET/CT. Quant. Imaging Med. Surg. 2018, 8, 47–59. [Google Scholar] [CrossRef] [Green Version]
Sample Availability: Authors are happy to provide Nanobody samples in case of a collaboration. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bridoux, J.; Neyt, S.; Debie, P.; Descamps, B.; Devoogdt, N.; Cleeren, F.; Bormans, G.; Broisat, A.; Caveliers, V.; Xavier, C.; et al. Improved Detection of Molecular Markers of Atherosclerotic Plaques Using Sub-Millimeter PET Imaging. Molecules 2020, 25, 1838. https://doi.org/10.3390/molecules25081838
Bridoux J, Neyt S, Debie P, Descamps B, Devoogdt N, Cleeren F, Bormans G, Broisat A, Caveliers V, Xavier C, et al. Improved Detection of Molecular Markers of Atherosclerotic Plaques Using Sub-Millimeter PET Imaging. Molecules. 2020; 25(8):1838. https://doi.org/10.3390/molecules25081838
Chicago/Turabian StyleBridoux, Jessica, Sara Neyt, Pieterjan Debie, Benedicte Descamps, Nick Devoogdt, Frederik Cleeren, Guy Bormans, Alexis Broisat, Vicky Caveliers, Catarina Xavier, and et al. 2020. "Improved Detection of Molecular Markers of Atherosclerotic Plaques Using Sub-Millimeter PET Imaging" Molecules 25, no. 8: 1838. https://doi.org/10.3390/molecules25081838
APA StyleBridoux, J., Neyt, S., Debie, P., Descamps, B., Devoogdt, N., Cleeren, F., Bormans, G., Broisat, A., Caveliers, V., Xavier, C., Vanhove, C., & Hernot, S. (2020). Improved Detection of Molecular Markers of Atherosclerotic Plaques Using Sub-Millimeter PET Imaging. Molecules, 25(8), 1838. https://doi.org/10.3390/molecules25081838