Precise Measurement of Tellurium Isotope Ratios in Terrestrial Standards Using a Multiple Collector Inductively Coupled Plasma Mass Spectrometry
Abstract
:1. Introduction
2. Results and Discussion
2.1. Isotope Ratios of Te in a Reagent Standard
2.2. Stable Isotope Variation of Different Terrestrial Standards
2.3. Precision and Reproducibility
2.4. Comparison with Previous Studies
3. Material and Methods
3.1. Standards and Reagents
3.2. Instrumentation
3.3. Te Isotope Ratio Measurement Protocol of MC–ICP–MS.
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Smith, C.L.; Rosman, K.J.R.; De Laeter, J.R. The isotopic composition of tellurium. Int. J. Mass Spectrom. Ion Phys. 1978, 28, 7–17. [Google Scholar] [CrossRef]
- Cameron, A.G.W. Are large time differences in meteorite formation real? Nature 1973, 246, 30–32. [Google Scholar] [CrossRef]
- De Laeter, J.R.; Smith, C.L.; Rosman, K.J.R. Critical role of Te 122, 123, 124 in s-process nucleosynthesis. Phys. Rev. C 1994, 49, 1227. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.S.; Edmond, J.M. Tellurium species in seawater. Nature 1985, 313, 782–785. [Google Scholar] [CrossRef]
- Smith, C.L.; De Laeter, J.R. The isotopic composition of tellurium in the Abee meteorite. Meteoritics 1986, 21, 133–139. [Google Scholar] [CrossRef]
- De Laeter, J.R. S-Process abundances for Tellurium-122, 123, 124. Astrophys. J. 1994, 434, 695–697. [Google Scholar] [CrossRef]
- Loss, R.D.; Rosman, K.J.R.; De Laeter, J.R. The isotopic composition of zinc, palladium, silver, cadmium, tin, and tellurium in acid-etched residues of the Allende meteorite. Geochim. Cosmochim. Acta 1990, 54, 3525–3536. [Google Scholar] [CrossRef]
- Wachsmann, M.; Heumann, K.G. Negative thermal ionization mass spectrometry of main group elements Part 2. 6th group: Sulfur, selenium and tellurium. Int. J. Mass Spectrom. Ion Processes 1992, 114, 209–220. [Google Scholar] [CrossRef]
- Richter, S.; Ott, U.; Begemann, F. Tellurium in pre-solar diamonds as an indicator for rapid separation of supernova ejecta. Nature 1998, 391, 261–263. [Google Scholar] [CrossRef]
- Fukami, Y.; Yokoyama, T. Precise tellurium isotope analysis by negative thermal ionization mass spectrometry (N-TIMS). J. Anal. At. Spectrom. 2014, 29, 520–528. [Google Scholar] [CrossRef]
- Lee, D.C.; Halliday, A.N. Precise determinations of the isotopic compositions and atomic weights of molybdenum, tellurium, tin and tungsten using ICP magnetic sector multiple collector mass spectrometry. Int. J. Mass Spectrom. Ion Processes 1995, 146, 35–46. [Google Scholar] [CrossRef]
- Fehr, M.A.; Rehkämper, M.; Halliday, A.N. Application of MC-ICP-MS to the precise determination of tellurium isotope compositions in chondrites, iron meteorites and sulfides. Int. J. Mass Spectrom 2004, 232, 83–94. [Google Scholar] [CrossRef]
- Fehr, M.A.; Rehkämper, M.; Halliday, A.N.; Hattendorf, B.; Günther, D. Tellurium isotope compositions of calcium-aluminum-rich inclusions. Meteorit. Planet. Sci. 2009, 44, 971–984. [Google Scholar] [CrossRef]
- Fehr, M.A.; Hammond, S.J.; Parkinson, I.J. Tellurium stable isotope fractionation in chondritic meteorites and some terrestrial samples. Geochim. Cosmochim. Acta 2018, 222, 17–33. [Google Scholar] [CrossRef] [Green Version]
- Fukami, Y.; Kimura, J.I.; Suzuki, K. Precise isotope analysis of tellurium by inductively coupled plasma mass spectrometry using a double spike method. J. Anal. At. Spectrom. 2018, 33, 1233–1242. [Google Scholar] [CrossRef]
- Hein, J.R.; Koschinsky, A.; Halliday, A.N. Global occurrence of tellurium-rich ferromanganese crusts and a model for the enrichment of tellurium. Geochim. Cosmochim. Acta 2003, 67, 1117–1127. [Google Scholar] [CrossRef]
- Rajamanickam, M.; Aono, T.; Sahoo, S.K. Precise determination of Tellurium isotope ratios by negative thermal ionization mass spectrometry and multi collector inductively coupled mass spectrometry. In Proceedings of the 32nd ISMAS symposium on mass spectrometry, Mumbai, India, 27–30 November 2019; CP-42. pp. 200–203. [Google Scholar]
- Makishima, A.; Nakamura, E. Precise isotopic determination of Hf and Pb at sub-nano gram levels by MC-ICP-MS employing a newly designed sample cone and a pre-amplifier with a 1012ohm register. J. Anal. At. Spectrom. 2010, 25, 1712–1716. [Google Scholar] [CrossRef]
- Koornneef, J.M.; Bouman, C.; Schwieters, J.B.; Davies, G.R. Measurement of small ion beams by thermal ionisation mass spectrometry using new 1013Ohm resistors. Anal. Chim. Acta 2014, 819, 49–55. [Google Scholar] [CrossRef]
- Kimura, J.I.; Chang, Q.; Kanazawa, N.; Sasaki, S.; Vaglarov, B.S. High-precision in situ analysis of Pb isotopes in glasses using 1013 resistor high gain amplifiers with ultraviolet femtosecond laser ablation multiple Faraday collector inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom. 2016, 31, 790–800. [Google Scholar] [CrossRef]
- Makishima, A.; Nakamura, E. High-resolution MC-ICPMS employing amplifiers with a 1012ohm resistor for bulk sulfur determination in biological and geological samples. J. Anal. At. Spectrom. 2012, 27, 891–895. [Google Scholar] [CrossRef]
- Koornneef, J.M.; Bouman, C.; Schwieters, J.B.; Davies, G.R. Use of 1012ohm current amplifiers in Sr and Nd isotope analyses by TIMS for application to sub-nanogram samples. J. Anal. At. Spectrom. 2013, 28, 749–754. [Google Scholar] [CrossRef]
- Brennecka, G.A.; Borg, L.E.; Romaniello, S.J.; Souders, A.K.; Shollenberger, Q.R.; Marks, N.E.; Wadhwa, M. A renewed search for short-lived 126Sn in the early Solar System: Hydride generation MC-ICP-MS for high sensitivity Te isotopic analysis. Geochim. Cosmochim. Acta 2017, 201, 331–344. [Google Scholar] [CrossRef] [Green Version]
- Wasserman, N.L.; Johnson, T.M. Measurements of mass-dependent Te isotopic variation by hydride generation MC-ICP-MS. J. Anal. At. Spectrom. 2020, 35, 307–319. [Google Scholar] [CrossRef]
- Ellison, S.L.R.; Williams, A. Eurachem/CITAC Guide: Quantifying Uncertainty in Analytical Measurement, 3rd ed.; EURACHEM: Torino, Italy, 2012; ISBN 978-0-948926-30-3. [Google Scholar]
Sample Availability: Samples of the compounds are not available from the authors. |
S. No | 120Te/128Te | 122Te/128Te | 123Te/128Te | 125Te/128Te | 126Te/128Te | 130Te/128Te |
---|---|---|---|---|---|---|
1 | 0.002906 (07) | 0.079652 (10) | 0.027852 (06) | 0.221996 (10) | 0.592188 (20) | 1.076257 (40) |
2 | 0.002900 (03) | 0.079650 (10) | 0.027854 (06) | 0.221991 (10) | 0.592188 (10) | 1.076303 (30) |
3 | 0.002908 (04) | 0.079629 (10) | 0.027857 (09) | 0.221991 (08) | 0.592207 (10) | 1.076290 (30) |
4 | 0.002902 (02) | 0.079654 (10) | 0.027845 (06) | 0.221990 (06) | 0.592214 (20) | 1.076222 (30) |
5 | 0.002915 (06) | 0.079636 (06) | 0.027861 (09) | 0.221981 (10) | 0.592217 (20) | 1.076279 (30) |
6 | 0.002889 (06) | 0.079642 (08) | 0.027861 (08) | 0.221966 (07) | 0.592206 (20) | 1.076307 (20) |
7 | 0.002928 (03) | 0.079656 (08) | 0.027822 (04) | 0.222002 (08) | 0.592196 (10) | 1.076284 (30) |
0.002907 (05) | 0.079646 (10) | 0.027850 (07) | 0.221988 (09) | 0.592202 (20) | 1.076277 (30) |
S. No | Standards | δ120/128Te | δ122/128Te | δ123/128Te | δ125/128Te | δ126/128Te | δ130/128Te |
---|---|---|---|---|---|---|---|
1 | Aldrich | −0.03 ± 2.76 | −0.07 ± 0.25 | −0.45 ± 0.39 | 0.004 ± 0.10 | −0.01 ± 0.05 | 0.01 ± 0.07 |
2 | Spex | −1.75 ± 3.11 | 0.05 ± 0.28 | 0.18 ± 0.44 | −0.01 ± 0.11 | 0.04 ± 0.06 | 0.02 ± 0.08 |
3 | Wako | −0.03 ± 3.56 | 0.03 ± 0.32 | −0.55 ± 0.50 | 0.03 ± 0.13 | 0.01 ± 0.07 | 0.02 ± 0.09 |
4 | Johnson Matthey | 0.90 ± 3.05 | 0.02 ± 0.28 | −0.46 ± 0.44 | 0.03 ± 0.11 | −0.01 ± 0.06 | 0.01 ± 0.07 |
125Te/128Te Normalization | Method | Standards | 120Te/128Te | 122Te/128Te | 123Te/128Te | 124Te/128Te | 125Te/128Te | 126Te/128Te | 130Te/128Te |
This Study (n = 7) | MC–ICP–MS | Kanto | 0.002903 ± 06 | 0.079665 ± 14 | 0.027852 ± 07 | 0.148559 ± 13 | 0.222040 | 0.592259 ± 27 | 1.076152 ± 45 |
Brennecka et al. (2017) | HG–MC–ICP–MS | Spex | 0.002916 ± 13 | 0.079666 ± 06 | 0.148550 ± 09 | 0.222040 | 0.592260 ± 12 | 1.076177 ± 25 | |
Fehr et al. (2004) | MC–ICP–MS | Alfa Aesar | 0.002897 ± 13 | 0.079678 ± 11 | 0.027921 ± 26 | 0.148563 ± 15 | 0.222040 | 0.592260 ± 18 | 1.076033 ± 65 |
124Te/128Te Normalization | |||||||||
This Study (n = 7) | MC–ICP–MS | Kanto | 0.002907 ± 07 | 0.079646 ± 16 | 0.027850 ± 09 | 0.14853 | 0.221988 ± 16 | 0.592202 ± 25 | 1.076277 ± 57 |
Brennecka et al. (2017) | HG–MC–ICP–MS | Spex | 0.002919 ± 25 | 0.079651 ± 9 | 0.14853 | 0.222014 ± 13 | 0.592201 ± 29 | 1.076218 ± 37 | |
Fukami and Yokoyama (2014) | N–TIMS | Kanto | 0.002901 ± 31 | 0.079650 ± 34 | 0.027865 ± 12 | 0.14853 | 0.222011 ± 29 | 0.592223 ± 40 | 1.076029 ± 90 |
Fehr et al. (2004) | MC–ICP–MS | Alfa Aesar | 0.002896 ± 13 | 0.079650 ± 11 | 0.027913 ± 26 | 0.14853 | 0.222003 ± 16 | 0.592196 ± 26 | 1.076148 ± 53 |
Lee and Halliday (1995) | MC–ICP–MS | Johnson Matthey | 0.002919 ± 12 | 0.079603 ± 16 | 0.027904 ± 12 | 0.14853 | 0.222041 ± 25 | 0.592264 ± 34 | 1.075950 ± 30 |
De Laeter (1994) | TIMS | Johnson Matthey | 0.002891 ± 32 | 0.079492 ± 44 | 0.027878 ± 33 | 0.14853 | 0.221722 ± 61 | 0.59153 ± 18 | 1.07889 ± 14 |
Wachsmann and Heumann (1992) | N–TIMS | Johnson Matthey | 0.07987 ± 44 | 0.02774 ± 21 | 0.14853 | 0.22199 ± 69 | 0.5919 ± 22 | 1.0752 ± 10 | |
Loss et al. (1990) | TIMS | 0.002731 ± 72 | 0.07716 ± 19 | 0.027404 ± 99 | 0.14853 | 0.211754 ± 57 | 0.57392 ± 10 | 1.110642 ± 84 | |
Smith and De Laeter (1986) | TIMS | Johnson Matthey | 0.002895 ± 31 | 0.07965 ± 26 | 0.027884 ± 64 | 0.14853 | 0.22200 ± 30 | 0.59235 ± 63 | 1.07571 ± 46 |
RF Power | 1300 W | |
Acceleration Potential (V) | 6000 | |
Sampler cone | Ni cone | |
Skimmer cone | Ni wide-angle cone | |
Resolution | Low | |
Cool gas | 13.4 L·min−1 | |
Auxiliary gas | 0.90 L·min−1 | |
Wet Plasma | Dry Plasma | |
Sample | Conventional Spray chamber | Desolvating Nebulizer |
Nebulizer | Micromist, 200 µL·min−1 | C-Flow PFA, 100 µL·min−1 |
Nebulizer gas | 1.14 L·min−1 | 0.90 L·min−1 |
Sweep Ar Gas | ---- | 4.2 L·min−1 |
N2 gas | ---- | 0 L·min−1 |
Sample Concentration | 200 ng·mL−1 | 10 ng·mL−1 |
Typical Sensitivity | 50 V per µg·mL−1 | 700 V per µg·mL−1 |
Washout time | 10–15 min | 30 min |
130Te Beam intensity | 1.60 V | 1.46 V |
Detectors | L7 | D4 | D3 | D2 | D1 | L6 | D0 | L5 | L4 | L3 | L2 | L1 | Ax | H1 | H2 | H3 | H4 | H5 | H6 | H7 | H8 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Monitored Isotopes | 120Te | 122Te | 123Te | 124Te | 125Te | 126Te | 128Te | 130Te | |||||||||||||
Isobaric Interference | 118Sn | 121Sb | 129Xe | ||||||||||||||||||
Faraday Cup resistors | 1012 Ω | 1012 Ω | 1012 Ω | 1011 Ω | 1011 Ω | 1011 Ω | 1011 Ω | 1011 Ω | 1011 Ω | 1011 Ω | 1011 Ω | 1011 Ω | 1011 Ω | 1011 Ω | 1011 Ω | 1011 Ω |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Murugan, R.; Aono, T.; Sahoo, S.K. Precise Measurement of Tellurium Isotope Ratios in Terrestrial Standards Using a Multiple Collector Inductively Coupled Plasma Mass Spectrometry. Molecules 2020, 25, 1956. https://doi.org/10.3390/molecules25081956
Murugan R, Aono T, Sahoo SK. Precise Measurement of Tellurium Isotope Ratios in Terrestrial Standards Using a Multiple Collector Inductively Coupled Plasma Mass Spectrometry. Molecules. 2020; 25(8):1956. https://doi.org/10.3390/molecules25081956
Chicago/Turabian StyleMurugan, Rajamanickam, Tatsuo Aono, and Sarata Kumar Sahoo. 2020. "Precise Measurement of Tellurium Isotope Ratios in Terrestrial Standards Using a Multiple Collector Inductively Coupled Plasma Mass Spectrometry" Molecules 25, no. 8: 1956. https://doi.org/10.3390/molecules25081956
APA StyleMurugan, R., Aono, T., & Sahoo, S. K. (2020). Precise Measurement of Tellurium Isotope Ratios in Terrestrial Standards Using a Multiple Collector Inductively Coupled Plasma Mass Spectrometry. Molecules, 25(8), 1956. https://doi.org/10.3390/molecules25081956