Composition and Antibacterial Activity of Aronia melanocarpa (Michx.) Elliot, Cornus mas L. and Chaenomeles superba Lindl. Leaf Extracts
Abstract
:1. Introduction
2. Results and Discussion
2.1. Composition and Antioxidant Activity of the Leaf Extracts
2.2. Antibacterial Activity of Leaf Extracts
3. Materials and Methods
3.1. Plant Material
3.2. Bacterial Strains
3.3. Extraction of Polyphenols and Iridoids from Leaves
3.4. Total Phenolic Content
3.5. Antioxidant Activity
3.5.1. DPPH
3.5.2. ABTS
3.6. Identification of Polyphenols and Iridoids
3.6.1. Identification of Phenolic Acids and Flavonoids with LC-MSn
3.6.2. Identification of Ellagitannins and Iridoids by UPLC-qTOF-MS/MS
3.7. Quantification of Polyphenols and Iridoids
3.7.1. Quantification of Phenolic Acids and Flavonoids Using HPLC-PDA
3.7.2. Quantification of Ellagitannins and Iridoids Using HPLC-PDA
3.8. Antibacterial Activity
3.9. Mathematical Models
3.10. Statistical Analysis
3.11. Chemometric Analysis
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Li, M.Y.; Zhou, G.H.; Xu, X.L.; Li, C.B.; Zhu, W.Y. Changes of bacterial diversity and main flora in chilled pork during storage using PCR-DGGE. Food Microbiol. 2006, 23, 607–611. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.; Wu, W.; Yu, Q.; Hou, M.; Gao, F.; Li, X.; Dai, R. Bacterial diversity analysis of pork longissimus lumborum following long term ohmic cooking and water bath cooking by amplicon sequencing of 16S rRNA gene. Meat Sci. 2017, 123, 97–104. [Google Scholar] [CrossRef] [PubMed]
- Säde, E.; Penttinen, K.; Björkroth, J.; Hultman, J. Exploring lot-to-lot variation in spoilage bacterial communities on commercial modified atmosphere packaged beef. Food Microbiol. 2017, 62, 147–152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meisel, S.; Stöckel, S.; Rösch, P.; Popp, J. Identification of meat-associated pathogens via Raman microspectroscopy. Food Microbiol. 2014, 38, 36–43. [Google Scholar] [CrossRef]
- Negi, P.S. Plant extracts for the control of bacterial growth: Efficacy, stability and safety issues for food application. Int. J. Food Microbiol. 2012, 156, 7–17. [Google Scholar] [CrossRef]
- Tiwari, B.K.; Valdramidis, V.P.; O’Donnell, C.P.; Muthukumarappan, K.; Bourke, P.; Cullen, P.J. Application of natural antimicrobials for food preservation. J. Agric. Food Chem. 2009, 57, 5987–6000. [Google Scholar] [CrossRef] [Green Version]
- Efenberger-Szmechtyk, M.; Nowak, A.; Czyzowska, A. Plant extracts rich in polyphenols: Antibacterial agents and natural preservatives for meat and meat products. Crit. Rev. Food Sci. Nutr. 2020, 1–30. [Google Scholar] [CrossRef]
- Nikolić, M.; Marković, T.; Mojović, M.; Pejin, B.; Savić, A.; Perić, T.; Marković, D.; Stević, T.; Soković, M. Chemical composition and biological activity of Gaultheria procumbens L. essential oil. Ind. Crops Prod. 2013, 49, 561–567. [Google Scholar] [CrossRef]
- Bukvički, D.; Stojković, D.; Soković, M.; Vannini, L.; Montanari, C.; Pejin, B.; Savić, A.; Veljić, M.; Grujić, S.; Marin, P.D. Satureja horvatii essential oil: In vitro antimicrobial and antiradical properties and in situ control of Listeria monocytogenes in pork meat. Meat Sci. 2014, 96, 1355–1360. [Google Scholar] [CrossRef]
- Vagiri, M.; Ekholm, A.; Andersson, S.C.; Johansson, E.; Rumpunen, K. An optimized method for analysis of phenolic compounds in buds, leaves, and fruits of black currant (Ribes nigrum L.). J. Agric. Food Chem. 2012, 60, 10501–10510. [Google Scholar] [CrossRef]
- Tabart, J.; Kevers, C.; Pincemail, J.; Defraigne, J.O.; Dommes, J. Antioxidant capacity of black currant varies with organ, season, and cultivar. J. Agric. Food Chem. 2006, 54, 6271–6276. [Google Scholar] [CrossRef] [PubMed]
- Teleszko, M.; Wojdyło, A. Comparison of phenolic compounds and antioxidant potential between selected edible fruits and their leaves. J. Funct. Foods. 2015, 14, 736–746. [Google Scholar] [CrossRef]
- Archana, S.; Abraham, J. Comparative analysis of antimicrobial activity of leaves extracts from fresh green tea, commercial green tea and black tea on pathogens. J. Appl. Pharm. Sci. 2011, 1, 149–152. [Google Scholar]
- Kozlowska, M.; Laudy, A.E.; Przybyl, J.; Ziarno, M.; Majewska, E. Chemical composition and antibacterial activity of some medicinal plants from Lamiaceae family. Acta Pol. Pharm. 2015, 72, 757–767. [Google Scholar]
- Shan, B.; Cai, Y.Z.; Brooks, J.D.; Corke, H. The in vitro antibacterial activity of dietary spice and medicinal herb extracts. Int. J. Food Microbiol. 2007, 117, 112–119. [Google Scholar] [CrossRef]
- Pereira, A.P.; Ferreira, I.C.; Marcelino, F.; Valentão, P.; Andrade, P.B.; Seabra, R.; Estevinho, L.; Bento, A.; Pereira, J.A. Phenolic compounds and antimicrobial activity of olive (Olea europaea L. Cv. Cobrançosa) leaves. Molecules 2007, 12, 1153–1162. [Google Scholar] [CrossRef]
- Liu, Y.; McKeever, L.C.; Malik, N.S. Assessment of the antimicrobial activity of olive leaf extract against foodborne bacterial pathogens. Front. Microbiol. 2017, 8, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Pereira, J.A.; Oliveira, I.; Sousa, A.; Valentão, P.; Andrade, P.B.; Ferreira, I.C.F.R.; Ferreres, F.; Bento, A.; Seabra, R.; Estevinho, L. Walnut (Juglans regia L.) leaves: Phenolic compounds, antibacterial activity and antioxidant potential of different cultivars. Food Chem. Toxicol. 2007, 45, 2287–2295. [Google Scholar] [CrossRef]
- Katalinic, V.; Možina, S.S.; Generalić, I.; Skroza, D.; Ljubenkov, I.; Klancnik, A. Phenolic profile, antioxidant capacity, and antimicrobial activity of leaf extracts from six Vitis vinifera L. varieties. Int. J. Food Prop. 2013, 16, 45–60. [Google Scholar] [CrossRef]
- Takahashi, T.; Kokubo, R.; Sakaino, M. Antimicrobial activities of eucalyptus leaves extracts and flavonoids from Eucalyptus maculata. Lett. Appl. Microbiol. 2004, 39, 60–64. [Google Scholar] [CrossRef]
- Karre, L.; Lopez, K.; Getty, K.J. Natural antioxidants in meat and poultry products. Meat Sci. 2013, 94, 220–227. [Google Scholar] [CrossRef] [PubMed]
- Falowo, A.B.; Fayemi, P.O.; Muchenje, V. Natural antioxidants against lipid–protein oxidative deterioration in meat and meat products: A review. Food Res. Int. 2014, 64, 171–181. [Google Scholar] [CrossRef] [PubMed]
- Nowak, A.; Czyzowska, A.; Efenberger, M.; Krala, L. Polyphenolic extracts of cherry (Prunus cerasus L.) and blackcurrant (Ribes nigrum L.) leaves as natural preservatives in meat products. Food Microbiol. 2016, 59, 142–149. [Google Scholar] [CrossRef] [PubMed]
- Botsoglou, E.; Govaris, A.; Ambrosiadis, I.; Fletouris, D.; Papageorgiou, G. Effect of olive leaves (Olea europea L.) extracts on protein and lipid oxidation in cooked pork meat patties enriched with n-3 fatty acids. J. Sci. Food Agric. 2014, 94, 227–234. [Google Scholar] [CrossRef]
- Aouidi, F.; Okba, A.; Hamdi, M. Valorization of functional properties of extract and powder of olive leaves in raw and cooked minced beef meat. J. Sci. Food Agric. 2017, 97, 3195–3203. [Google Scholar] [CrossRef]
- Latoch, A.; Stasiak, D.M. Effect of Mentha piperita on oxidative stability and sensory characteristics of cooked pork sausage. J. Food Process. Preserv. 2015, 39, 1566–1573. [Google Scholar] [CrossRef]
- Nguyen, T.T.K.; Laosinwattana, C.; Teerarak, M.; Pilasombut, K. Potential antioxidant and lipid peroxidation inhibition of Phyllanthus acidus leaves extract in minced pork. Asian-australas. J. Anim. Sci. 2017, 30, 1323–1331. [Google Scholar] [CrossRef]
- Casaburi, A.; Di Martino, V.; Ercolini, D.; Parente, E.; Villani, F. Antimicrobial activity of Myrtus communis L. water-ethanol extract against meat spoilage strains of Brochothrix thermosphacta and Pseudomonas fragi in vitro and in meat. Ann. Microbiol. 2015, 65, 841–850. [Google Scholar] [CrossRef] [Green Version]
- Wani, T.A.; Masoodi, F.A.; Gani, A.; Baba, W.N.; Rahmanian, N.; Akhter, R.; Wani, I.A.; Ahmad, M. Olive oil and its principal bioactive compound: Hydroxytyrosol–A review of the recent literature. Trends Food Sci. Technol. 2018, 77, 77–90. [Google Scholar] [CrossRef]
- Lee, J.E.; Kim, G.S.; Park, S.; Kim, Y.H.; Kim, M.B.; Lee, W.S.; Jin, J.S.; Shin, S.C. Determination of chokeberry (Aronia melanocarpa) polyphenol components using liquid chromatography–tandem mass spectrometry: Overall contribution to antioxidant activity. Food Chem. 2014, 146, 1–5. [Google Scholar] [CrossRef]
- Tian, Y.; Liimatainen, J.; Alanne, A.L.; Lindstedt, A.; Liu, P.; Sinkkonen, J.; Kallio, H.; Yang, B. Phenolic compounds extracted by acidic aqueous ethanol from berries and leaves of different berry plants. Food Chem. 2017, 220, 266–281. [Google Scholar] [CrossRef] [PubMed]
- Szopa, A.; Kokotkiewicz, A.; Kubica, P.; Banaszczak, P.; Wojtanowska-Krośniak, A.; Krośniak, M.; Marzec-Wróblewska, U.; Badura, A.; Zagrodzki, P.; Bucinski, A.; et al. Comparative analysis of different groups of phenolic compounds in fruit and leaf extracts of Aronia sp.: A. melanocarpa, A. arbutifolia, and A.× prunifolia and their antioxidant activities. Eur. Food Res. Technol. 2017, 243, 1645–1657. [Google Scholar] [CrossRef] [Green Version]
- Skupień, K.; Kostrzewa-Nowak, D.; Oszmianski, J.; Tarasiuk, J. In vitro antileukaemic activity of extracts from chokeberry (Aronia melanocarpa [Michx] Elliott) and mulberry (Morus alba L.) leaves against sensitive and multidrug resistant HL60 cells. Phytother. Res. 2008, 22, 689–694. [Google Scholar] [CrossRef]
- Urbanaviciute, I.; Liaudanskas, M.; Seglina, D.; Viskelis, P. Japanese quince Chaenomeles japonica (Thunb.) Lindl. ex Spach leaves a new source of antioxidants for food. Int. J. Food Prop. 2019, 22, 795–803. [Google Scholar] [CrossRef] [Green Version]
- Ponder, A.; Hallmann, E. Comparative evaluation of the nutritional value and the content of bioactive compounds in the fruit of individual species of chaenomeles and quince. World Sci News. 2017, 73, 101–108. [Google Scholar]
- Turkiewicz, I.P.; Wojdyło, A.; Tkacz, K.; Nowicka, P.; Golis, T.; Bąbelewski, P. ABTS On-line antioxidant, α-amylase, α-glucosidase, pancreatic lipase, acetyl-and butyrylcholinesterase inhibition activity of Chaenomeles fruits determined by polyphenols and other chemical compounds. Antioxidants 2020, 9, 60. [Google Scholar] [CrossRef] [Green Version]
- Dhanani, T.; Singh, R.; Kumar, S. Extraction optimization of gallic acid,(+)-catechin, procyanidin-B2,(–)-epicatechin,(–)-epigallocatechin gallate, and (–)-epicatechin gallate: Their simultaneous identification and quantification in Saraca asoca. J. Food Drug Anal. 2017, 25, 691–698. [Google Scholar] [CrossRef] [Green Version]
- Szczepaniak, O.M.; Kobus-Cisowska, J.; Kusek, W.; Przeor, M. Functional properties of Cornelian cherry (Cornus mas L.): A comprehensive review. Eur. Food Res. Technol. 2019, 245, 2071–2087. [Google Scholar] [CrossRef] [Green Version]
- Czerwińska, M.E.; Melzig, M.F. Cornus mas and Cornus Officinalis—analogies and differences of two medicinal plants traditionally used. Front. Pharmacol. 2018, 9, 1–28. [Google Scholar] [CrossRef]
- Martinović, A.; Cavoski, I. The exploitation of cornelian cherry (Cornus mas L.) cultivars and genotypes from Montenegro as a source of natural bioactive compounds. Food Chem. 2020, 318, 126549. [Google Scholar] [CrossRef]
- Badalica-Petrescu, M.; Dragan, S.; Ranga, F.; Fetea, F.; Socaciu, C. Comparative HPLC-DAD-ESI(+)MS fingerprint and quantification of phenolic and flavonoid composition of aqueous leaf extracts of Cornus mas and Crataegus monogyna, in relation to their cardiotonic potential. Not. Bot. Horti. Agrobo. 2014, 42, 9–18. [Google Scholar] [CrossRef] [Green Version]
- Milenković-Anđelković, A.S.; Anđelković, M.Z.; Radovanović, A.N.; Radovanović, B.C.; Nikolić, V. Phenol composition, DPPH radical scavenging and antimicrobial activity of Cornelian cherry (Cornus mas) fruit and leaf extracts. Hemijska Industrija 2015, 69, 331–337. [Google Scholar] [CrossRef] [Green Version]
- Gunduz, K.; Saracoglu, O.; Özgen, M.; Serce, S. Antioxidant, physical and chemical characteristics of cornelian cherry fruits (Cornus mas L.) at different stages of ripeness. Acta Sci. Pol. Hortorum Cultus 2013, 12, 59–66. [Google Scholar]
- Dinda, B.; Debnath, S.; Harigaya, Y. Naturally occurring iridoids. A review, part 1. Chem. Pharm. Bull. 2007, 55, 159–222. [Google Scholar] [CrossRef] [Green Version]
- Kucharska, A.Z.; Szumny, A.; Sokół-Łętowska, A.; Piórecki, N.; Klymenko, S.V. Iridoids and anthocyanins in cornelian cherry (Cornus mas L.) cultivars. J. Food Compost. Anal. 2015, 40, 95–102. [Google Scholar] [CrossRef]
- Deng, S.; West, B.J.; Jensen, C.J. UPLC-TOF-MS characterization and identification of bioactive iridoids in Cornus mas fruit. J. Anal. Methods Chem. 2013, 2013, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Czyżowska, A.; Kucharska, A.Z.; Nowak, A.; Sokół-Łętowska, A.; Motyl, I.; Piórecki, N. Suitability of the probiotic lactic acid bacteria strains as the starter cultures in unripe cornelian cherry (Cornus mas L.) fermentation. J. Food Sci. Technol. 2017, 54, 2936–2946. [Google Scholar] [CrossRef]
- Oszmiański, J.; Wojdyło, A.; Juszczyk, P.; Nowicka, P. Roots and leaf extracts of Dipsacus fullonum L. and their biological activities. Plants 2020, 9, 78. [Google Scholar] [CrossRef] [Green Version]
- Gontijo, D.C.; Gontijo, P.C.; Brandão, G.C.; Diaz, M.A.N.; de Oliveira, A.B.; Fietto, L.G.; Leite, J.P.V. Antioxidant study indicative of antibacterial and antimutagenic activities of an ellagitannin-rich aqueous extract from the leaves of Miconia latecrenata. J. Ethnopharmacol. 2019, 236, 114–123. [Google Scholar] [CrossRef]
- Gullon, B.; Pintado, M.E.; Pérez-Álvarez, J.A.; Viuda-Martos, M. Assessment of polyphenolic profile and antibacterial activity of pomegranate peel (Punica granatum) flour obtained from co-product of juice extraction. Food Control. 2016, 59, 94–98. [Google Scholar] [CrossRef]
- Oliveira, D.A.; Salvador, A.A.; Smânia, A.; Smânia, E.F.; Maraschin, M.; Ferreira, S.R. Antimicrobial activity and composition profile of grape (Vitis vinifera) pomace extracts obtained by supercritical fluids. J. Biotechnol. 2013, 164, 423–432. [Google Scholar] [CrossRef] [PubMed]
- Taguri, T.; Tanaka, T.; Kouno, I. Antimicrobial activity of 10 different plant polyphenols against bacteria causing food-borne disease. Biol. Pharm. Bull. 2004, 27, 1965–1969. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Konaté, K.; Hilou, A.; Mavoungou, J.F.; Lepengué, A.N.; Souza, A.; Barro, N.; Datté, J.Y.; M’Batchi, B.; Nacoulma, O.G. Antimicrobial activity of polyphenol-rich fractions from Sida alba L.(Malvaceae) against co-trimoxazol-resistant bacteria strains. Ann. Clin. Microbiol. Antimicrob. 2012, 11, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Plumed-Ferrer, C.; Väkeväinen, K.; Komulainen, H.; Rautiainen, M.; Smeds, A.; Raitanen, J.E.; Eklund, P.; Willför, S.; Alakomi, H.-L.; Saarela, M.; et al. The antimicrobial effects of wood-associated polyphenols on food pathogens and spoilage organisms. Int. J. Food Microbiol. 2013, 164, 99–107. [Google Scholar] [CrossRef]
- Yi, S.M.; Zhu, J.L.; Fu, L.L.; Li, J.R. Tea polyphenols inhibit Pseudomonas aeruginosa through damage to the cell membrane. Int. J. Food Microbiol. 2010, 144, 111–117. [Google Scholar] [CrossRef]
- Dulger, B.; Gonuz, A. Antimicrobial activity of some Turkish medicinal plants. Pak. J. Biol. Sci. 2004, 7, 1559–1562. [Google Scholar] [CrossRef]
- Tian, Y.; Puganen, A.; Alakomi, H.L.; Uusitupa, A.; Saarela, M.; Yang, B. Antioxidative and antibacterial activities of aqueous ethanol extracts of berries, leaves, and branches of berry plants. Food Res. Int. 2018, 106, 291–303. [Google Scholar] [CrossRef]
- Cvetanović, A.; Zengin, G.; Zeković, Z.; Švarc-Gajić, J.; Ražić, S.; Damjanović, A.; Mašković, P.; Mitić, M. Comparative in vitro studies of the biological potential and chemical composition of stems, leaves and berries Aronia melanocarpa’s extracts obtained by subcritical water extraction. Food Chem. Toxicol. 2018, 121, 458–466. [Google Scholar] [CrossRef]
- Rauha, J.P.; Remes, S.; Heinonen, M.; Hopia, A.; Kähkönen, M.; Kujala, T.; Pihlaja, K.; Vuorela, H.; Vuorela, P. Antimicrobial effects of Finnish plant extracts containing flavonoids and other phenolic compounds. Int. J. Food Microbiol. 2000, 56, 3–12. [Google Scholar] [CrossRef]
- Kikowska, M.; Włodarczyk, A.; Rewers, M.; Sliwinska, E.; Studzińska-Sroka, E.; Witkowska-Banaszczak, E.; Stochmal, A.; Żuchowski, J.; Dlugaszewska, J.; Thiem, B. Micropropagation of Chaenomeles japonica: A step towards production of polyphenol-rich extracts showing antioxidant and antimicrobial activities. Molecules 2019, 24, 1314. [Google Scholar] [CrossRef] [Green Version]
- Farhadi, F.; Khameneh, B.; Iranshahi, M.; Iranshahy, M. Antibacterial activity of flavonoids and their structure–activity relationship: An update review. Phytother. Res. 2019, 33, 13–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lou, Z.; Wang, H.; Zhu, S.; Ma, C.; Wang, Z. Antibacterial activity and mechanism of action of chlorogenic acid. J. Food Sci. 2011, 76, M398–M403. [Google Scholar] [CrossRef]
- Lipińska, L.; Klewicka, E.; Sójka, M. The structure, occurrence and biological activity of ellagitannins: A general review. Acta Sci. Pol. Technol. Aliment. 2014, 13, 289–299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Graikou, K.; Aligiannis, N.; Chinou, I.B.; Harvala, C. Cantleyoside-dimethyl-acetal and other iridoid glucosides from Pterocephalus perennis–antimicrobial activities. Z. Naturforsch. C. 2002, 57, 95–99. [Google Scholar] [CrossRef]
- Lehbili, M.; Magid, A.A.; Hubert, J.; Kabouche, A.; Voutquenne-Nazabadioko, L.; Renault, J.H.; Nuzillard, J.-M.; Morjani, H.; Abedini, A.; Gangloff, S.C.; et al. Two new bis-iridoids isolated from Scabiosa stellata and their antibacterial, antioxidant, anti-tyrosinase and cytotoxic activities. Fitoterapia 2018, 125, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Vizzotto, M.; Porter, W.; Byrne, D.; Cisneros-Zevallos, L. Polyphenols of selected peach and plum genotypes reduce cell viability and inhibit proliferation of breast cancer cells while not affecting normal cells. Food Chem. 2014, 164, 363–370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Babich, H.; Krupka, M.E.; Nissim, H.A.; Zuckerbraun, H.L. Differential in vitro cytotoxicity of (−)-epicatechin gallate (ECG) to cancer and normal cells from the human oral cavity. Toxicol. In Vitro. 2005, 19, 231–242. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Meda, A.; Lamien, C.E.; Romito, M.; Millogo, J.; Nacoulma, O.G. Determination of the total phenolic, flavonoid and proline contents in Burkina Fasan honey, as well as their radical scavenging activity. Food Chem. 2005, 91, 571–577. [Google Scholar] [CrossRef]
- Al, M.L.; Daniel, D.; Moise, A.; Bobis, O.; Laslo, L.; Bogdanov, S. Physico-chemical and bioactive properties of different floral origin honeys from Romania. Food Chem. 2009, 112, 863–867. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Kucharska, A.Z.; Sokół-Łętowska, A.; Oszmiański, J.; Piórecki, N.; Fecka, I. Iridoids, Phenolic compounds and antioxidant activity of edible Honeysuckle berries (Lonicera caerulea var. Kamtschatica Sevast.). Molecules 2017, 22, 405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Sample Availability: Not available. |
Extract | TPC [µg/mL] | Antioxidant Activity IC50 [%] | |
---|---|---|---|
DPPH | ABTS | ||
Aronia melanocarpa | 861.6 ± 23.0 c | 18.2 ± 0.50 a | 44.6 ± 1.23 a |
Chaenomeles superba | 3110.6 ± 86.1 a | 4.8 ± 0.71 c | 6.2 ± 0.13 c |
Cornus mas | 1867.7 ± 38.4 b | 8.7 ± 0.86 b | 6.8 ± 0.18 b |
Rt [min] | [M − H]− | MS2 | Compound | Extract |
---|---|---|---|---|
Phenolic Acids * | ||||
3.19 | 337 | 179 | Caffeic acid derivative 1 | CM |
3.25 | 309 | 179;129;161 | Caffeoyl-deoxyhexose | AM |
3.74 | 169 | - | Gallic acid | CM |
4.42 | 311 | 149; 179 | Caftaric acid isomer 1 | CM |
6.01 | 391 | 183; 207; 211; 167; 323 | Hydroxycinnamic acid derivative 1 | AM |
6.69 | 353 | 179; 191 | Neochlorogenic acid | AM, Ch |
7.27 | 461 | 163; 177; 207; 297; 315 | Hydroxycinnamic acid derivative 2 | AM |
7.59 | 705 | 513 | Hydroxycinnamic acid derivative 3 | AM |
7.90 | 341 | 179; 161 | Caffeic acid dimer/caffeoyl hexoside | Ch |
7.95 | 311 | 149; 179 | Caftaric acid isomer 2 | CM |
8.17 | 337 | 163 | p-Coumaroylquinic acid isomer 1 | AM |
9.24 | 353 | 191, 171 | Chlorogenic acid | AM, Ch |
9.71 | 325 | 145; 163; 187 | p-Coumaroylhexoside isomer 1 | Ch |
10.93 | 325 | 193 | p-Coumaroylhexoside isomer 2 | CM |
11.25 | 337 | 191; 163 | p-Coumaroylquinic acid isomer 2 | Ch |
11.88 | 431 | 341; 205; 367 | Hydroxycinnamic acid derivative 4 | Ch |
12.46 | 337 | 191, 163 | p-Coumaroylquinic acid isomer 3 | Ch |
Flavonols * | ||||
8.76 | 465 | 303; 285 | Dihydroquercetin hexoside | Ch |
10.07 | 447 | 269; 401 | Quercetin-3-O-rhamnoside | AM |
13,27 | 741 | 300/301; 489; 577; 409 | Quercetin-pentoside-deoxydihexoside | AM |
13.37 | 625 | 300/301 | Quercetin-3-O-dihexoside | AM |
13.82 | 755 | 300/301 | Quercetin-3-O-dirhamnosylhexoside | AM |
14.42 | 609 | 301 | Quercetin-3-O-glucuronylpentoside | CM |
14.72 | 595 | 301 | Quercetin-3-O-vicianoside | AM |
14.99 | 593 | 447; 285 | Kaempferol-hexoside-deoxyhexoside | Ch |
15.81 | 609 | 301 | Quercetin-3-O-robinobioside | AM |
16.10 | 609 | 301 | Quercetin-3-O-rutinoside | AM, Ch, CM |
16.16 | 477 | 301 | Quercetin-3-O-glucuronide | CM |
16.42 | 463 | 301 | Quercetin-3-O-galactoside | Ch |
16.80 | 463 | 301 | Quercetin-3-O-glucoside | AM, Ch, CM |
17.58 | 609 | 315 | Isorhamnetin-hexoside-pentoside | AM |
18.56 | 593 | 285 | Kaempferol-3-O-rutinoside | AM. Ch |
19.19 | 461 | 285 | Kaempferol-3-O-glucuronide | CM |
19.33 | 623 | 300; 315 | Isorhamnetin-3-O-rutinoside | AM |
19.31 | 447 | 285; 327 | Kaempferol-3-O-hexoside | Ch |
Flavones * | ||||
13.63 | 609 | 285; 447; | Luteolin-dihexoside | Ch |
15.76 | 593 | 447; 431; 285 | Luteolin-3-O-rutinoside | Ch |
Flavanones * | ||||
18.77 | 433 | 271 | Naringenin-7-O-glucoside | Ch |
Ellagitannins ** | ||||
1.325 | 708−2 | 633; 301; 169 | Camptothin A isomer 1 | CM |
1.675 | 708−2 | 633; 301; 169 | Camptothin A isomer 2 | CM |
1.925 | 708−2 | 633; 301; 169 | Camptothin A isomer 3 | CM |
2.233 | 1100−2 | 633; 301; 169 | Cornusin F isomer 1 | CM |
2.45 | 783−2 | 301; 169 | Cornusiin A isomer 1 | CM |
2.683 | 1100−2 | 633; 301; 169 | Cornusin F isomer 2 | CM |
2.817 | 708−2 | 633; 301; 169 | Camptothin A isomer 4 | CM |
3.200 | 783−2 | 301; 169 | Cornusiin A isomer 2 | |
Ellagic Acid ** | ||||
11.85 | 301 | - | Ellagic acid | CM |
Substituted Phenols * | ||||
3.79 | 315 | 153 | Hydroxytyrosol | AM, Ch |
Iridoids ** | ||||
5.017 | 375 | 213 | Loganic acid isomer 1 | CM |
6.867 | 375 | 213 | Loganic acid isomer 2 | CM |
7.708 | 375 | 213 | Loganic acid isomer 3 | CM |
10.533 | 403 | 223 | Secoxyloganin | CM |
16.625 | 541 | 169 | Cornuside | CM |
Unidentified Compounds * | ||||
8.94 | 451 | 405 | Unidentified 1 | AM |
12.47 | 433 | 387 | Unidentified 2 | AM |
13,31 | 611 | 431; 251 | Unidentified 3 | AM |
14.04 | 649 | 605 | Unidentified 4 | Ch |
17.66 | 503 | 293; 457 | Unidentified 5 | AM |
Compound | Aronia melanocarpa | Chaenomeles superba | Cornus mas |
---|---|---|---|
Phenolic Acids * | |||
Caffeic acid derivative 1 | - | - | 82.52 ± 6.60 |
Caffeoyl-deoxyhexose | 3.65 ± 0.18 | - | - |
Gallic acid | - | - | 1.61 ± 0.08 |
Caftaric acid isomer 1 | - | - | 29.28 ± 1.46 |
Hydroxycinnamic acid derivative 1 | 1.16 ± 0.06 | - | - |
Neochlorogenic acid | 26.88 ± 1.88 | 97.23 ± 5.83 | - |
Hydroxycinnamic acid derivative 2 | 11.44 ± 0.57 | - | - |
Hydroxycinnamic acid derivative 3 | 13.41 ± 0.67 | - | - |
Caffeic acid dimer/caffeoyl hexoside | - | 68.04 ± 5.44 | - |
Caftaric acid isomer 2 | - | - | 27.54 ± 1.65 |
p-Coumaroylquinic acid isomer 1 | 11.59 ± 0.81 | - | - |
Chlorogenic acid | 46.53 ± 2.33 | 299.23 ± 14.96 | - |
p-Coumaroylhexoside isomer 1 | - | 16.66 ± 0.83 | - |
p-Coumaroylhexoside isomer 2 | - | - | 4.15 ± 0.21 |
p-Coumaroylquinic acid isomer 2 | - | 143.62 ± 7.18 | - |
Hydroxycinnamic acid derivative 4 | - | 13.72 ± 0.69 | - |
p-Coumaroylquinic acid isomer 3 | - | 5.66 ± 0.40 | - |
Total | 114.66 ± 6.50 | 644.16 ± 35.33 | 145.1 ± 10.01 |
Flavonols * | |||
Dihydroquercetin-hexoside | - | 84.50 ± 4.23 | - |
Quercetin-3-O-rhamnoside | 5.42 ± 0.27 | - | - |
Quercetin-pentoside-deoxydihexoside | 2.00 ± 0.12 | - | - |
Quercetin-3-O-dihexoside | 10.63 ± 0.74 | - | - |
Quercetin-3-O-dirhamnosylhexoside | 17.36 ± 1.22 | - | - |
Quercetin-3-O-glucuronylpentoside | - | - | 19.47 ± 1.36 |
Quercetin-3-O-vicianoside | 23.91 ± 1.20 | - | - |
Kaempferol-hexoside-deoxyhexoside | - | 8.25 ± 0.41 | - |
Quercetin-3-O-robinobioside | 6.02 ± 0.36 | - | - |
Quercetin-3-O-rutinoside | 15.28 ± 1.07 | 29.02 ± 1.74 | 7.68 ± 0.38 |
Quercetin-3-O-glucuronide | - | - | 60.88 ± 4.26 |
Quercetin-3-O-galactoside | - | 96.78 ± 4.84 | - |
Quercetin-3-O-glucoside | 3.12 ± 0.16 | 5.67 ± 0.28 | |
Isorhamnetin-hexoside-pentoside | 3.37 ± 0.17 | - | - |
Kaempferol-3-O-rutinoside | 2.92 ± 0.15 | 15.23 ± 0.76 | - |
Kaempferol-3-O-glucuronide | - | - | 17.96 ± 0.90 |
Isorhamnetin-3-O-rutinoside | 3.37 ± 0.24 | - | - |
Kaempferol-3-O-hexoside | - | 18.39 ± 1.29 | - |
Total | 93.40 ± 5.66 | 252.17 ± 13.27 | 111.66 ± 7.19 |
Flavones * | |||
Luteolin-dihexoside | - | nd | - |
Luteolin-3-O-rutinoside | - | 17.28 ± 0.86 | - |
Total | - | 17.28 ± 0.86 | - |
Flavanones * | |||
Naringenin-7-O-hexoside | - | 227.30 ± 11.37 | - |
Total | - | 227.30 ± 11.37 | - |
Ellagitannins ** | |||
Camptothin A isomer 1 | - | - | 13.87 ± 1.54 |
Camptothin A isomer 2 | - | - | 39.38 ± 1.45 |
Camptothin A isomer 3 | - | - | 12.88 ± 0.10 |
Cornusin F isomer 1 | - | - | 22.36 ± 1.17 |
Cornusiin A isomer 1 | - | - | 19.64 ± 0.25 |
Cornusin F isomer 2 | - | - | 14.47 ± 1.02 |
Camptothin A isomer 4 | - | - | 14.01 ± 1.47 |
Cornusiin A isomer 2 | 15.02 ± 1.77 | ||
Total | - | - | 151.63 ± 8.77 |
Ellagic Acid ** | |||
Ellagic acid | - | - | 2.56 ± 0.27 |
Total | - | - | 2.56 ± 0.27 |
Substituted Phenols * | |||
Hydroxytyrosol | 7.91 ± 0.40 | 75.00 ± 5.25 | - |
Total | 7.92 ± 0.40 | 75.00 ± 5.25 | - |
Iridoids ** | |||
Loganic acid isomer 1 | - | - | 8.52 ± 0.58 |
Loganic acid isomer 2 | - | - | 12.76 ± 0.12 |
Loganic acid isomer 3 | - | - | 2.96 ± 0.23 |
Secoxyloganin | - | - | 6.21 ± 0.54 |
Cornuside | - | - | 3.45 ± 0.38 |
Total | - | - | 33.9 ± 1.85 |
Unidentified Compounds * | |||
Unidentified 1 | 4.02 ± 0.20 | - | - |
Unidentified 2 | 6.67 ± 0.33 | - | - |
Unidentified 3 | 6.67 ± 0.33 | - | - |
Unidentified 4 | - | 63.49 ± 3.17 | - |
Unidentified 5 | 3.29 ± 0.16 | - | - |
Total | 20.65 ± 1.03 | 63.49 ± 3.17 | - |
Aronia melanocarpa | Chaenomeles superba | Cornus mas | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Bacterial Strain | Extract Concentration [%] | tLag [h] | log(Nmax) | tLag [h] | log (Nmax) | tLag [h] | log(Nmax) | ||||||||||||
Gram-Positive Bacteria | |||||||||||||||||||
Enterococcus faecium | 0 | 6.12 | ± | 0.13 b.c | 8.85 | ± | 0.03 a | 6.12 | ± | 0.13 a | 8.85 | ± | 0.03 a | 6.12 | ± | 0.13 b | 8.85 | ± | 0.03 a |
1 | 6.03 | ± | 0.02 b.c A | 8.85 | ± | 0.05 a A | 6.17 | ± | 0.13 a A | 8.85 | ± | 0.04 a A | 6.19 | ± | 0.09 a.b A | 8.86 | ± | 0.03 a A | |
2 | 6.20 | ± | 0.10 a.b A | 8.83 | ± | 0.05 a A | 6.01 | ± | 0.04 a A | 8.84 | ± | 0.04 a A | 6.17 | ± | 0.04 a.b A | 8.83 | ± | 0.04 a A | |
3 | 5.98 | ± | 0.03 c A | 8.80 | ± | 0.05 a A | 6.13 | ± | 0.13 a A | 8.86 | ± | 0.05 a A | 6.17 | ± | 0.10 a.b A | 8.83 | ± | 0.07 a A | |
5 | 6.04 | ± | 0.08 b.c B | 8.84 | ± | 0.03 a A | 6.06 | ± | 0.07 a B | 8.87 | ± | 0.02 a A | 6.05 | ± | 0.04 b B | 8.84 | ± | 0.012 a A | |
10 | 6.32 | ± | 0.06 a A | 8.81 | ± | 0.04 a A | 6.02 | ± | 0.03 a B | 8.86 | ± | 0.02 a A | 6.36 | ± | 0.01 a A | 8.86 | ± | 0.02 a A | |
Staphylococcus aureus | 0 | 10.85 | ± | 0.32 b | 9.47 | ± | 0.04 a | 10.85 | ± | 0.32 b | 9.47 | ± | 0.04 a | 10.85 | ± | 0.33 b | 9.47 | ± | 0.04 a |
1 | 10.85 | ± | 0.08 b B | 9.44 | ± | 0.07 a A | 10.75 | ± | 0.32 b B | 9.43 | ± | 0.02 a A | 12.07 | ± | 0.89 ab A | 9.45 | ± | 0.04 ab A | |
2 | 11.13 | ± | 0.35 b AB | 9.45 | ± | 0.08 a A | 10.62 | ± | 0.33 b B | 9.41 | ± | 0.04 a A | 11.97 | ± | 0.43 ab A | 9.41 | ± | 0.02 ab A | |
3 | 10.95 | ± | 0.30 b A | 9.44 | ± | 0.03 a A | 11.78 | ± | 0.97 b A | 9.40 | ± | 0.03 a A | 12.12 | ± | 0.06 ab A | 9.40 | ± | 0.03 ab A | |
5 | 12.33 | ± | 0.79 ab A | 9.44 | ± | 0.09 a A | 11.91 | ± | 0.90 ab A | 9.41 | ± | 0.04 a A | 12.01 | ± | 0.17 ab A | 9.38 | ± | 0.02 b A | |
10 | 14.11 | ± | 1.76 a A | 9.45 | ± | 0.04 a A | 13.45 | ± | 0.23 a A | 9.41 | ± | 0.03 a A | 13.39 | ± | 0.92 a A | 9.38 | ± | 0.05 b A | |
Brochothrix thermosphacta | 0 | 5.73 | ± | 0.20 b | 8.41 | ± | 0.05 a | 5.73 | ± | 0.17 c | 5.73 | ± | 0.17 c | 5.73 | ± | 0.17 c | 8.41 | ± | 0.05 a |
1 | 6.00 | ± | 0.65 b A | 8.39 | ± | 0.02 a A | 6.46 | ± | 0.41 b.c A | 6.46 | ± | 0.41 b.c A | 6.17 | ± | 0.13 c A | 8.40 | ± | 0.01 a A | |
2 | 6.60 | ± | 0.62 b A | 8.38 | ± | 0.03 a A | 6.70 | ± | 0.31 b.c A | 6.70 | ± | 0.31 b.c A | 6.41 | ± | 0.07 b.c A | 8.40 | ± | 0.03 a A | |
3 | 6.74 | ± | 0.51 a.b A | 8.38 | ± | 0.03 a A | 7.40 | ± | 0.49 a.b A | 7.40 | ± | 0.49 a.b A | 7.29 | ± | 0.46 a A | 8.40 | ± | 0.03 a A | |
5 | 7.08 | ± | 0.28 a.b A | 8.39 | ± | 0.04 a A | 7.71 | ± | 0.35 a A | 7.71 | ± | 0.35 a A | 7.21 | ± | 0.16 a.b A | 8.43 | ± | 0.01 a A | |
10 | 8.11 | ± | 0.06 a A | 8.39 | ± | 0.04 a A | 7.71 | ± | 0.51 a A | 7.71 | ± | 0.51 a A | 7.62 | ± | 0.28 a A | 8.44 | ± | 0.03 a A | |
Lactobacillus sakei | 0 | 18.45 | ± | 1.89 b | 8.53 | ± | 0.09 a | 18.45 | ± | 1.89 c | 8.53 | ± | 0.09 a | 18.45 | ± | 1.89 d | 8.53 | ± | 0.09 a |
1 | 22.90 | ± | 1.14 a.b A | 8.52 | ± | 0.07 a A | 24.40 | ± | 1.00 a.b A | 8.52 | ± | 0.08 a A | 22.56 | ± | 0.39 c.d A | 8.52 | ± | 0.06 a A | |
2 | 22.33 | ± | 1.67 a A | 8.53 | ± | 0.02 a A | 24.65 | ± | 2.21 a.b A | 8.53 | ± | 0.05 a A | 24.40 | ± | 2.31 b.c A | 8.52 | ± | 0.07 a A | |
3 | 24.40 | ± | 1.52 a A | 8.54 | ± | 0.06 a A | 23.77 | ± | 1.38 b A | 8.53 | ± | 0.04 a A | 26.76 | ± | 2.11 b A | 8.53 | ± | 0.05 a A | |
5 | 25.19 | ± | 1.40 a A | 8.52 | ± | 0.10 a A | 27.18 | ± | 0.93 a.b A | 8.51 | ± | 0.07 a A | 26.94 | ± | 1.02 b A | 8.54 | ± | 0.02 a A | |
10 | 25.62 | ± | 1.31 a B | 8.52 | ± | 0.05 a A | 27.66 | ± | 0.07 a B | 8.53 | ± | 0.05 a A | 31.31 | ± | 0.90 a A | 8.53 | ± | 0.10 a A | |
Listeria monocytogenes | 0 | 10.67 | ± | 0.35 a | 8.12 | ± | 0.05 a | 10.67 | ± | 0.35 a | 8.12 | ± | 0.05 a | 10.67 | ± | 0.35 a | 8.12 | ± | 0.05 a |
1 | 10.99 | ± | 0.30 a B | 8.12 | ± | 0.04 a A | 10.70 | ± | 0.22 a B | 8.12 | ± | 0.06 a A | 11.76 | ± | 0.02 a A | 7.80 | ± | 0.08 b.c B | |
2 | 11.05 | ± | 0.21 a A.B | 8.10 | ± | 0.03 a A | 10.70 | ± | 0.48 a B | 8.06 | ± | 0.05 a A | 11.58 | ± | 0.18 a A | 7.88 | ± | 0.06 b B | |
3 | 11.04 | ± | 0.47 a A.B | 8.04 | ± | 0.07 a.b A | 10.74 | ± | 0.05 a B | 8.10 | ± | 0.06 a A | 11.59 | ± | 0.15 a A | 7.71 | ± | 0.07 c B | |
5 | 11.08 | ± | 0.08 a A | 7.93 | ± | 0.05 b A | 10.71 | ± | 1.05 a A | 8.02 | ± | 0.08 a A | 11.60 | ± | 0.38 a A | 7.65 | ± | 0.06 c.d B | |
10 | 11.25 | ± | 0.24 a A | 7.96 | ± | 0.04 b A | 10.70 | ± | 0.17 a B | 8.03 | ± | 0.07 a A | 11.59 | ± | 0.14 b A | 7.55 | ± | 0.06 d B | |
Gram-Negative Bacteria | |||||||||||||||||||
Moraxella osloensis | 0 | 7.64 | ± | 0.16 b | 8.49 | ± | 0.04 a | 7.64 | ± | 0.16 c | 8.49 | ± | 0.04 a | 7.64 | ± | 0.16 b | 8.49 | ± | 0.04 a |
1 | 7.56 | ± | 0.16 b B | 8.51 | ± | 0.06 a A | 7.72 | ± | 0.18 c B | 8.49 | ± | 0.04 a A | 13.77 | ± | 0.98 a A | 7.89 | ± | 0.24 b A | |
2 | 7.68 | ± | 0.82 b A | 8.50 | ± | 0.18 a A | 7.86 | ± | 0.08 c A | 8.52 | ± | 0.06 a A | No growth | ||||||
3 | 7.76 | ± | 0.57 b A | 8.48 | ± | 0.10 a A | 8.33 | ± | 0.16 b.c A | 8.51 | ± | 0.04 a A | No growth | ||||||
5 | 8.05 | ± | 0.30 a.b B | 8.49 | ± | 0.03 a A | 10.04 | ± | 0.81 b A | 8.53 | ± | 0.04 a A | No growth | ||||||
10 | 8.53 | ± | 0.33 a B | 8.48 | ± | 0.06 a A | 13.74 | ± | 0.94 a A | 8.52 | ± | 0.06 a A | No growth | ||||||
Pseudomonas fragi | 0 | 6.58 | ± | 0.36 c | 9.73 | ± | 0.10 a | 6.58 | ± | 0.36 c | 9.73 | ± | 0.10 a | 6.58 | ± | 0.36 e | 9.73 | ± | 0.10 a |
1 | 7.47 | ± | 0.27 b B | 9.61 | ± | 0.02 b A | 10.29 | ± | 1.21 b A | 9.67 | ± | 0.06 a A | 6.50 | ± | 0.12 e B | 9.37 | ± | 0.04 b B | |
2 | 7.28 | ± | 0.24 b C | 9.61 | ± | 0.03 b B | 10.27 | ± | 0.43 b A | 9.75 | ± | 0.02 a A | 9.08 | ± | 1.43 d A.B | 9.34 | ± | 0.05 b.c C | |
3 | 7.33 | ± | 0.22 b B | 9.60 | ± | 0.03 b B | 13.08 | ± | 1.41 a.b B | 9.67 | ± | 0.03 a A | 18.31 | ± | 0.77 c A | 9.25 | ± | 0.05 b.c C | |
5 | 9.87 | ± | 1.47 a C | 9.58 | ± | 0.04 b A | 15.65 | ± | 0.65 a B | 9.64 | ± | 0.02 a A | 22.42 | ± | 2.65 b A | 8.94 | ± | 0.50 c B | |
10 | 10.55 | ± | 1.48 a C | 9.61 | ± | 0.02 b A.B | 16.26 | ± | 2.38 a B | 9.71 | ± | 0.09 a A | 29.60 | ± | 1.31 a A | 7.93 | ± | 0.07 d C | |
Acinetobacter baumanii | 0 | 8.14 | ± | 0.43 c | 9.33 | ± | 0.02 a | 8.14 | ± | 0.43 a | 9.33 | ± | 0.02 a | 8.14 | ± | 0.43 b | 9.33 | ± | 0.02 a |
1 | 8.50 | ± | 0.51 b.c A | 9.34 | ± | 0.02 a A | 8.66 | ± | 0.91 a A | 9.33 | ± | 0.01 a A | 8.64 | ± | 0.50 b A | 9.27 | ± | 0.02 b B | |
2 | 8.53 | ± | 0.26 b.c A | 9.33 | ± | 0.01 a A | 8.78 | ± | 0.81 a A | 9.33 | ± | 0.02 a A | 8.58 | ± | 0.10 b A | 9.20 | ± | 0.03 c B | |
3 | 8.39 | ± | 0.23 b.c A | 9.33 | ± | 0.02 a A | 8.88 | ± | 0.20 a A | 9.34 | ± | 0.04 a A | 8.70 | ± | 0.06 b A | 9.19 | ± | 0.01 c.d B | |
5 | 9.44 | ± | 0.84 a.b A | 9.34 | ± | 0.02 a A | 9.11 | ± | 0.46 a A | 9.34 | ± | 0.02 a A | 9.10 | ± | 0.42 b A | 9.17 | ± | 0.01 d B | |
10 | 10.24 | ± | 0.39 a B | 9.34 | ± | 0.01 a A | 8.99 | ± | 0.54 a B | 9.35 | ± | 0.03 a A | 26.65 | ± | 0.73 a A | 9.10 | ± | 0.02 e B | |
Escherichia coli | 0 | 4.28 | ± | 0.27 b | 9.00 | ± | 0.01 a | 4.28 | ± | 0.27 c | 9.00 | ± | 0.01 a | 4.28 | ± | 0.27 b | 9.00 | ± | 0.01 a |
1 | 5.33 | ± | 0.56 a.b A | 8.99 | ± | 0.02 a A | 5.69 | ± | 0.05 b A | 8.99 | ± | 0.02 a | 6.69 | ± | 0.57 a A | 8.99 | ± | 0.02 a A | |
2 | 5.00 | ± | 0.12 b C | 9.01 | ± | 0.01 a A | 5.65 | ± | 0.12 b B | 9.00 | ± | 0.01 a A | 7.07 | ± | 0.07 a A | 9.00 | ± | 0.03 a A | |
3 | 5.31 | ± | 0.63 a.b B | 9.01 | ± | 0.02 a A | 7.07 | ± | 0.51 a A | 8.99 | ± | 0.02 a A | 6.94 | ± | 0.04 a A | 9.00 | ± | 0.02 a A | |
5 | 5.39 | ± | 0.32 a.b B | 9.01 | ± | 0.02 a A | 7.31 | ± | 0.16 a A | 9.00 | ± | 0.01 a A | 7.13 | ± | 0.02 a A | 8.96 | ± | 0.03 a.b B | |
10 | 6.14 | ± | 0.46 a B | 9.01 | ± | 0.02 a A | 7.63 | ± | 0.47 a A | 9.01 | ± | 0.02 a A | 7.13 | ± | 0.01 a A.B | 8.94 | ± | 0.02 b B | |
Enterobacter aerogenes | 0 | 5.48 | ± | 0.12 c | 9.32 | ± | 0.02 a | 5.48 | ± | 0.12 c | 9.32 | ± | 0.02 a | 5.48 | ± | 0.12 b | 9.32 | ± | 0.02 a |
1 | 5.86 | ± | 0.11 b A | 9.35 | ± | 0.03 a A | 5.77 | ± | 0.24 b.c A | 9.34 | ± | 0.03 a A | 5.79 | ± | 0.06 a.b A | 9.33 | ± | 0.02 a A | |
2 | 5.83 | ± | 0.10 b A | 9.35 | ± | 0.03 a A | 5.84 | ± | 0.35 a.b.c A | 9.33 | ± | 0.02 a A | 6.11 | ± | 0.27 a A | 9.32 | ± | 0.02 a A | |
3 | 6.02 | ± | 0.07 a.b A | 9.35 | ± | 0.04 a A | 5.82 | ± | 0.20 a.b.c A | 9.33 | ± | 0.02 a A | 5.83 | ± | 0.09 a A | 9.30 | ± | 0.03 a.b A | |
5 | 6.13 | ± | 0.06 b A | 9.35 | ± | 0.03 a A | 6.00 | ± | 0.02 a.b A | 9.32 | ± | 0.03 a A | 6.11 | ± | 0.18 a A | 9.26 | ± | 0.02 b B | |
10 | 6.10 | ± | 0.05 a.b A | 9.33 | ± | 0.02 a A | 6.26 | ± | 0.29 a A | 9.31 | ± | 0.04 a A | 5.01 | ± | 0.07 a A | 9.26 | ± | 0.02 b B | |
Salmonella enterica | 0 | 5.84 | ± | 0.23 c | 9.93 | ± | 0.02 a | 5.84 | ± | 0.23 c | 9.93 | ± | 0.04 a | 5.84 | ± | 0.23 c | 9.93 | ± | 0.02 a |
1 | 6.31 | ± | 0.11 b A | 9.95 | ± | 0.03 a A | 6.41 | ± | 0.28 b A | 9.94 | ± | 0.02 a A | 6.19 | ± | 0.12 b.c A | 9.88 | ± | 0.05 a.b A | |
2 | 6.55 | ± | 0.13 a.b A | 9.94 | ± | 0.02 a A | 6.41 | ± | 0.17 b A | 9.95 | ± | 0.03 a A | 6.27 | ± | 0.08 b.c A | 9.89 | ± | 0.04 a.b A | |
3 | 6.58 | ± | 0.22 a.b A | 9.92 | ± | 0.04 a A | 6.64 | ± | 0.07 a.b A | 9.96 | ± | 0.04 a A | 6.52 | ± | 0.13 a.b A | 9.83 | ± | 0.03 c B | |
5 | 6.90 | ± | 0.02 a A | 9.95 | ± | 0.03 a A | 6.71 | ± | 0.08 a.b A.B | 9.93 | ± | 0.02 a A | 6.51 | ± | 0.28 a.b B | 9.86 | ± | 0.03 b.c B | |
10 | 6.90 | ± | 0.11 a A | 9.95 | ± | 0.04 a A | 6.82 | ± | 0.06 a A | 9.95 | ± | 0.03 a A | 6.74 | ± | 0.07 a A | 9.80 | ± | 0.04 c B |
Bacterial Strain | Source | Collection Number/Accession Number |
---|---|---|
Gram-Positive Bacteria | ||
Enterococcus faecium WR1 | Water | MG911720 |
Staphylococcus aureus | ŁOCK | 0891 |
Brochothrix thermosphacta MMAP4 | Meat packed in a modified atmosphere | HQ890943.1 |
Lactobacillus sakei | ATCC | 15521 |
Listeria monocytogenes | ATCC | 13992 |
Gram-Negative Bacteria | ||
Moraxella osloensis | ATCC | 10973 |
Pseudomonas fragi | ATCC | 4973 |
Acinetobacter baumanii | ATCC | 19606 |
Escherichia coli | ATCC | 10536 |
Enterobacter aerogenes | PCM | 532 |
Salmonella enterica MCH1 | Chicken meat | MG911721 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Efenberger-Szmechtyk, M.; Nowak, A.; Czyżowska, A.; Kucharska, A.Z.; Fecka, I. Composition and Antibacterial Activity of Aronia melanocarpa (Michx.) Elliot, Cornus mas L. and Chaenomeles superba Lindl. Leaf Extracts. Molecules 2020, 25, 2011. https://doi.org/10.3390/molecules25092011
Efenberger-Szmechtyk M, Nowak A, Czyżowska A, Kucharska AZ, Fecka I. Composition and Antibacterial Activity of Aronia melanocarpa (Michx.) Elliot, Cornus mas L. and Chaenomeles superba Lindl. Leaf Extracts. Molecules. 2020; 25(9):2011. https://doi.org/10.3390/molecules25092011
Chicago/Turabian StyleEfenberger-Szmechtyk, Magdalena, Agnieszka Nowak, Agata Czyżowska, Alicja Z. Kucharska, and Izabela Fecka. 2020. "Composition and Antibacterial Activity of Aronia melanocarpa (Michx.) Elliot, Cornus mas L. and Chaenomeles superba Lindl. Leaf Extracts" Molecules 25, no. 9: 2011. https://doi.org/10.3390/molecules25092011
APA StyleEfenberger-Szmechtyk, M., Nowak, A., Czyżowska, A., Kucharska, A. Z., & Fecka, I. (2020). Composition and Antibacterial Activity of Aronia melanocarpa (Michx.) Elliot, Cornus mas L. and Chaenomeles superba Lindl. Leaf Extracts. Molecules, 25(9), 2011. https://doi.org/10.3390/molecules25092011