Development of Chitosan/Mannitol Microparticles as Delivery System for the Oral Administration of a Spirulina Bioactive Peptide Extract
Abstract
:1. Introduction
2. Results and Discussion
2.1. Microencapsulation Process, Yield, Extract Content, and Encapsulation Efficiency
2.2. Powder Characterization
2.2.1. Thermal Analysis (DSC)
2.2.2. Dimensional Analysis (LLS) at t0
2.2.3. Morphology
2.2.4. Derived Powder Properties: Powder Flowability and Mixture Homogeneity
Flowability
Mixture Homogeneity
2.3. Stability Studies
2.3.1. Dimensional Analysis at t180 Days
2.3.2. Hygroscopicity at t180 Days
2.3.3. Morphology at t180 Days
2.3.4. Flowability at t180 Days
2.4. In Vitro Permeability Test
3. Materials and Methods
3.1. Chemicals
3.2. HSE Preparation
3.3. Spray-Drying Process
3.3.1. Liquid Feed Preparation
3.3.2. Spray-Drying Conditions
3.3.3. Yield of Process
3.3.4. Drug Content
Specificity
3.3.5. Encapsulation Efficiency
3.4. Powder Characterization—Solid-State Evaluation
3.4.1. Thermal Analysis—Differential Scanning Calorimetry (DSC)
3.4.2. Dimensional Distribution (LLS)
3.4.3. Morphology (SEM-FM)
3.4.4. Flowability
3.4.5. Mixture Homogeneity
3.5. Stability Studies
3.6. In Vitro Permeability Tests
3.7. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Da Silva, S.C.; Fernandes, I.P.; Barros, L.; Fernandes, Â.; José Alves, M.; Calhelha, R.C.; Pereira, C.; Barreira, J.C.M.; Manrique, Y.; Colla, E.; et al. Spray-dried Spirulina platensis as an effective ingredient to improve yogurt formulations: Testing different encapsulating solutions. J. Funct. Foods 2019, 60, 103467. [Google Scholar] [CrossRef] [Green Version]
- Sommella, E.; Conte, G.M.; Salviati, E.; Pepe, G.; Bertamino, A.; Ostacolo, C.; Sansone, F.; Prete, F.D.; Aquino, R.P.; Campiglia, P. Fast profiling of natural pigments in different spirulina (arthrospira platensis) dietary supplements by DI-FT-ICR and evaluation of their antioxidant potential by pre-column DPPH-UHPLC assay. Molecules 2018, 23, 1152. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Gao, M.-H.; Zhang, X.-C.; Chu, X.-M. Molecular immune mechanism of C-phycocyanin from Spirulina platensis induces apoptosis in HeLa cells in vitro. Biotechnol. Appl. Biochem. 2006, 43, 155. [Google Scholar] [CrossRef] [PubMed]
- Lordan, S.; Ross, R.P.; Stanton, C. Marine bioactives as functional food ingredients: Potential to reduce the incidence of chronic diseases. Mar. Drugs 2011, 9, 1056–1100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shahbazizadeh, S.; Khosravi-Darani, K.; Sohrabvandi, S. Fortification of Iranian Traditional Cookies with Spirulina platensis. Annu. Res. Rev. Biol. 2015, 7, 144–154. [Google Scholar] [CrossRef]
- Niccolai, A.; Venturi, M.; Galli, V.; Pini, N.; Rodolfi, L.; Biondi, N.; D’Ottavio, M.; Batista, A.P.; Raymundo, A.; Granchi, L.; et al. Development of new microalgae-based sourdough “crostini”: Functional effects of Arthrospira platensis (spirulina) addition. Sci. Rep. 2019, 9, 1–12. [Google Scholar] [CrossRef]
- Chen, M.; Li, B. The effect of molecular weights on the survivability of casein-derived antioxidant peptides after the simulated gastrointestinal digestion. Innov. Food Sci. Emerg. Technol. 2012, 16, 341–348. [Google Scholar] [CrossRef]
- Pauletti, G.M.; Gangwar, S.; Knipp, G.T.; Nerurkar, M.M.; Okumu, F.W.; Tamura, K.; Siahaan, T.J.; Borchardt, R.T. Structural requirements for intestinal absorption of peptide drugs. J. Control. Release 1996, 41, 3–17. [Google Scholar] [CrossRef]
- Carrizzo, A.; Conte, G.M.; Sommella, E.; Damato, A.; Ambrosio, M.; Sala, M.; Scala, M.C.; Aquino, R.P.; De Lucia, M.; Madonna, M.; et al. Novel Potent Decameric Peptide of Spirulina platensis Reduces Blood Pressure Levels Through a PI3K/AKT/eNOS-Dependent Mechanism. Hypertens 2019, 73, 449–457. [Google Scholar] [CrossRef]
- Maher, S.; Mrsny, R.J.; Brayden, D.J. Intestinal permeation enhancers for oral peptide delivery. Adv. Drug Deliv. Rev. 2016, 106, 277–319. [Google Scholar] [CrossRef]
- Ruphuy, G.; Saralegi, A.; Lopes, J.C.; Dias, M.M.; Barreiro, M.F. Spray drying as a viable process to produce nano-hydroxyapatite/chitosan (n-HAp/CS) hybrid microparticles mimicking bone composition. Adv. Powder Technol. 2016, 27, 575–583. [Google Scholar] [CrossRef]
- Aprodu, I.; Milea, S.A.; Anghel, R.M.; Enachi, E.; Barbu, V.; Crăciunescu, O.; Râpeanu, G.; Bahrim, G.E.; Oancea, A.; Stănciuc, N. New Functional Ingredients Based on Microencapsulation of Aqueous Anthocyanin-Rich Extracts Derived from Black Rice (Oryza sativa L.). Molecules 2019, 24, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mladenovska, K.; Raicki, R.S.; Janevik, E.I.; Ristoski, T.; Pavlova, M.J.; Kavrakovski, Z.; Dodov, M.G.; Goracinova, K. Colon-specific delivery of 5-aminosalicylic acid from chitosan-Ca-alginate microparticles. Int. J. Pharm. 2007, 342, 124–136. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.K.M.; Taip, F.S.; Abdulla, H.Z. Effectiveness of additives in spray drying performance: A review. Food Res. 2018, 2, 486–499. [Google Scholar] [CrossRef]
- Tan, L.W.; Ibrahim, M.N.; Kamil, R.; Taip, F.S. Empirical modeling for spray drying process of sticky and non-sticky products. Procedia Food Sci. 2011, 1, 690–697. [Google Scholar] [CrossRef] [Green Version]
- Yoshinari, T.; Forbes, R.T.; York, P.; Kawashima, Y. The improved compaction properties of mannitol after a moisture-induced polymorphic transition. Int. J. Pharm. 2003, 258, 121–131. [Google Scholar] [CrossRef]
- Rege, P.R.; Garmise, R.J.; Block, L.H. Spray-dried chitinosans: Part I: Preparation and characterization. Int. J. Pharm. 2003, 252, 41–51. [Google Scholar] [CrossRef]
- Aranaz, I.; Paños, I.; Peniche, C.; Heras, Á.; Acosta, N. Chitosan spray-dried microparticles for controlled delivery of venlafaxine hydrochloride. Molecules 2017, 22, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Ranaldi, G.; Marigliano, I.; Vespignani, I.; Perozzi, G.; Sambuy, Y. The effect of chitosan and other polycations on tight junction permeability in the human intestinal Caco-2 cell line. J. Nutr. Biochem. 2002, 13, 157–167. [Google Scholar] [CrossRef]
- Lueßen, H.L.; De Leeuw, B.J.; Langemeÿer, M.W.E.; De Boer, A.G.; Verhoef, J.C.; Junginger, H.E. Mucoadhesive polymers in peroral peptide drug delivery. VI. Carbomer and chitosan improve the intestinal absorption of the peptide drug buserelin in vivo. Pharm. Res. 1996, 13, 1668–1672. [Google Scholar] [CrossRef]
- Sansone, F.; Picerno, P.; Mencherini, T.; Porta, A.; Lauro, M.R.; Russo, P.; Aquino, R.P. Technological properties and enhancement of antifungal activity of a Paeonia rockii extract encapsulated in a chitosan-based matrix. J. Food Eng. 2014, 120, 260–267. [Google Scholar] [CrossRef]
- Per, A.; Tuulikki, L.; Stanley, D.S.; Lisbeth, I. Effects of Chitosan on the Permeability of Monolayers of Intestinal Epithelial Cells. Pharm. Res. 1994, 11, 1358–1361. [Google Scholar]
- Shishir, M.R.I.; Chen, W. Trends of spray drying: A critical review on drying of fruit and vegetable juices. Trends Food Sci. Technol. 2017, 65, 49–67. [Google Scholar] [CrossRef]
- Chegini, G.R.; Ghobadian, B. Effect of spray-drying conditions on physical properties of orange juice powder. Dry. Technol. 2005, 23, 657–668. [Google Scholar] [CrossRef]
- Sansone, F.; Picerno, P.; Mencherini, T.; Villecco, F.; D&apos Ursi, A.M.; Aquino, R.P.; Lauro, M.R. Flavonoid microparticles by spray-drying: Influence of enhancers of the dissolution rate on properties and stability. J. Food Eng. 2011, 103, 188–196. [Google Scholar] [CrossRef]
- Sansone, F.; Mencherini, T.; Picerno, P.; D’Amore, M.; Aquino, R.P.; Lauro, M.R. Maltodextrin/pectin microparticles by spray drying as carrier for nutraceutical extracts. J. Food Eng. 2011, 105, 468–476. [Google Scholar] [CrossRef]
- De Vos, P.; Faas, M.M.; Spasojevic, M.; Sikkema, J. Encapsulation for preservation of functionality and targeted delivery of bioactive food components. Int. Dairy J. 2010, 20, 292–302. [Google Scholar] [CrossRef]
- Sansone, F.; Picerno, P.; Mencherini, T.; Russo, P.; Gasparri, F.; Giannini, V.; Lauro, M.R.; Puglisi, G.; Aquino, R.P. Enhanced technological and permeation properties of a microencapsulated soy isoflavones extract. J. Food Eng. 2013, 115, 298–305. [Google Scholar] [CrossRef]
- Sansone, F.; Esposito, T.; Mencherini, T.; Lauro, M.R.; Del Gaudio, P.; Picerno, P.; Pepe, G.; Aquino, R.P. Particle technology applied to a lactose/NaCMC blend: Production and characterization of a novel and stable spray-dried ingredient. Powder Technol. 2018, 329, 304–312. [Google Scholar] [CrossRef]
- Ofokansi, K.; Winter, G.; Fricker, G.; Coester, C. Matrix-loaded biodegradable gelatin nanoparticles as new approach to improve drug loading and delivery. Eur. J. Pharm. Biopharm. 2010, 76, 1–9. [Google Scholar] [CrossRef]
- Gong, J.; Huo, M.; Zhou, J.; Zhang, Y.; Peng, X.; Yu, D.; Zhang, H.; Li, J. Synthesis, characterization, drug-loading capacity and safety of novel octyl modified serum albumin micelles. Int. J. Pharm. 2009, 376, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Abraham, J. International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use. Handb. Transnatl. Econ. Gov. Regimes 2009, 1041–1054. [Google Scholar]
- Sansone, F.; Esposito, T.; Lauro, M.R.; Picerno, P.; Mencherini, T.; Gasparri, F.; De Santis, S.; Chieppa, M.; Cirillo, C.; Aquino, R.P. Application of spray drying particle engineering to a high-functionality/low-solubility milk thistle extract: Powders production and characterization. Molecules 2018, 23, 1–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goubet, I.; Le Quere, J.L.; Voilley, A.J. Retention of Aroma Compounds by Carbohydrates: Influence of Their Physicochemical Characteristics and of Their Physical State. A Review. J. Agric. Food Chem. 1998, 46, 1981–1990. [Google Scholar] [CrossRef]
- Grabowski, J.A.; Truong, V.D.; Daubert, C.R. Spray-drying of amylase hydrolyzed sweetpotato puree and physicochemical properties of powder. J. Food Sci. 2006, 71. [Google Scholar] [CrossRef]
- De Cicco, F.; Porta, A.; Sansone, F.; Aquino, R.P.; Del Gaudio, P. Nanospray technology for an in situ gelling nanoparticulate powder as a wound dressing. Int. J. Pharm. 2014, 473, 30–37. [Google Scholar] [CrossRef]
- Poux, M.; Fayolle, P.; Bertrand, J.; Bridoux, D.; Bousquet, J. Powder mixing: Some practical rules applied to agitated systems. Powder Technol. 1991, 68, 213–234. [Google Scholar] [CrossRef]
- Zaid, A.N.; Al-Ramahi, R.J.; Ghoush, A.A.; Qaddumi, A.; Zaaror, Y.A. Weight and content uniformity of lorazepam half-tablets: A study of correlation of a low drug content product. Saudi Pharm. J. 2013, 21, 71–75. [Google Scholar] [CrossRef] [Green Version]
- Farmacopea ufficiale della Repubblica Italiana, XII ed.; Istituto Poligrafico Dello Stato: Roma, Italy, 2008; p. 1568.
- Soukoulis, C.; Behboudi-Jobbehdar, S.; Yonekura, L.; Parmenter, C.; Fisk, I. Impact of Milk Protein Type on the Viability and Storage Stability of Microencapsulated Lactobacillus acidophilus NCIMB 701748 Using Spray Drying. Food Bioprocess Technol. 2014, 7, 1255–1268. [Google Scholar] [CrossRef]
- Di Cagno, M.; Bibi, H.A.; Bauer-Brandl, A. New biomimetic barrier PermeapadTM for efficient investigation of passive permeability of drugs. Eur. J. Pharm. Sci. 2015, 73, 29–34. [Google Scholar] [CrossRef]
- Esposito, T.; Sansone, F.; Russo, P.; Picerno, P.; Aquino, R.P.; Gasparri, F.; Mencherini, T. A water-soluble microencapsulated milk thistle extract as active ingredient for dermal formulations. Molecules 2019, 24, 1547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Sample Availability: Samples of the raw extract (HSE) and Spray-dried powders are available from the authors |
Samples | M% | C% | HSE% | Yield% | TEC% | SP6% | AEC% | EE% |
---|---|---|---|---|---|---|---|---|
CM-Blk | 2.50 | 0.25 | - | 77.03 ± 0.81 a | - | - | - | - |
CM-HSE | 2.50 | 0.25 | 0.25 | 68.96 ± 0.93 a | 8.33 | 1.17 ± 0.19 a | 8.46 ± 0.18 a | 101.85 ± 2.05 a |
Samples | d50 μm (Span) |
---|---|
C | 166.20 (1.54) |
M | 125.21 (2.47) |
CM-Blk | 4.87 (1.50) |
HSE | 39.76 (1.89) |
CM-HSE | 14.24 (2.66) |
Samples | Bulk Density (g/cm3) ± S.D. * | Tap Density (g/cm3) ± S.D. | HR ± S.D. | CI ± S.D. | Flow Character |
---|---|---|---|---|---|
CM-HSE | 369.80 ± 7.16 | 412.89 ± 9.19 | 1.12 ± 0.01 | 10.67% ± 0.01 | Good |
HSE | 140.47 ± 11.01 | 193.65 ± 14.29 | 1.38 ± 0.02 | 27.67% ± 0.02 | Poor |
Samples | t180 | t180 |
---|---|---|
d50 μm (Span) | Hygroscopicity % | |
C | / | / |
M | / | / |
CM-Blk | 4.95 (1.28) | / |
HSE | 54.60 (2.06) | −8.40 ± 1.19 |
CM-HSE | 15.51 (3.21) | −1.25 ± 0.44 |
Samples | Bulk Density (g/cm3) ± S.D. * | Tap Density (g/cm3) ± S.D. | HR ± S.D. | CI ± S.D. | Flow Character |
---|---|---|---|---|---|
CM-HSE (t180) | 366.11 ± 8.21 | 411.34 ± 11.12 | 1.12 ± 0.01 | 10.33% ± 0.01 | Good |
HSE (t180) | N.D. ** | N.D. | N.D. | N.D. | N.D. |
Compressibility Index | Flow Character | Hausner Ratio |
---|---|---|
≤10 | Excellent | 1.00–1.11 |
11–15 | Good | 1.12–1.18 |
16–20 | Fair | 1.19–1.25 |
21–25 | Passable | 1.26–1.34 |
26–31 | Poor | 1.35–1.45 |
32–37 | Very poor | 1.46–1.59 |
>38 | Very, very poor | >1.60 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aquino, R.P.; Auriemma, G.; Conte, G.M.; Esposito, T.; Sommella, E.; Campiglia, P.; Sansone, F. Development of Chitosan/Mannitol Microparticles as Delivery System for the Oral Administration of a Spirulina Bioactive Peptide Extract. Molecules 2020, 25, 2086. https://doi.org/10.3390/molecules25092086
Aquino RP, Auriemma G, Conte GM, Esposito T, Sommella E, Campiglia P, Sansone F. Development of Chitosan/Mannitol Microparticles as Delivery System for the Oral Administration of a Spirulina Bioactive Peptide Extract. Molecules. 2020; 25(9):2086. https://doi.org/10.3390/molecules25092086
Chicago/Turabian StyleAquino, Rita P., Giulia Auriemma, Giulio M. Conte, Tiziana Esposito, Eduardo Sommella, Pietro Campiglia, and Francesca Sansone. 2020. "Development of Chitosan/Mannitol Microparticles as Delivery System for the Oral Administration of a Spirulina Bioactive Peptide Extract" Molecules 25, no. 9: 2086. https://doi.org/10.3390/molecules25092086
APA StyleAquino, R. P., Auriemma, G., Conte, G. M., Esposito, T., Sommella, E., Campiglia, P., & Sansone, F. (2020). Development of Chitosan/Mannitol Microparticles as Delivery System for the Oral Administration of a Spirulina Bioactive Peptide Extract. Molecules, 25(9), 2086. https://doi.org/10.3390/molecules25092086