Phosphoric Acid Activated Carbon from Melia azedarach Waste Sawdust for Adsorptive Removal of Reactive Orange 16: Equilibrium Modelling and Thermodynamic Analysis
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of the MA-AC400 Adsorbent
2.1.1. Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Spectroscopy (EDS)
2.1.2. Fourier Transform Infrared Spectroscopy (FTIR) Analysis
2.1.3. Dynamic Light Scattering (DLS) Analysis
2.1.4. Fluorescence Analysis of MA-AC400
2.1.5. Textural Characterization of MA-AC400
2.2. Batch Reactor Adsorption Studies
2.2.1. Effect of Contact Time
2.2.2. Effect of Adsorbent Dose
2.2.3. Effect of Initial Dye Concentration
2.2.4. pH, pHpzc and Boehm Titration Analyses
2.2.5. Effect of Temperature
2.3. Mechanism of RO16 Adsorption onto MA-AC400
2.3.1. Equilibrium Isotherm Analysis
2.3.2. Adsorption Kinetics
2.4. Desorption Study of MA-AC400
2.5. Cost per kg of MA-AC400
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Preparation of Activated Carbon (AC)
3.3. Characterization of MA-AC400
3.3.1. pHPZC Determination and Boehm Titration
3.3.2. Textural Properties of MA-AC400
3.4. Batch Reactor Studies
3.5. Thermodynamic Studies
3.6. Isotherm Studies
Error Function Analysis for Linear Isotherms
3.7. Kinetic Modelling
3.8. Desorption Study
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rawat, D.; Mishra, V.; Sharma, R.S. Detoxification of azo dyes in the context of environmental processes. Chemosphere 2016, 155, 591–605. [Google Scholar] [CrossRef]
- Kamranifar, M.; Khodadadi, M.; Samiei, V.; Dehdashti, B.; Sepehr, M.N.; Rafati, L.; Nasseh, N. Comparison the removal of reactive red 195 dye using powder and ash of barberry stem as a low cost adsorbent from aqueous solutions: Isotherm and kinetic study. J. Mol. Liq. 2018, 255, 572–577. [Google Scholar] [CrossRef]
- Aksakal, O.; Ucun, H. Equilibrium, kinetic and thermodynamic studies of the biosorption of textile dye (Reactive Red 195) onto Pinus sylvestris L. J. Hazard. Mater. 2010, 181, 666–672. [Google Scholar] [CrossRef] [PubMed]
- Dursun, A.Y.; Tepe, O. Removal of chemazol reactive red 195 from aqueous solution by dehydrated beet pulp carbon. J. Hazard. Mater. 2011, 194, 303–311. [Google Scholar] [CrossRef] [PubMed]
- Yousefi, Z.; Mohseni Bandpei, A.; Mohamadpur, R.; Malaki, A.; Ghahramani, E. evaluation of the combined GAC-SBR system performance in the removal of yellow 3 and disperse yellow 3 reactive dyes from the waste. JMUMS 2012, 21, 41–49. [Google Scholar]
- Ashrafi, S.; Kamani, H.; Soheil Arezomand, H.; Yousefi, N.; Mahvi, A. Optimization and modeling of process variables for adsorption of Basic Blue 41 on NaOH-modified rice husk using response surface methodology. Desalin. Water Treat. 2016, 57, 14051–14059. [Google Scholar] [CrossRef]
- Bergamini, R.B.M.; Azevedo, E.B.; Araújo, L.R.R.d. Heterogeneous photocatalytic degradation of reactive dyes in aqueous TiO2 suspensions: Decolorization kinetics. Chem. Eng. J. 2009, 149, 215–220. [Google Scholar] [CrossRef]
- Plácido, J.; Chanagá, X.; Ortiz-Monsalve, S.; Yepes, M.; Mora, A. Degradation and detoxification of synthetic dyes and textile industry effluents by newly isolated Leptosphaerulina sp. from Colombia. Bioresour. Bioprocess. 2016, 3, 6. [Google Scholar] [CrossRef] [Green Version]
- Mukhlish, M.; Khan, M.; Islam, A.; Akanda, A. Removal of reactive dye from aqueous solution using coagulation–flocculation coupled with adsorption on papaya leaf. J. Mech. Eng. Sci. 2016, 10, 1884–1894. [Google Scholar] [CrossRef]
- Yang, Z.; Asoh, T.-A.; Uyama, H. Removal of cationic or anionic dyes from water using ion exchange cellulose monoliths as adsorbents. Bull. Chem. Soc. Jpn. 2019, 92, 1453–1461.11. [Google Scholar] [CrossRef]
- Somogyi, V.; Avdičević, M.Z.; Hargitai, R.H.; Domokos, E.; Ljubas, D.; Dobrović, S. Modelling reactive dye removal by ultrafiltration ceramic membranes. In Proceedings of the 26 Hrvatski skup kemičara i kemijskih inženjera s međunarodnim sudjelovanjem, Zagreb, Croatia, 9–12 April 2019. [Google Scholar]
- Cates, E.L. Photocatalytic water treatment: So where are we going with this? Environ. Sci. Technol. 2017, 51, 757–758. [Google Scholar] [CrossRef] [PubMed]
- Guan, Z.-B.; Song, C.-M.; Zhang, N.; Zhou, W.; Xu, C.-W.; Zhou, L.-X.; Zhao, H.; Cai, Y.-J.; Liao, X.-R. Overexpression, characterization, and dye-decolorizing ability of a thermostable, pH-stable, and organic solvent-tolerant laccase from Bacillus pumilus W3. J. Mol. Catal. B Enzym. 2014, 101, 1–6. [Google Scholar] [CrossRef]
- Golob, V.; Vinder, A.; Simonič, M. Efficiency of the coagulation/flocculation method for the treatment of dyebath effluents. Dyes Pigments 2005, 67, 93–97. [Google Scholar] [CrossRef]
- Karcher, S.; Kornmüller, A.; Jekel, M. Anion exchange resins for removal of reactive dyes from textile wastewaters. Water Res. 2002, 36, 4717–4724. [Google Scholar] [CrossRef]
- Dhiman, N.; Markandeya; Singh, A.; Verma, N.K.; Ajaria, N.; Patnaik, S. Statistical optimization and artificial neural network modeling for acridine orange dye degradation using in-situ synthesized polymer capped ZnO nanoparticles. J. Colloid Interfaces Sci. 2017, 493, 295–306. [Google Scholar] [CrossRef]
- Bazgir, A.; Khorshidi, A.; Kamani, H.; Ashrafi, S.D.; Naghipour, D. Modeling of azo dyes adsorption on magnetic NiFe2O4/RGO nanocomposite using response surface methodology. J. Environ. Health Sci. Eng. 2019, 17, 931–947. [Google Scholar] [CrossRef]
- Shah, K.H.; Ayub, M.; Fahad, M.; Bilal, M.; Amin, B.A.Z.; Hussain, Z. Natural dolomite as a low-cost adsorbent for efficient removal of As(III) from aqueous solutions. Mater. Res. Express 2019, 6, 085535. [Google Scholar] [CrossRef]
- Muneeb, M.; Ismail, B.; Fazal, T.; Khan, R.A.; Khan, A.M.; Bilal, M.; Muhammad, B.; Khan, A.R. Water treatment by photodegradation on orthorhombic antimony sulfide powder and effect of key operational parameters using methyl orange as a model pollutant. Arab. J. Chem. 2018, 17, 1117–1125. [Google Scholar] [CrossRef] [Green Version]
- Wasim, M.; Sagar, S.; Sabir, A.; Shafiq, M.; Jamil, T. Decoration of open pore network in Polyvinylidene fluoride/MWCNTs with chitosan for the removal of reactive orange 16 dye. Carbohydr. Polym. 2017, 174, 474–483. [Google Scholar] [CrossRef]
- Torres-Perez, J.; Huang, Y.; Bazargan, A.; Khoshand, A.; McKay, G. Two-stage optimization of Allura direct red dye removal by treated peanut hull waste. SN Appl. Sci. 2020, 2, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Rehman, S.; Adil, A.; Shaikh, A.J.; Shah, J.A.; Arshad, M.; Ali, M.A.; Bilal, M. Role of sorption energy and chemisorption in batch methylene blue and Cu2+ adsorption by novel thuja cone carbon in binary component system: Linear and nonlinear modeling. Environ. Sci. Pollut. Res. 2018, 25, 31579–31592. [Google Scholar] [CrossRef] [PubMed]
- Durairaj, K.; Senthilkumar, P.; Velmurugan, P.; Divyabharathi, S.; Kavitha, D. Development of activated carbon from Nerium oleander flower and their rapid adsorption of direct and reactive dyes. Int. J. Green Energy 2019, 16, 573–582. [Google Scholar] [CrossRef]
- Kyzas, G.Z.; Deliyanni, E.A.; Bikiaris, D.N.; Mitropoulos, A.C. Graphene composites as dye adsorbents. Chem. Eng. Res. Des. 2018, 129, 75–88. [Google Scholar] [CrossRef]
- Mahmoodi, N.M.; Saffar-Dastgerdi, M.H. Zeolite nanoparticle as a superior adsorbent with high capacity: Synthesis, surface modification and pollutant adsorption ability from wastewater. Microchem. J. 2019, 145, 74–83. [Google Scholar] [CrossRef]
- Jawad, A.H.; Norrahma, S.S.A.; Hameed, B.; Ismail, K. Chitosan-glyoxal film as a superior adsorbent for two structurally different reactive and acid dyes: Adsorption and mechanism study. Int. J. Biol. Macromol. 2019, 135, 569–581. [Google Scholar] [CrossRef]
- Nasar, A.; Mashkoor, F. Application of polyaniline-based adsorbents for dye removal from water and wastewater—A review. Environ. Sci. Pollut. Res. 2019, 26, 5333–5356. [Google Scholar] [CrossRef]
- Ghouma, I.; Jeguirim, M.; Limousy, L.; Bader, N.; Ouederni, A.; Bennici, S. Factors influencing NO2 adsorption/reduction on microporous activated carbon: Porosity vs. surface chemistry. Materials 2018, 11, 622. [Google Scholar] [CrossRef] [Green Version]
- Mohtashami, S.-A.; KOLUR, N.A.; Kaghazchi, T.; Asadi-Kesheh, R.; Soleimani, M. Optimization of sugarcane bagasse activation to achieve adsorbent with high affinity towards phenol. Turk. J. Chem. 2018, 42, 1720–1735. [Google Scholar] [CrossRef]
- Yakout, S.; El-Deen, G.S. Characterization of activated carbon prepared by phosphoric acid activation of olive stones. Arab. J. Chem. 2016, 9, S1155–S1162. [Google Scholar] [CrossRef] [Green Version]
- Budinova, T.; Ekinci, E.; Yardim, F.; Grimm, A.; Björnbom, E.; Minkova, V.; Goranova, M. Characterization and application of activated carbon produced by H3PO4 and water vapor activation. Fuel Process. Technol. 2006, 87, 899–905. [Google Scholar] [CrossRef]
- İzgi, M.S.; Saka, C.; Baytar, O.; Saraçoğlu, G.; Şahin, Ö. Preparation and characterization of activated carbon from microwave and conventional heated almond shells using phosphoric acid activation. Anal. Lett. 2019, 52, 772–789. [Google Scholar] [CrossRef]
- Nicholas, A.F.; Hussein, M.Z.; Zainal, Z.; Khadiran, T. Palm kernel shell activated carbon as an inorganic framework for shape-stabilized phase change material. Nanomaterials 2018, 8, 689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rhee, I.; Kim, Y.A.; Shin, G.-O.; Kim, J.H.; Muramatsu, H. Compressive strength sensitivity of cement mortar using rice husk-derived graphene with a high specific surface area. Constr. Build. Mater. 2015, 96, 189–197. [Google Scholar] [CrossRef]
- Güzel, F.; Sayğılı, H.; Sayğılı, G.A.; Koyuncu, F. New low-cost nanoporous carbonaceous adsorbent developed from carob (Ceratonia siliqua) processing industry waste for the adsorption of anionic textile dye: Characterization, equilibrium and kinetic modeling. J. Mol. Liq. 2015, 206, 244–255. [Google Scholar] [CrossRef]
- Munagapati, V.S.; Wen, J.-C.; Pan, C.-L.; Gutha, Y.; Wen, J.-H. Enhanced adsorption performance of Reactive Red 120 azo dye from aqueous solution using quaternary amine modified orange peel powder. J. Mol. Liq. 2019, 285, 375–385. [Google Scholar] [CrossRef]
- Nafisah, A.; Yuliusman, Y.; Nasruddin, N.; Nugroho, Y.W. Methane storage performance in NiO modified soybean straw based-activated carbon. IOP Conf. Ser. Mater. Sci. Eng. 2020, 742, 012035. [Google Scholar] [CrossRef]
- Hadi, P.; Yeung, K.Y.; Barford, J.; An, K.J.; McKay, G. Significance of “effective” surface area of activated carbons on elucidating the adsorption mechanism of large dye molecules. J. Environ. Chem. Eng. 2015, 3, 1029–1037. [Google Scholar] [CrossRef]
- Wang, X.S.; Li, Z.Z.; Tao, S.R. Removal of chromium (VI) from aqueous solution using walnut hull. J. Environ. Manag. 2009, 90, 721–729. [Google Scholar] [CrossRef]
- Moussavi, G.; Barikbin, B. Biosorption of chromium(VI) from industrial wastewater onto pistachio hull waste biomass. Chem. Eng. J. 2010, 162, 893–900. [Google Scholar] [CrossRef]
- Temesgen, F.; Gabbiye, N.; Sahu, O. Biosorption of reactive red dye (RRD) on activated surface of banana and orange peels: Economical alternative for textile effluent. Surf. Interfaces 2018, 12, 151–159. [Google Scholar] [CrossRef]
- Mahamad, M.N.; Zaini, M.A.A.; Zakaria, Z.A. Preparation and characterization of activated carbon from pineapple waste biomass for dye removal. Int. Biodeterior. Biodegr. 2015, 102, 274–280. [Google Scholar] [CrossRef]
- Abdulhameed, A.S.; Mohammad, A.-T.; Jawad, A.H. Application of response surface methodology for enhanced synthesis of chitosan tripolyphosphate/TiO2 nanocomposite and adsorption of reactive orange 16 dye. J. Clean. Prod. 2019, 232, 43–56. [Google Scholar] [CrossRef]
- Marrakchi, F.; Khanday, W.A.; Asif, M.; Hameed, B.H. Cross-linked chitosan/sepiolite composite for the adsorption of methylene blue and reactive orange 16. Int. J. Biol. Macromol. 2016, 93, 1231–1239. [Google Scholar] [CrossRef] [PubMed]
- Marrakchi, F.; Ahmed, M.J.; Khanday, W.A.; Asif, M.; Hameed, B.H. Mesoporous carbonaceous material from fish scales as low-cost adsorbent for reactive orange 16 adsorption. J. Taiwan Inst. Chem. Eng. 2017, 71, 47–54. [Google Scholar] [CrossRef]
- Rahdar, S.; Rahdar, A.; Zafar, M.N.; Shafqat, S.S.; Ahmadi, S. Synthesis and characterization of MgO supported Fe–Co–Mn nanoparticles with exceptionally high adsorption capacity for rhodamine B dye. J. Mater. Res. Technol. 2019, 8, 3800–3810. [Google Scholar] [CrossRef]
- Sun, D.; Zhang, Z.; Wang, M.; Wu, Y. Adsorption of reactive dyes on activated carbon developed from Enteromorpha prolifera. Am. J. Anal. Chem. 2013, 4, 10. [Google Scholar] [CrossRef] [Green Version]
- Al-Degs, Y.S.; El-Barghouthi, M.I.; Khraisheh, M.A.; Ahmad, M.N.; Allen, S.J. Effect of surface area, micropores, secondary micropores, and mesopores volumes of activated carbons on reactive dyes adsorption from solution. Sep. Sci. Technol. 2005, 39, 97–111. [Google Scholar] [CrossRef]
- Muthukkumaran, A.; Aravamudan, K. Combined homogeneous surface diffusion model—Design of experiments approach to optimize dye adsorption considering both equilibrium and kinetic aspects. J. Environ. Manag. 2017, 204, 424–435. [Google Scholar] [CrossRef]
- Wang, S.; Li, H. Dye adsorption on unburned carbon: Kinetics and equilibrium. J. Hazard. Mater. 2005, 126, 71–77. [Google Scholar] [CrossRef]
- Dinçer, A.R.; Güneş, Y.; Karakaya, N.; Güneş, E. Comparison of activated carbon and bottom ash for removal of reactive dye from aqueous solution. Bioresour. Technol. 2007, 98, 834–839. [Google Scholar] [CrossRef]
- Calvete, T.; Lima, E.C.; Cardoso, N.F.; Vaghetti, J.C.P.; Dias, S.L.P.; Pavan, F.A. Application of carbon adsorbents prepared from Brazilian-pine fruit shell for the removal of reactive orange 16 from aqueous solution: Kinetic, equilibrium, and thermodynamic studies. J. Environ. Manag. 2010, 91, 1695–1706. [Google Scholar] [CrossRef] [PubMed]
- Mahmoud, M.E.; Nabil, G.M.; El-Mallah, N.M.; Karar, S.B. Improved removal and decolorization of C.I. anionic reactive yellow 145 A dye from water in a wide pH range via active carbon adsorbent-loaded-cationic surfactant. Desalin. Water Treat. 2015, 55, 227–240. [Google Scholar] [CrossRef]
- Irem, S.; Mahmood Khan, Q.; Islam, E.; Jamal Hashmat, A.; Anwar ul Haq, M.; Afzal, M.; Mustafa, T. Enhanced removal of reactive navy blue dye using powdered orange waste. Ecol. Eng. 2013, 58, 399–405. [Google Scholar] [CrossRef]
- Kim, T.-Y.; Park, S.-S.; Cho, S.-Y. Adsorption characteristics of Reactive Black 5 onto chitosan beads cross-linked with epichlorohydrin. J. Ind. Eng. Chem. 2012, 18, 1458–1464. [Google Scholar] [CrossRef]
- Al-Degs, Y.; Khraisheh, M.; Allen, S.; Ahmad, M. Adsorption characteristics of reactive dyes in columns of activated carbon. J. Hazard. Mater. 2009, 165, 944–949. [Google Scholar] [CrossRef]
- Ghazali, A.; Shirani, M.; Semnani, A.; Zare-Shahabadi, V.; Nekoeinia, M. Optimization of crystal violet adsorption onto Date palm leaves as a potent biosorbent from aqueous solutions using response surface methodology and ant colony. J. Environ. Chem. Eng. 2018, 6, 3942–3950. [Google Scholar] [CrossRef]
- Elgarahy, A.; Elwakeel, K.; Elshoubaky, G.; Mohammad, S. Untapped sepia shell–based composite for the sorption of cationic and anionic dyes. Water Air Soil Pollut. 2019, 230, 217. [Google Scholar] [CrossRef]
- Clark, H.M.; Alves, C.C.; Franca, A.S.; Oliveira, L.S. Evaluation of the performance of an agricultural residue-based activated carbon aiming at removal of phenylalanine from aqueous solutions. LWT 2012, 49, 155–161. [Google Scholar] [CrossRef] [Green Version]
- Jaouadi, M.; Hbaieb, S.; Guedidi, H.; Reinert, L.; Amdouni, N.; Duclaux, L. Preparation and characterization of carbons from β-cyclodextrin dehydration and from olive pomace activation and their application for boron adsorption. J. Saudi Chem. Soc. 2017, 21, 822–829. [Google Scholar] [CrossRef] [Green Version]
- Asouhidou, D.D.; Triantafyllidis, K.S.; Lazaridis, N.K.; Matis, K.A.; Kim, S.-S.; Pinnavaia, T.J. Sorption of reactive dyes from aqueous solutions by ordered hexagonal and disordered mesoporous carbons. Micropor. Mesopor. Mat. 2009, 117, 257–267. [Google Scholar] [CrossRef]
- Yang, Q.; Wu, P.; Liu, J.; Rehman, S.; Ahmed, Z.; Ruan, B.; Zhu, N. Batch interaction of emerging tetracycline contaminant with novel phosphoric acid activated corn straw porous carbon: Adsorption rate and nature of mechanism. Environ. Res. 2020, 181, 108899. [Google Scholar] [CrossRef] [PubMed]
- Raji, F.; Pakizeh, M. Kinetic and thermodynamic studies of Hg(II) adsorption onto MCM-41 modified by ZnCl2. Appl. Surf. Sci. 2014, 301, 568–575. [Google Scholar] [CrossRef]
- Ghodbane, I.; Hamdaoui, O. Removal of mercury(II) from aqueous media using eucalyptus bark: Kinetic and equilibrium studies. J. Hazard. Mater. 2008, 160, 301–309. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, P.; Show, S.; Rahman, W.U.; Halder, G. Linearity and non-linearity analysis of isotherms and kinetics for ibuprofen remotion using superheated steam and acid modified biochar. Process. Saf. Environ. Prot. 2019, 126, 193–204. [Google Scholar] [CrossRef]
- Akhouairi, S.; Ouachtak, H.; Addi, A.A.; Jada, A.; Douch, J. Natural sawdust as adsorbent for the eriochrome black T dye removal from aqueous solution. Water Air Soil Pollut. 2019, 230, 181. [Google Scholar] [CrossRef]
- Boehm, H. Some aspects of the surface chemistry of carbon blacks and other carbons. Carbon 1994, 32, 759–769. [Google Scholar] [CrossRef]
- Tran, H.N.; Chao, H.-P.; You, S.-J. Activated carbons from golden shower upon different chemical activation methods: Synthesis and characterizations. Adsorpt. Sci. Technol. 2018, 36, 95–113. [Google Scholar] [CrossRef]
- Cid, A.; Hernandez, V.; Gonzalez, A.; Hernandez, A.; Alonso, O. Synthesis of activated carbon from black sapote seeds characterized and application in the elimination of heavy metals and textile dyes. Chin. J. Chem. Eng. 2019, 21. [Google Scholar] [CrossRef]
- Dural, M.U.; Cavas, L.; Papageorgiou, S.K.; Katsaros, F.K. Methylene blue adsorption on activated carbon prepared from Posidonia oceanica (L.) dead leaves: Kinetics and equilibrium studies. Chem. Eng. J. 2011, 168, 77–85. [Google Scholar] [CrossRef]
- Frantz, T.S.; Silveira, N.; Quadro, M.S.; Andreazza, R.; Barcelos, A.A.; Cadaval, T.R.; Pinto, L.A. Cu (II) adsorption from copper mine water by chitosan films and the matrix effects. Environ. Sci. Pollut. Res. 2017, 24, 5908–5917. [Google Scholar] [CrossRef]
- Langmuir, I. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 1918, 40, 1361–1403. [Google Scholar] [CrossRef] [Green Version]
- Freundlich, H. Over the adsorption in solution. J. Phys. Chem. 1906, 57, 1100–1107. [Google Scholar]
- Foo, K.Y.; Hameed, B.H. Insights into the modeling of adsorption isotherm systems. Chem. Eng. J. 2010, 156, 2–10. [Google Scholar] [CrossRef]
- Kumar, K.V. Comparative analysis of linear and non-linear method of estimating the sorption isotherm parameters for malachite green onto activated carbon. J. Hazard. Mater. 2006, 136, 197–202. [Google Scholar] [CrossRef] [PubMed]
- Karri, R.R.; Sahu, J.; Jayakumar, N. Optimal isotherm parameters for phenol adsorption from aqueous solutions onto coconut shell based activated carbon: Error analysis of linear and non-linear methods. J. Taiwan Inst. Chem. Eng. 2017, 80, 472–487. [Google Scholar] [CrossRef]
- Popoola, L.T. Characterization and adsorptive behaviour of snail shell-rice husk (SS-RH) calcined particles (CPs) towards cationic dye. Heliyon 2019, 5, e01153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wakkel, M.; Khiari, B.; Zagrouba, F. Textile wastewater treatment by agro-industrial waste: Equilibrium modelling, thermodynamics and mass transfer mechanisms of cationic dyes adsorption onto low-cost lignocellulosic adsorbent. J. Taiwan Inst. Chem. Eng. 2019, 96, 439–452. [Google Scholar] [CrossRef]
- Miraboutalebi, S.M.; Nikouzad, S.K.; Peydayesh, M.; Allahgholi, N.; Vafajoo, L.; McKay, G. Methylene blue adsorption via maize silk powder: Kinetic, equilibrium, thermodynamic studies and residual error analysis. Process. Saf. Environ. 2017, 106, 191–202. [Google Scholar] [CrossRef]
Sample Availability: Not available. |
Parameters | Value |
---|---|
Surface Area | |
Surface area (SBET m2 g−1) | 293.13 |
Single point surface area (m2 g−1) | 293.65 |
Langmuir surface area (m2 g−1) | 440.83 |
t-plot micropore area (m2 g−1) | 145.65 |
t-plot external surface area (m2 g−1) | 147.47 |
BJH adsorption cumulative surface area of pores between 17 Å and 3000 Å width (m2 g−1) | 97.63 |
Pore Volume | |
t-plot micropore volume (cm3 g−1) | 0.08 |
Single point adsorption total pore volume of pores less than 27.190 Å width at p/p0 = 0.299 (cm3 g−1) | 0.15 |
BJH Adsorption cumulative volume of pores between 17 Å and 3000 Å width (cm3 g−1) | 0.05 |
BJH pore volume (cm3 g−1) | 0.05 |
Pore Size | |
Average pore width (4V/A by BET) (Å) | 20.33 |
BJH average pore width (4V/A) (Å) | 21.36 |
ΔH (kJ mol−1) | ΔS (J mol−1 K−1) | ΔG (kJ mol−1) | |||
T (K) | |||||
303.15 | 313.15 | 323.15 | 333.15 | ||
−84.79 | 179.95 | −139.23 | −141.03 | −142.83 | −144.63 |
Error Functions | Langmuir | Freundlich |
---|---|---|
R2 | 0.9827 | 0.9803 |
χ2 | 0.23 | 0.61 |
SAE | 4.76 | 6.71 |
MPSD | 5.58 | 10.60 |
HYBRID | 11.07 | 6616.39 |
Kinetic Model | Parameters | Initial Reactive Orange 16 Dye Concentration (mg L−1) | ||||
---|---|---|---|---|---|---|
20 | 40 | 60 | 80 | 100 | ||
PFO | qe exp | 14.72 | 27.73 | 45.63 | 41.90 | 49.23 |
qe cal | 10.12 | 20.48 | 34.16 | 37.49 | 42.14 | |
Δq (%) | 11.82 | 9.87 | 9.51 | 3.98 | 5.44 | |
K1 | 0.02 | 0.01 | 0.01 | 0.01 | 0.01 | |
R2 | 0.8530 | 0.9341 | 0.9301 | 0.9446 | 0.7605 | |
PSO | qe cal | 16.34 | 31.95 | 54.05 | 58.14 | 59.17 |
Δq (%) | 4.16 | 5.38 | 6.52 | 13.71 | 7.15 | |
K2 | 0.002 | 0.001 | 0.0003 | 0.0002 | 0.0002 | |
R2 | 0.9720 | 0.9730 | 0.9185 | 0.7351 | 0.7893 | |
IPD | Ci | 8.47 | 13.68 | 15.69 | 8.60 | 12.43 |
Kpi | 0.07 | 0.16 | 0.31 | 0.33 | 0.36 | |
R2 | 0.9661 | 0.9844 | 0.9409 | 0.9453 | 0.8988 |
Operations | Activities/Treatment | Cost Breakdown | Cost (PKR) | Cost ($) |
---|---|---|---|---|
Processing of Adsorbent | Collection | Purchased from local market | 10.00 | 0.06 |
Grinding | Hours × units × per unit cost = 0.05 × 0.4 × 5.79 * | 0.12.00 | 0.001 | |
Washing | 5 L × 10 | 50.00 | 0.30 | |
Drying | Hours × units × per unit cost = 2 × 0.4 × 5.79 | 4.63 | 0.03 | |
Preparation of MA-AC400 | o-Phosphoric Acid | 2 (L) × 300 | 600.00 | 3.62 |
Nitrogen Gas | 1 (Cylinder) × 850 | 170.00 | 1.02 | |
Carbon Dioxide | 1 (Cylinder) × 1550 | 310.00 | 1.87 | |
Carbonization | Hours × units × per unit cost = 0.5 × 6 × 5.79 | 17.37 | 0.11 | |
Washing | 10 L × 10 | 100.00 | 0.60 | |
Total | 1262.12 | 7.60 | ||
10% (overhead budget) | 126.21 | 0.76 | ||
Total cost | 1388.33 | 8.36 |
Name | Reactive Orange 16 (RO16) |
---|---|
Synonym | Remazol brilliant orange 3R |
CAS Number | 12225-83-1 |
Color Index Number | 17757 |
Empirical formula | C20H17N3Na2O11S3 |
Molecular weight | 617.54 |
λmax | 494 nm |
Structure |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shah, J.A.; Butt, T.A.; Mirza, C.R.; Shaikh, A.J.; Khan, M.S.; Arshad, M.; Riaz, N.; Haroon, H.; Gardazi, S.M.H.; Yaqoob, K.; et al. Phosphoric Acid Activated Carbon from Melia azedarach Waste Sawdust for Adsorptive Removal of Reactive Orange 16: Equilibrium Modelling and Thermodynamic Analysis. Molecules 2020, 25, 2118. https://doi.org/10.3390/molecules25092118
Shah JA, Butt TA, Mirza CR, Shaikh AJ, Khan MS, Arshad M, Riaz N, Haroon H, Gardazi SMH, Yaqoob K, et al. Phosphoric Acid Activated Carbon from Melia azedarach Waste Sawdust for Adsorptive Removal of Reactive Orange 16: Equilibrium Modelling and Thermodynamic Analysis. Molecules. 2020; 25(9):2118. https://doi.org/10.3390/molecules25092118
Chicago/Turabian StyleShah, Jehanzeb Ali, Tayyab Ashfaq Butt, Cyrus Raza Mirza, Ahson Jabbar Shaikh, Muhammad Saqib Khan, Muhammad Arshad, Nadia Riaz, Hajira Haroon, Syed Mubashar Hussain Gardazi, Khurram Yaqoob, and et al. 2020. "Phosphoric Acid Activated Carbon from Melia azedarach Waste Sawdust for Adsorptive Removal of Reactive Orange 16: Equilibrium Modelling and Thermodynamic Analysis" Molecules 25, no. 9: 2118. https://doi.org/10.3390/molecules25092118
APA StyleShah, J. A., Butt, T. A., Mirza, C. R., Shaikh, A. J., Khan, M. S., Arshad, M., Riaz, N., Haroon, H., Gardazi, S. M. H., Yaqoob, K., & Bilal, M. (2020). Phosphoric Acid Activated Carbon from Melia azedarach Waste Sawdust for Adsorptive Removal of Reactive Orange 16: Equilibrium Modelling and Thermodynamic Analysis. Molecules, 25(9), 2118. https://doi.org/10.3390/molecules25092118