Application of Natural Pigments in Ordinary Cooked Ham
Abstract
:1. Introduction
2. Results and Discussion
2.1. Anthocyanin- and Betalain-Rich Extracts
2.2. Application of the Extracts to Ordinary Cooked Ham
3. Experimental Section
3.1. Chemicals and Reagents
3.2. Plant Material
3.3. Preparation of Anthocyanin-Rich Extracts
3.4. Preparation of Betalain-Rich Extracts
3.5. Determination of Anthocyanins Content
3.6. Determination of Betalains Content
3.7. LRMS Analysis of Extracts
3.8. AGS Cell Assays
3.9. Nanoencapsulation Studies
3.10. Application of Red Radish, Hibiscus and Red Beetroot Extracts to Ordinary Cooked Ham
3.11. Color Measurement
3.12. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- O’Farrell, M. Online quality assessment of processed meats. In Processed Meats, Improving Safety, Nutrition and Quality; Kerry, J.P., Kerry, J.F., Eds.; Woodhead Publishing Limited: Cambridge, UK, 2011; pp. 546–566. [Google Scholar]
- Cooked Ham and Cooked Shoulder Definition and Characteristics, Norma Portuguesa NP 4393 2001, CT 35 (DGFCQA). Instituto Português da Qualidade, 2002. Available online: https://lojanormas.ipq.pt/product/np-4393-2001/ (accessed on 1 January 2020).
- Freixanet, L. Aditivos e Ingredientes en la Fabricación de Productos Cárnicos Cocidos de Músculo Entero. Available online: http://es.metalquimia.com/upload/document/article-es-12.pdf (accessed on 10 March 2020).
- Brouillard, R.; Chassaing, S.; Isorez, G.; Kueny-Stotz, M.; Figueiredo, P. The visible flavonoids or anthocyanins: From research to applications. Rec. Adv. Polyphen. Res. 2010, 2, 1–22. [Google Scholar]
- Giusti, M.M.; Rodríguez-Saona, L.E.; Wrolstad, R.E. Molar absorptivity and color characteristics of acylated and non-acylated pelargonidin-based anthocyanins. J. Agric. Food Chem. 1999, 47, 4631–4637. [Google Scholar] [CrossRef] [PubMed]
- Carmo, C.S.; Nunes, A.N.; Serra, A.T.; Ferreira-Dias, S.; Nogueira, I.; Duarte, C.M.M. A way to prepare a liposoluble natural pink colorant. Green Chem. 2015, 17, 1510–1518. [Google Scholar] [CrossRef]
- Giusti, M.M.; Wrolstad, R.E. Characterization of red radish anthocyanins. J. Food Sci. 1996, 61, 322–326. [Google Scholar] [CrossRef]
- Giusti, M.M.; Ghanadan, H.; Wrolstad, R.E. Elucidation of the structure and conformation of red radish (Raphanus sativus) anthocyanins using one- and two-dimensional nuclear magnetic resonance techniques. J. Agric. Food Chem. 1998, 46, 4858–4863. [Google Scholar] [CrossRef]
- Liu, Y.; Murakami, N.; Wang, L.; Zhang, S. Preparative high-performance liquid chromatography for the purification of natural acylated anthocyanins from red radish (Raphanus sativus L.). J. Chrom. Sci. 2008, 46, 743–746. [Google Scholar] [CrossRef] [Green Version]
- Tamura, S.; Tsuji, K.; Yongzhen, P.; Ohnishi-Kameyama, M.; Murakami, N. Six new acylated anthocyanins from red radish (Raphanus sativus). Chem. Pharm. Bull. 2010, 58, 1259–1262. [Google Scholar] [CrossRef] [Green Version]
- Delgado-Vargas, F.; Jiménez, A.R.; Paredes-López, O. Natural pigments: Carotenoids, anthocyanins, and betalains-characteristics, biosynthesis, processing, and stability. Food Sci. Nutr. 2010, 40, 173–289. [Google Scholar] [CrossRef]
- Schiozer, A.L.; Barata, L.E.S. Stability of natural pigments and dyes. Fitos 2007, 2, 6–24. [Google Scholar]
- Patras, A.; Bruton, N.P.; O’Donnell, C.; Tiwari, B.K. Effect of thermal processing on anthocyanin stability in food; mechanisms and kinetics of degradation. Food Sci. Technol. 2010, 21, 3–11. [Google Scholar] [CrossRef]
- Khoo, H.E.; Azlan, A.; Tang, S.T.; Lim, S.M. Anthocyanidins and anthocyanins: Colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutr. Res. 2017, 61, 1–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bueno, J.M.; Sáez-Plaza, P.; Ramos-Escudero, F.; Jiménez, A.M.; Fett, R.; Asuero, A.G. Analysis and antioxidant capacity of anthocyanin pigments. part II: Chemical structure, color, and intake of anthocyanins. Crit. Rev. Anal. Chem. 2012, 42, 126–151. [Google Scholar]
- Cissé, M.; Bohuon, P.; Sambe, F.; Kane, C.; Sakho, M.; Dornier, M. Aqueous extraction of anthocyanin from Hibiscus sabdariffa: Experimental kinetics and modeling. J. Food Eng. 2012, 109, 16–21. [Google Scholar] [CrossRef] [Green Version]
- Sato, K.; Goda, Y.; Yoshihira, K.; Noguchi, H. Structure and contents of main coloring constituents in the Calyces of Hibiscus sabdariffa and commercial Roselle Color. J. Food Hyg. Soc. 1991, 32, 301–307. [Google Scholar] [CrossRef]
- Grajeda-Iglesias, C.; Figueroa-Espinoza, M.C.; Barouh, N.; Baréa, B.; Fernandes, A.; Freitas, V.; Salas, E. Isolation and characterization of anthocyanins from Hibiscus sabdariffa flowers. J. Nat. Prod. 2016, 79, 1709–1718. [Google Scholar] [CrossRef]
- Domínguez-López, A.; Remondetto, G.E.; Navarro-Galindo, S. Thermal kinetic degradation of anthocyanins in a roselle (Hibiscus sabdariffa L. cv. ‘Criollo’) infusion. J. Food Sci. Technol. 2008, 43, 322–325. [Google Scholar]
- Selim, K.A.; Khalil, K.E.; Abdel-Bary, M.S.; Abdel-Azeim, N.A. Extraction, encapsulation and utilization of red pigments from Roselle (Hibiscus sabdariffa L.) as natural food colorants. AJFS 2008, 5, 7–20. [Google Scholar]
- Abou-Arab, A.A.; Abu-Salem, F.M.; Abou-Arab, E.A. Physico-chemical properties of natural pigments (anthocyanin) extracted from Roselle calyces (Hibiscus subdariffa). J. Am. Sci. 2011, 7, 445–456. [Google Scholar]
- Prenesti, E.; Berto, S.; Daniele, P.G.; Toso, S. Antioxidant power quantification of decoction and cold infusions of Hibiscus sabdariffa flowers. Food Chem. 2007, 100, 433–438. [Google Scholar] [CrossRef] [Green Version]
- Sawicki, T.; Bączek, N.; Wiczkowski, W. Betalain profile, content and antioxidant capacity of red beetroot dependent on the genotype and root part. J. Funct. Foods 2016, 27, 249–261. [Google Scholar] [CrossRef]
- Nemzer, B.; Pietrzkowski, Z.; Spórna, A.; Stalica, P.; Thresher, W.; Michalowski, T.; Wybraniec, S. Betalainic and nutritional profiles of pigment-enriched red beet root (Beta vulgaris L.) dried extracts. Food Chem. 2011, 127, 42–53. [Google Scholar] [CrossRef]
- Chhikara, N.; Kushwaha, K.; Sharma, P.; Gat, Y.; Panghal, A. Bioactive compounds of beetroot and utilization in food processing industry: A critical review. Food Chem. 2019, 272, 192–200. [Google Scholar] [CrossRef] [PubMed]
- Georgiev, V.G.; Weber, J.; Kneschke, E.; Denev, P.N.; Bley, T.; Pavlov, A.I. Antioxidant activity and phenolic content of betalain extracts from intact plants and hairy root cultures of the red beetroot Beta vulgaris cv. Detroit Dark Red. Plant Foods Hum. Nutr. 2010, 65, 105–111. [Google Scholar] [CrossRef] [PubMed]
- Kujala, T.S.; Vienola, M.S.; Klika, K.; Loponen, J.M.; Pihlaja, K. Betalain and phenolic compositions of four beetroot (Beta vulgaris ) cultivars. Eur. Food Res.. Technol. 2002, 214, 505–510. [Google Scholar] [CrossRef]
- Ritz, T.; Werchan, C.A.; Kroll, J.L.; Rosenfield, D. Beetroot juice supplementation for the prevention of cold symptoms associated with stress: A proof-of-concept study. Physiol. Behav. 2019, 202, 45–51. [Google Scholar] [CrossRef]
- Silva, D.V.T.; Baião, D.S.; Silva, F.O.; Alves, G.; Perrone, D.; Aguila, E.M.D.; Paschoalin, V.M.F. Betanin, a natural food additive: Stability, bioavailability, antioxidant and preservative ability assessments. Molecules 2019, 24, 458. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, G.V.; Morgado, M.; Pierucci, A.P.; Alvares, T.S. A single dose of a beetroot-based nutritional gel improves endothelial function in the elderly with cardiovascular risk factors. J. Funct. Foods 2016, 26, 301–308. [Google Scholar] [CrossRef]
- Hall, A.J.; Tripp, M.; Howell, T.; Darland, G.; Bland, J.S.; Babish, J.G. Gastric mucosal cell model for estimating relative gastrointestinal toxicity of non-steroidal anti-inflammatory drugs. Prostaglandins Leukot Essent Fatty Acids 2006, 75, 9–17. [Google Scholar] [CrossRef]
- Basque, J.-R.; Chénard, M.; Chailler, P.; Ménard, D. Gastric cancer cell lines as models to study human digestive functions. J. Cell Biochem. 2001, 81, 241–251. [Google Scholar] [CrossRef]
- Wentian, C.; Eric, K.; Jingyang, Y.; Shuqin, X.; Biao, F.; Xiaoming, Z. Improving red radish anthocyanin yield and off flavour removal by acidified aqueous organic based medium. RSC Adv. 2016, 6, 97532–97545. [Google Scholar] [CrossRef]
- Tavakolifar, F.; Givianrad, M.H.; Saber-Tehrani, M. Extraction of anthocyanins from hibiscus sabdariffa and assessment of its antioxidant properties in extra virgin olive oil. Fres. Environ. Bull. 2016, 25, 3709–3713. [Google Scholar]
- Chumsri, P.; Sirichote, A.; Itharat, A. Studies on the optimum conditions for the extraction and concentration of roselle (Hibiscus sabdariffa Linn.) extract. J. Sci. Technol. 2008, 30, 133–139. [Google Scholar]
- Gonçalves, L.C.P.; Trassi, M.A.S.; Lopes, N.B.; Dörr, F.A.; Santos, M.T.; Baader, M.J.; Oliveira, V.X., Jr.; Bastos, E.L. A comparative study of the purification of betanin. Food Chem. 2012, 131, 231–238. [Google Scholar] [CrossRef]
- List, G.R. Soybean lecithin: Food, industrial uses, and other applications. In Polar Lipids: Biology, Chemistry, and Technology; Ahmad, M.U., Xu, X., Eds.; Academic Press and AOCS Press: Cambridge, MA, USA, 2015; pp. 1–33. [Google Scholar]
- Zhang, H. Thin-film hydration followed by extrusion method for liposome preparation. Methods Mol. Biol. 2017, 1522, 17–22. [Google Scholar] [PubMed]
- Jaafar-Maalej, C.; Diab, R.; Andrieu, V.; Elaissari, A.; Fessi, H. Ethanol injection method for hydrophilic and lipophilic drug-loaded liposome preparation. J. Liposome Res. 2010, 20, 228–243. [Google Scholar] [CrossRef]
- Sigurdson, G.T.; Tang, P.; Giusti, M.M. Natural colorants: Food colorants from natural sources. Annu. Rev. Food Sci. Technol. 2017, 8, 261–280. [Google Scholar] [CrossRef]
- 41 Rodriguez-Amaya, D.B. Natural food pigments and colorants. Curr. Opin. Food Sci. 2016, 7, 20–26. [Google Scholar] [CrossRef]
- Dapson, R.W. The history, chemistry and modes of action of carmine and related dyes. Biotech. Histochem. 2007, 82, 173–187. [Google Scholar] [CrossRef]
- EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS), Scientific opinion on the re-evaluation of cochineal, carminic acid, carmines (E 120) as a food additive. EFSA J. 2015, 13, 4288.
- Borges, M.E.; Tejera, R.L.; Díaz, L.; Esparza, P.; Ibañez, E. Natural dyes extraction from cochineal (Dactylopius coccus): New extraction methods. Food Chem. 2012, 132, 1855–1860. [Google Scholar] [CrossRef]
- Fernández-López, J.A.; Angosto, J.M.; Giménez, P.J.; León, G.L. Thermal stability of selected natural red extracts used as food colorants. Plant Foods Hum. Nutr. 2013, 68, 11–17. [Google Scholar] [CrossRef]
- Stintzing, F.C.; Herbach, K.M.; Mosshammer, M.R.; Carle, R.; Yi, W.; Sellappan, S.; Akoh, C.C.; Bunch, R.; Felker, P. Color, betalain pattern, and antioxidant properties of cactus pear (Opuntia stricta spp.) clones. J. Agric. Food Chem. 2005, 53, 442–451. [Google Scholar] [CrossRef] [PubMed]
- Silva, C.; Bolanho, B.C. Ultrasonic-assisted extraction of betalains from red beet (Beta vulgaris L.). J. Food Process. Eng. 2018, 41, 1–6. [Google Scholar]
- Otálora, M.C.; Carriazo, J.G.; Iturriaga, L.; Nazareno, M.A.; Osorio, C. Microencapsulation of betalains obtained from cactus fruit (Opuntia ficus-indica) by spray drying using cactus cladode mucilageand maltodextrin as encapsulating agents. Food Chem. 2015, 87, 174–181. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the compounds are not available from the authors. |
Species | Ethanolic Injection | Thin Film Hydration |
---|---|---|
Red radish | 99.9 ± 6.2 | 99.6 ± 4.2 |
Hibiscus | 99.2 ± 4.8 | 98.1 ± 2.9 |
Red Beetroot | 98.4 ± 3.1 | 99.3 ± 3.6 |
Sample | Color Parameters | ||
---|---|---|---|
L * | a* | b* | |
OCH without extract | 60.74 | −0.32 | 6.84 |
OCH with E120 (0.1 g/kg) | 59.89 | 1.84 | 3.59 |
OCH with E120 (0.24 g/kg) | 59.38 | 5.34 | 3.59 |
OCH with E120 (0.4 g/kg) | 59.57 | 6.05 | 2.22 |
OCH with hibiscus (3.6 g/kg) | 63.22 | −0.19 | 6.03 |
OCH with encapsulated hibiscus extract (6.93 g/kg) 1 | 59.09 | 2.19 | 4.79 |
OCH with red beetroot (0.4 g/kg) | 63.47 | 1.06 | 6.52 |
OCH with red beetroot (0.88 g/kg) | 60.91 | 3.68 | 5.66 |
OCH with red beetroot (4.55 g/kg) | 58.37 | 4.64 | 9.62 |
OCH with encapsulated red beetroot extract (7.29 g/kg) 2 | 61.54 | 0.36 | 8.71 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dias, S.; Castanheira, E.M.S.; Fortes, A.G.; Pereira, D.M.; Rodrigues, A.R.O.; Pereira, R.; Gonçalves, M.S.T. Application of Natural Pigments in Ordinary Cooked Ham. Molecules 2020, 25, 2241. https://doi.org/10.3390/molecules25092241
Dias S, Castanheira EMS, Fortes AG, Pereira DM, Rodrigues ARO, Pereira R, Gonçalves MST. Application of Natural Pigments in Ordinary Cooked Ham. Molecules. 2020; 25(9):2241. https://doi.org/10.3390/molecules25092241
Chicago/Turabian StyleDias, Sandra, Elisabete M. S. Castanheira, A. Gil Fortes, David M. Pereira, A. Rita O. Rodrigues, Regina Pereira, and M. Sameiro T. Gonçalves. 2020. "Application of Natural Pigments in Ordinary Cooked Ham" Molecules 25, no. 9: 2241. https://doi.org/10.3390/molecules25092241
APA StyleDias, S., Castanheira, E. M. S., Fortes, A. G., Pereira, D. M., Rodrigues, A. R. O., Pereira, R., & Gonçalves, M. S. T. (2020). Application of Natural Pigments in Ordinary Cooked Ham. Molecules, 25(9), 2241. https://doi.org/10.3390/molecules25092241