Enantiomeric Separation of New Chiral Azole Compounds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Chromatography
3. Results and Discussion
3.1. Novel Azole Compounds
3.2. Enantiomer Separation of Chiral Azoles
3.3. Chiral Mechanism Considerations
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gomtsyan, A. Heterocycles in drugs and drug discovery. Chem. Heterocycl. Compd. 2012, 48, 7–10. [Google Scholar] [CrossRef]
- Walsh, C.T. Nature loves nitrogen heterocycles. Tetrahedron Lett. 2015, 56, 3075–3081. [Google Scholar] [CrossRef]
- Hartner, F.W. Oxazoles. In Chemistry of Heterocyclic Compounds: A Series of Monographs; Katritzky, A.R., Rees, W.R., Scriven, E.F.V., Eds.; Elsevier: Amsterdam, The Netherland, 1996; pp. 261–318. ISBN 978-08-096518-5. [Google Scholar]
- Dondoni, A.; Mermo, P. Thiazoles. In Chemistry of Heterocyclic Compounds: A Series of Monographs; Katritzky, A.R., Rees, W.R., Scriven, E.F.V., Eds.; Elsevier: Amsterdam, The Netherland, 1996; pp. 373–474. ISBN 978-08-096518-5. [Google Scholar]
- Fricke, P.J.; Stasko, J.L.; Robbins, D.T.; Gardner, A.C.; Stash, J.; Ferraro, M.J.; Fennie, M. Copper-catalyzed hydroamination of propargyl imidates. Tetrahedron Lett. 2017, 58, 4510–4513. [Google Scholar] [CrossRef]
- Singh, R.P.; Gout, D.; Lovely, C.J. Tandem Thioacylation-Intramolecular Hydrosulfenylation of Propargyl Amines - Rapid Access to 2-Aminothiazolidines. Eur. J. Org. Chem. 2019, 2019, 1726–1740. [Google Scholar] [CrossRef]
- Singh, R.P.; Aziz, M.N.; Gout, D.; Fayad, W.; El-Manawaty, M.A.; Lovely, C.J. Novel thiazolidines: Synthesis, antiproliferative properties and 2D-QSAR studies. Bioorg. Med. Chem. 2019, 27, 115047. [Google Scholar] [CrossRef] [PubMed]
- Niu, D.; Hoye, T.R. The aromatic ene reaction. Nat. Chem. 2013, 6, 34–40. [Google Scholar] [CrossRef] [Green Version]
- Nalivela, K.S.; Rudolph, M.; Baeissa, E.S.; Alhogbi, B.G.; Mkhalid, I.A.I.; Hashmi, A.S.K. Sequential Au/Cu Catalysis: A Two Catalyst One-Pot Protocol for the Enantioselective Synthesis of Oxazole α-Hydroxy Esters via Intramolecular Cyclization/Intermolecular Alder-Ene Reaction. Adv. Synth. Catal. 2018, 360, 2183–2190. [Google Scholar] [CrossRef]
- Guida, W.C.; Daniel, K.G. The Significance of Chirality in Drug Design and Development. Curr. Top. Med. Chem. 2011, 11, 760–770. [Google Scholar] [CrossRef]
- Thakur, N.; Patel, R.A.; Talebi, M.; Readel, E.R.; Armstrong, D.W. Enantiomeric impurities in chiral catalysts, auxiliaries and sythons used in enantioselective synthesis. Part 5. Chirality 2019, 31, 688–699. [Google Scholar] [CrossRef]
- Zhang, X.; Bao, Y.; Huang, K.; Barnett-Rundlett, K.L.; Armstrong, D.W. Evaluation of dalbavancin as chiral selector for HPLC and comparison with teicoplanin-based chiral stationary phases. Chirality 2009, 22, 495–513. [Google Scholar] [CrossRef] [Green Version]
- Stalcup, A.; Chang, S.-C.; Armstrong, D.W. Effect of the configuration of the substituents of derivatized β-cyclodextrin bonded phases on enantioselectivity in normal-phase liquid chromatography. J. Chromatogr. A 1991, 540, 113–128. [Google Scholar] [CrossRef]
- Hilton, M.; Armstrong, D.W. Evaluation of a chiral crown ether LC column for the separation of racemic amines. J. Liq. Chromatogr. 1991, 14, 9–28. [Google Scholar] [CrossRef]
- Ekborg-Ott, K.H.; Kullman, J.P.; Wang, X.; Gahm, K.; He, L.; Armstrong, D.W. Evaluation of the macrocyclic antibiotic avoparcin as a new chiral selector for HPLC. Chirality 1998, 10, 627–660. [Google Scholar] [CrossRef]
- Péter, A.; Vékes, E.; Armstrong, D.W. Effects of temperature on retention of chiral compounds on a ristocetin A chiral stationary phase. J. Chromatogr. A 2002, 958, 89–107. [Google Scholar] [CrossRef]
- Sun, P.; Armstrong, D.W. Effective enantiomeric separations of racemic primary amines by the isopropyl carbamate-cyclofructan6 chiral stationary phase. J. Chromatogr. A 2010, 1217, 4904–4918. [Google Scholar] [CrossRef]
- Patel, D.C.; Breitbach, Z.S.; Wahab, M.F.; Barhate, C.L.; Armstrong, D.W. Gone in seconds: praxis, performance, and peculiarities of ultrafast chiral liquid chromatography with superficially porous particles. Anal. Chem. 2015, 87, 9137–9148. [Google Scholar] [CrossRef]
- Patel, D.C.; Wahab, M.F.; Armstrong, D.W.; Breitbach, Z.S. Advances in high-throughput and high-efficiency chiral liquid chromatographic separations. J. Chromatogr. A 2016, 1467, 2–18. [Google Scholar] [CrossRef]
- Barhate, C.L.; Lopez, D.A.; Makarov, A.A.; Bu, X.; Morris, W.J.; Lekhal, A.; Hartman, R.; Armstrong, D.W.; Regalado, E.L. Macrocyclic glycopeptide chiral selectors bonded to core-shell particles enables enantiopurity analysis of the entire verubecestat synthetic route. J. Chromatogr. A 2018, 1539, 87–92. [Google Scholar] [CrossRef]
- Hellinghausen, G.; Lee, J.T.; Weatherly, C.A.; Lopez, D.; Armstrong, D.W. Evaluation of nicotine in tobacco-free-nicotine commercial products. Drug Test. Anal. 2017, 9, 944–948. [Google Scholar] [CrossRef]
- Barhate, C.L.; Wahab, M.F.; Breitbach, Z.S.; Bell, D.S.; Armstrong, D.W. High efficiency, narrow particle size distribution, sub-2 μm based macrocyclic glycopeptide chiral stationary phases in HPLC and SFC. Anal. Chim. Acta 2015, 898, 128–137. [Google Scholar] [CrossRef]
- Chankvetadze, B.; Kartozia, I.; Yamamoto, C.; Okamoto, Y. Comparative enantioseparation of selected chiral drugs on four different polysaccharide-type chiral stationary phases using polar organic mobile phases. J. Pharm. Biomed. Anal. 2002, 27, 467–478. [Google Scholar] [CrossRef]
- Singh, R.P.; Fulton, B.B.; Phan, H.; Gout, D.; Lovely, C.J. Ene-reaction of pre-aromatic heterocycles–thiazoles and oxazoles. Tet. Lett. 2020. submitted. [Google Scholar]
- Berthod, A. Chiral Recognition Mechanisms. Anal. Chem. 2006, 78, 2093–2099. [Google Scholar] [CrossRef] [PubMed]
Brand Name | Length (cm) | Selector | Screening Mode | Supplier | Ref. |
---|---|---|---|---|---|
MaltoShell | 10 | Derivatized maltodextrin | NP, PO | AZYP LLC | [11] |
NicoShell | 15 | Modified glycopeptide | NP, PO, RP | AZYP LLC | [19] |
TagShell | 10 | Teicoplanin aglycone | PO, RP | AZYP LLC | [20] |
TeicoShell | 10 | Teicoplanin glycopeptide | NP, PO, RP | AZYP LLC | [20] |
VancoShell | 15 | Vancomycin glycopeptide | NP, PO, RP | AZYP LLC | [20] |
ChiralPack IA-3 | 15 | Amylose-3,5-dimethylphenyl carbamate | NP | Daicel | [22] |
Comp | Column | Mobile Phase % v/v | Flow mL/min | Temp. °C | tr1 min | tr2 min | α | Rs |
---|---|---|---|---|---|---|---|---|
I | MaltoShell | NP—Hep-EtOH 80:20 | 1.0 | 40 | 9.1 | 11.9 | 1.34 | 2.7 |
TeicoShell | RP—MeOH-formate pH 3, 50:50 | 0.8 | 40 | 10.0 | 11.3 | 1.14 | 2.2 | |
VancoShell | RP—AcN-formate pH 6 20:80 | 0.6 | 30 | 33.5 | 35.9 | 1.08 | 1.6 | |
II | MaltoShell | NP—Hep-EtOH 80:20 | 1.0 | 30 | 11.5 | 14.5 | 1.28 | 2.9 |
TagShell | RP—MeOH-formate pH 3, 40:60 | 0.6 | 40 | 6.6 | 7.2 | 1.11 | 2.6 | |
TeicoShell | RP—MetOH-formate pH 3, 40:60 | 0.6 | 40 | 5.6 | 6.4 | 1.17 | 2.0 | |
III | MaltoShell | PO—AcN-MeOH-aa-tea 60:40:0.3:0.2 | 1.0 | 40 | 4.3 | 5.3 | 1.30 | 2.3 |
VancoShell | RP—AcN-formate pH 6, 20:80 | 0.6 | 30 | 20.0 | 21.9 | 1.10 | 1.9 | |
IV | MaltoShell | NP—Hep-EtOH 95:5 | 1.0 | 30 | 11.4 | 14.4 | 1.28 | 2.8 |
PO—MeOH-EtOH 50:50 | 0.6 | 30 | 3.0 | 3.5 | 1.25 | 2.2 | ||
VancoShell | RP—AcN-formate pH 6, 20:80 | 0.6 | 30 | 10.6 | 11.4 | 1.08 | 1.4 | |
V | IA-3 | NP—Hept-IPA 95:5 | 0.4 | 40 | 16.3 | 20.1 | 1.28 | 2.3 |
VI | MaltoShell | NP—Hept-EtOH 95:5 | 1.0 | 40 | 10.6 | 12.9 | 1.24 | 2.1 |
NicoShell | RP—MeOH-formate pH 4, 30:70 | 1.0 | 50 | 8.2 | 8.8 | 1.08 | 1.4 | |
VII | MaltoShell | RP—AcN-formate pH 3, 60:40 | 1.0 | 40 | 3.4 | 4.2 | 1.33 | 2.5 |
NP—Hep-EtOH 80:20 | 1.0 | 40 | 22.1 | 30.7 | 1.38 | 2.5 | ||
VIII | NicoShell | NP—Hep-EtOH 90:10 | 1.0 | 30 | 30.4 | 35.2 | 1.16 | 2.2 |
TagShell | RP—MeOH-formate pH 3, 40:60 | 0.6 | 50 | 5.5 | 6.4 | 1.20 | 2.4 | |
VancoShell | PO—MeOH-EtOH 25:75 | 0.6 | 30 | 34.8 | 37.8 | 1.08 | 1.6 | |
RP—AcN-formate pH 3, 20:80 | 1.0 | 30 | 9.1 | 9.8 | 1.10 | 1.6 | ||
IX | MaltoShell | NP—Hep-EtOH 80:20 | 1.0 | 30 | 4.8 | 5.6 | 1.21 | 1.4 |
RP—MeOH-formate pH 6, 50:50 | 0.6 | 30 | 2.3 | 2.8 | 1.35 | 2.2 | ||
X | MaltoShell | NP—Hep-EtOH 80:20 | 1.0 | 30 | 4.7 | 5.4 | 1.19 | 1.4 |
NicoShell | RP—AcN-formate pH 6, 85-15 | 1.0 | 30 | 17.6 | 20.9 | 1.20 | 4.5 | |
XI | MaltoShell | NP—Hep-EtOH 80:20 | 1.0 | 30 | 6.2 | 12.5 | 2.21 | 3.9 |
NicoShell | PO—EtOH 100 | 1.0 | 30 | 1.8 | 2.8 | 2.25 | 2.3 | |
XII | MaltoShell | NP—Hep-EtOH 75:25 | 0.6 | 30 | 9.2 | 10.4 | 1.15 | 1.5 |
TagShell | RP—MeOH-formate pH 3, 40:60 | 0.6 | 50 | 6.5 | 7.6 | 1.20 | 2.1 | |
TeicoShell | RP—MeOH-formate pH 3, 40:60 | 0.6 | 40 | 5.6 | 6.3 | 1.15 | 2.4 | |
VancoShell NicoShell | RP—MeOH-formate pH 4, 50:50 RP-MeOH-formate pH 4, 30:70 | 1.0 0.25 | 30 25 | 5.0 8.1 | 5.5 8.8 | 1.12 1.14 | 1.6 2.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kenari, M.E.; Putman, J.I.; Singh, R.P.; Fulton, B.B.; Phan, H.; Haimour, R.K.; Tse, K.; Berthod, A.; Lovely, C.J.; Armstrong, D.W. Enantiomeric Separation of New Chiral Azole Compounds. Molecules 2021, 26, 213. https://doi.org/10.3390/molecules26010213
Kenari ME, Putman JI, Singh RP, Fulton BB, Phan H, Haimour RK, Tse K, Berthod A, Lovely CJ, Armstrong DW. Enantiomeric Separation of New Chiral Azole Compounds. Molecules. 2021; 26(1):213. https://doi.org/10.3390/molecules26010213
Chicago/Turabian StyleKenari, Marziyeh E., Joshua I. Putman, Ravi P. Singh, Brandon B. Fulton, Huy Phan, Reem K. Haimour, Key Tse, Alain Berthod, Carl J. Lovely, and Daniel W. Armstrong. 2021. "Enantiomeric Separation of New Chiral Azole Compounds" Molecules 26, no. 1: 213. https://doi.org/10.3390/molecules26010213
APA StyleKenari, M. E., Putman, J. I., Singh, R. P., Fulton, B. B., Phan, H., Haimour, R. K., Tse, K., Berthod, A., Lovely, C. J., & Armstrong, D. W. (2021). Enantiomeric Separation of New Chiral Azole Compounds. Molecules, 26(1), 213. https://doi.org/10.3390/molecules26010213