Highlights on Recent Developments of Heterogeneous and Homogeneous Photocatalysis
Funding
Conflicts of Interest
References
- Janus, M.; Kusiak-Nejman, E.; Rokicka-Konieczna, P.; Markowska-Szczupak, A.; Zając, K.; Morawski, A.W. Bacterial Inactivation on Concrete Plates Loaded with Modified TiO2 Photocatalysts under Visible Light Irradiation. Molecules 2019, 24, 26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pablos, C.; Marugán, J.; Van Grieken, R.; Dunlop, P.S.; Hamilton, J.W.; Dionysiou, D.D.; Byrne, J.A. Electrochemical Enhancement of Photocatalytic Disinfection on Aligned TiO2 and Nitrogen Doped TiO2 Nanotubes. Molecules 2017, 22, 704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gurkan, Y.Y.; Kasapbasi, E.; Turkten, N.; Cinar, Z. Influence of Se/N Codoping on the Structural, Optical, Electronic and Photocatalytic Properties of TiO2. Molecules 2017, 22, 414. [Google Scholar] [CrossRef] [PubMed]
- Nevárez-Martínez, M.C.; Mazierski, P.; Kobylański, M.P.; Szczepańska, G.; Trykowski, G.; Malankowska, A.; Kozak, M.; Espinoza-Montero, P.J.; Zaleska-Medynska, A. Growth, Structure, and Photocatalytic Properties of Hierarchical V2O5–TiO2 Nanotube Arrays Obtained from the One-step Anodic Oxidation of Ti–V Alloys. Molecules 2017, 22, 580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hong, T.; Mao, J.; Tao, F.; Lan, M. Recyclable Magnetic Titania Nanocomposite from Ilmenite with Enhanced Photocatalytic Activity. Molecules 2017, 22, 2044. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mestre, A.S.; Carvalho, A.P. Photocatalytic Degradation of Pharmaceuticals Carbamazepine, Diclofenac, and Sulfamethoxazole by Semiconductor and Carbon Materials: A Review. Molecules 2019, 24, 3702. [Google Scholar] [CrossRef] [Green Version]
- Passalía, C.; Alfano, O.M.; Brandi, R.J. Integral Design Methodology of Photocatalytic Reactors for Air Pollution Remediation. Molecules 2017, 22, 945. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Héquet, V.; Batault, F.; Raillard, C.; Thévenet, F.; Le Coq, L.; Dumont, É. Determination of the Clean Air Delivery Rate (CADR) of Photocatalytic Oxidation (PCO) Purifiers for Indoor Air Pollutants Using a Closed-Loop Reactor Part II: Experimental Results. Molecules 2017, 22, 408. [Google Scholar] [CrossRef] [Green Version]
- Montalvo-Romero, C.; Aguilar-Ucán, C.; Alcocer-Dela hoz, R.; Ramirez-Elias, M.; Cordova-Quiroz, V. A Semi-Pilot Photocatalytic Rotating Reactor (RFR) with Supported TiO2/Ag Catalysts for Water Treatment. Molecules 2018, 23, 224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pellegrino, F.; De Bellis, N.; Ferraris, F.; Prozzi, M.; Zangirolami, M.; Petriglieri, J.R.; Schiavi, I.; Bianco-Prevot, A.; Maurino, V. Evaluation of the Photocatalytic Activity of a Cordierite-Honeycomb-Supported TiO2 Film with a Liquid–Solid Photoreactor. Molecules 2019, 24, 4499. [Google Scholar] [CrossRef] [Green Version]
- Toledano Garcia, D.; Ozer, L.Y.; Parrino, F.; Ahmed, M.; Brudecki, G.P.; Hasan, S.W.; Palmisano, G. Photocatalytic ozonation under visible light for the remediation of water effluents and its integration with an electro-membrane bioreactor. Chemosphere 2018, 209, 534–541. [Google Scholar] [CrossRef] [PubMed]
- Cataldo, S.; Iannì, A.; Loddo, V.; Mirenda, E.; Palmisano, L.; Parrino, F.; Piazzese, D. Combination of advanced oxidation processes and active carbons adsorption for the treatment of simulated saline wastewater. Sep. Purif. Technol. 2016, 171, 101–111. [Google Scholar] [CrossRef]
- Beltrán, F.J.; Rey, A. Solar or UVA-Visible Photocatalytic Ozonation of Water Contaminants. Molecules 2017, 22, 1177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strada, A.; Fredditori, M.; Zanoni, G.; Protti, S. Acid Catalyzed Formation of C–C and C–S Bonds via Excited State Proton Transfer. Molecules 2019, 24, 1318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, Z.-C.; Mi, C.; Sun, Y.; Yang, Z.; Xu, Q.-Q.; Fu, W.-F. An Unexpected Iron (II)-Based Homogeneous Catalytic System for Highly Efficient CO2-to-CO Conversion under Visible-Light Irradiation. Molecules 2019, 24, 1878. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Voutyritsa, E.; Triandafillidi, I.; Tzouras, N.V.; Nikitas, N.F.; Pefkianakis, E.K.; Vougioukalakis, G.C.; Kokotos, C.G. Photocatalytic Atom Transfer Radical Addition to Olefins Utilizing Novel Photocatalysts. Molecules 2019, 24, 1644. [Google Scholar] [CrossRef] [Green Version]
- Rao, M.; Wu, W.; Yang, C. Effects of Temperature and Host Concentration on the Supramolecular Enantiodifferentiating [4 + 4] Photodimerization of 2-Anthracenecarboxylate through Triplet-Triplet Annihilation Catalyzed by Pt-Modified Cyclodextrins. Molecules 2019, 24, 1502. [Google Scholar] [CrossRef] [Green Version]
- Barata-Vallejo, S.; Postigo, A. Photocatalytic Difluoromethylation Reactions of Aromatic Compounds and Aliphatic Multiple C–C Bonds. Molecules 2019, 24, 4483. [Google Scholar] [CrossRef] [Green Version]
- Henríquez, A.; Melin, V.; Moreno, N.; Mansilla, H.D.; Contreras, D. Optimization of Cyclohexanol and Cyclohexanone Yield in the Photocatalytic Oxofunctionalization of Cyclohexane over Degussa P-25 under Visible Light. Molecules 2019, 24, 2244. [Google Scholar] [CrossRef] [Green Version]
- Parrino, F.; Camera-Roda, G.; Loddo, V.; Palmisano, L. Elemental Bromine Production by TiO2 Photocatalysis and/or Ozonation. Angew. Chem. (Int. Engl.) 2016, 55, 10391–10395. [Google Scholar] [CrossRef]
- Ciriminna, R.; Parrino, F.; De Pasquale, C.; Palmisano, L.; Pagliaro, M. Photocatalytic partial oxidation of limonene to 1,2 limonene oxide. Chem. Commun. 2018, 54, 1008–1011. [Google Scholar] [CrossRef] [PubMed]
- Bellardita, M.; Loddo, V.; Mele, A.; Panzeri, W.; Parrino, F.; Pibiri, I.; Palmisano, L. Photocatalysis in dimethyl carbonate green solvent: Degradation and partial oxidation of phenanthrene on supported TiO2. RSC Adv. 2014, 4, 40859–40864. [Google Scholar] [CrossRef] [Green Version]
- Camera-Roda, G.; Loddo, V.; Palmisano, L.; Parrino, F.; Santarelli, F. Process intensification in a photocatalytic membrane reactor: Analysis of the techniques to integrate reaction and separation. Chem. Eng. J. 2017, 310, 352–359. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parrino, F.; Palmisano, G. Highlights on Recent Developments of Heterogeneous and Homogeneous Photocatalysis. Molecules 2021, 26, 23. https://doi.org/10.3390/molecules26010023
Parrino F, Palmisano G. Highlights on Recent Developments of Heterogeneous and Homogeneous Photocatalysis. Molecules. 2021; 26(1):23. https://doi.org/10.3390/molecules26010023
Chicago/Turabian StyleParrino, Francesco, and Giovanni Palmisano. 2021. "Highlights on Recent Developments of Heterogeneous and Homogeneous Photocatalysis" Molecules 26, no. 1: 23. https://doi.org/10.3390/molecules26010023
APA StyleParrino, F., & Palmisano, G. (2021). Highlights on Recent Developments of Heterogeneous and Homogeneous Photocatalysis. Molecules, 26(1), 23. https://doi.org/10.3390/molecules26010023