Volatile Compounds of Lemon and Grapefruit IntegroPectin
Abstract
:1. Introduction
2. Results and Discussion
3. Material and Methods
3.1. Materials
3.2. Headspace SPME Sampling
3.3. Gas Chromatography-Mass Spectrometry
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Ciriminna, R.; Fidalgo, A.; Delisi, R.; Ilharco, L.M.; Pagliaro, M. Pectin Production and Global Market. Agro Food Ind. Hi Tech 2016, 27, 17–20. [Google Scholar]
- Ciriminna, R.; Fidalgo, A.; Carnaroglio, D.; Cravotto, G.; Grillo, G.; Tamburino, A.; Ilharco, L.M.; Pagliaro, M. Eco-Friendly Extraction of Pectin and Essential Oils from Orange and Lemon Peels. ACS Sustain. Chem. Eng. 2016, 4, 2243–2251. [Google Scholar]
- Wang, W.; Wu, X.; Chantapakul, T.; Wang, D.; Zhang, S.; Ma, X.; Ding, T.; Ye, X.; Liu, D. Acoustic cavitation assisted extraction of pectin from waste grapefruit peels: A green two-stage approach and its general mechanism. Food Res. Int. 2017, 102, 101–110. [Google Scholar] [CrossRef] [PubMed]
- Hilali, S.; Fabiano-Tixier, A.-S.; Ruiz, K.; Hejjaj, A.; Ait Nouh, F.; Idlimam, A.; Bily, A.; Mandi, L.; Chemat, F. Green Extraction of Essential Oils, Polyphenols, and Pectins from Orange Peel Employing Solar Energy: Toward a Zero-Waste Biorefinery. ACS Sustain. Chem. Eng. 2019, 7, 11815–11822. [Google Scholar] [CrossRef]
- Dominiak, M.; Søndergaard, K.M.; Wichmann, J.; Vidal-Melgosa, S.; Willats, W.G.T.; Meyer, A.S.; Mikkelsen, J.D. Application of enzymes for efficient extraction, modification, and development of functional properties of lime pectin. Food Hydrocoll. 2014, 40, 273–282. [Google Scholar] [CrossRef]
- Meneguzzo, F.; Brunetti, C.; Fidalgo, A.; Ciriminna, R.; Delisi, R.; Albanese, L.; Zabini, F.; Gori, A.; dos Santos Nascimento, L.B.; De Carlo, A.; et al. Real-Scale Integral Valorization of Waste Orange Peel via Hydrodynamic Cavitation. Processes 2019, 7, 581. [Google Scholar] [CrossRef] [Green Version]
- Pagliaro, M. Hydrodynamic cavitation: The enabling technology of the bioeconomy. Chim. Oggi 2020, 38, 63–64. [Google Scholar]
- Panda, D.; Manickam, S. Cavitation Technology—The Future of Greener Extraction Method: A Review on the Extraction of Natural Products and Process Intensification Mechanism and Perspectives. Appl. Sci. 2019, 9, 766. [Google Scholar] [CrossRef] [Green Version]
- Meneguzzo, F.; Ciriminna, R.; Zabini, F.; Pagliaro, M. Review of Evidence Available on Hesperidin-Rich Products as Potential Tools against COVID-19 and Hydrodynamic Cavitation-Based Extraction as a Method of Increasing Their Production. Processes 2020, 8, 549. [Google Scholar] [CrossRef]
- Nuzzo, D.; Cristaldi, L.; Sciortino, M.; Albanese, L.; Scurria, A.; Zabini, F.; Lino, C.; Pagliaro, M.; Meneguzzo, F.; Di Carlo, M.; et al. Exceptional antioxidant, non-cytotoxic activity of integral lemon pectin from hydrodynamic cavitation. ChemistrySelect 2020, 5, 5066–5071. [Google Scholar] [CrossRef]
- Presentato, A.; Scurria, A.; Albanese, L.; Lino, C.; Sciortino, M.; Pagliaro, M.; Zabini, F.; Meneguzzo, F.; Alduina, R.; Nuzzo, D.; et al. Superior antibacterial activity of integral lemon pectin from hydrodynamic cavitation. ChemistryOpen 2020, 9, 628–630. [Google Scholar] [CrossRef]
- Presentato, A.; Piacenza, E.; Scurria, A.; Albanese, L.; Zabini, F.; Meneguzzo, F.; Nuzzo, D.; Pagliaro, M.; Chillura Martino, D.; Alduina, R.; et al. A New Water-Soluble Bactericidal Agent for the Treatment of Infections Caused by Gram-Positive and Gram-Negative Bacterial Strains. Antibiotics 2020, 9, 586. [Google Scholar] [CrossRef] [PubMed]
- Košťálová, Z.; Hromádková, Z.; Ebringerová, A.; Polovka, M.; Michaelsen, T.E.; Paulsen, B.S. Pectins as a universal medicine. Fitoterapia 2020, 146, 104676. [Google Scholar]
- Ciriminna, R.; Fidalgo, A.; Meneguzzo, F.; Presentato, A.; Scurria, A.; Nuzzo, D.; Alduina, R.; Ilharco, L.M.; Pagliaro, M. Pectin: A long-neglected broad-spectrum antibacterial. ChemMedChem 2020, 15, 2228–2235. [Google Scholar] [CrossRef] [PubMed]
- Khaleel, C.; Tabanca, N.; Buchbauer, G. α-Terpineol, a natural monoterpene: A review of its biological properties. Open Chem. 2018, 16, 349–361. [Google Scholar] [CrossRef]
- Loughlin, R.; Gilmore, B.F.; McCarron, P.A.; Tunney, M.M. Comparison of the cidal activity of tea tree oil and terpinen-4-ol against clinical bacterial skin isolates and human fibroblast cells. Lett. Appl. Microbiol. 2008, 46, 428–433. [Google Scholar] [CrossRef]
- Mondello, F.; De Bernardis, F.; Girolamo, A.; Cassone, A.; Salvatore, G. In vivo activity of terpinen-4-ol, the main bioactive component of Melaleuca alternifolia Cheel (tea tree) oil against azole-susceptible and -resistant human pathogenic Candida species. BMC Infect. Dis. 2006, 6, 158. [Google Scholar] [CrossRef] [Green Version]
- Dryden, M.S.; Dailly, S.; Crouch, M. A randomized, controlled trial of tea tree topical preparations versus a standard topical regimen for the clearance of MRSA colonization. J. Hosp. Infect. 2004, 56, 283–286. [Google Scholar] [CrossRef]
- Buettner, A.; Schieberle, P. Characterization of the most odor-active volatiles in fresh, hand squeezed juice of grapefruit (Citrus paradisi Macfayden). J. Agric. Food Chem. 1999, 47, 5189–5193. [Google Scholar] [CrossRef] [PubMed]
- Njoroge, S.M.; Phi, N.T.L.; Sawamura, M. Chemical Composition of Peel Essential Oils of Sweet Oranges (Citrus sinensis) from Uganda and Rwanda. J. Essent. Oil-Bear. Plants 2009, 12, 26–33. [Google Scholar] [CrossRef]
- Moshonas, M.G.; Shaw, P.E. Analysis of Volatile Flavor Constituents from Grapefruit Essence. J. Agric. Food Chem. 1971, 19, 119–120. [Google Scholar] [CrossRef]
- Aprotosoaie, A.C.; Hăncianu, M.; Costache, I.-I.; Miron, A. Linalool: A review on a key odorant molecule with valuable biological properties. Flavour Fragr. J. 2014, 29, 193–219. [Google Scholar] [CrossRef]
- Hussain, A.I.; Anwar, F.; Sherazi, S.T.H.; Przbylski, R. Chemical composition, antioxidant and antimicrobial activities of basil (Ocimum basilicum) essential oils depends on seasonal variations. Food Chem. 2008, 108, 986–995. [Google Scholar] [CrossRef] [PubMed]
- Negromonte Souto-Maior, F.; Vilar da Fonsêca, D.; Rodrigues Salgado, P.R.; de Oliveira Monte, L.; Pergentino de Sousa, D.; Nóbrega de Almeida, R. Antinociceptive and anticonvulsant effects of the monoterpene linalool oxide. Pharm. Biol. 2017, 55, 63–67. [Google Scholar] [CrossRef] [PubMed]
- Ben Hsouna, A.; Ben Halima, N.; Smaoui, S.; Hamdi, N. Citrus lemon essential oil: Chemical composition, antioxidant and antimicrobial activities with its preservative effect against Listeria monocytogenes inoculated in minced beef meat. Lipids Health Dis. 2017, 16, 146. [Google Scholar] [CrossRef] [Green Version]
- Uysal, B.; Sozmen, F.; Aktas, O.; Oksal, B.S.; Kose, E.O. Essential oil composition and antibacterial activity of the grapefruit (Citrus Paradisi. L) peel essential oils obtained by solvent-free microwave extraction: Comparison with hydrodistillation. Int. J. Food Sci. Technol. 2011, 46, 1455–1461. [Google Scholar] [CrossRef]
- Haleva-Toledo, E.; Naim, M.; Zehavi, U.; Rousef, R.L. Formation of α-terpineol in Citrus Juices, Model and Buffer Solutions. Food Sci. 1999, 64, 838–841. [Google Scholar] [CrossRef]
- Pérez-López, A.J.; Saura, D.; Lorente, J.; Carbonell-Barrachina, Á.A. Limonene, linalool, α-terpineol, and terpinen-4-ol as quality control parameters in mandarin juice processing. Eur. Food Res. Technol. 2006, 222, 281–285. [Google Scholar] [CrossRef]
- Ciriminna, R.; Meneguzzo, F.; Delisi, R.; Pagliaro, M. Citric acid: Emerging Applications of a Key Biotechnology Industrial Product. Chem. Cent. J. 2017, 11, 220. [Google Scholar] [CrossRef] [Green Version]
- Rajoriya, S.; Bargole, S.; Saharan, V.K. Degradation of a cationic dye (Rhodamine 6G) using hydrodynamic cavitation coupled with other oxidative agents: Reaction mechanism and pathway. Ultrason. Sonochem. 2017, 34, 183–194. [Google Scholar] [CrossRef]
- Karadeniz, F. Main Organic Acid Distribution of Authentic Citrus Juices in Turkey. Turk. J. Agric. 2004, 28, 267–271. [Google Scholar]
- Couppis, E.C.; Klinzing, G.E. Effect of cavitation on reacting systems. AIChE J. 1974, 20, 485–491. [Google Scholar] [CrossRef]
- Ngouémazong, E.D.; Christiaens, S.; Shpigelman, A.; Van Loey, A.; Hendrickx, M. The Emulsifying and Emulsion-Stabilizing Properties of Pectin: A Review. Compr. Rev. Food Sci. F 2015, 14, 705–718. [Google Scholar] [CrossRef]
- Kimura, K.; Nishimura, H.; Iwata, I.; Mizutani, J. Deterioration mechanism of lemon flavor. 2. Formation mechanism of off-odor substances arising from citral. J. Agric. Food Chem. 1983, 31, 801–804. [Google Scholar] [CrossRef]
- Lin, J.; Jella, P.; Rouseff, R.L. Gas chromatography-olfactometry and chemiluminescence characterization of grapefruit juice volatile sulfur compounds. In Heteroatomic Aroma Compounds; ACS Symposium Series: Washington, DC, USA, 2002; Volume 826, pp. 102–112. [Google Scholar]
- Jalili, V.; Barkhordari, A.; Ghiasvand, A. A comprehensive look at solid-phase microextraction technique: A review of reviews. Microchem. J. 2020, 152, 104319. [Google Scholar] [CrossRef]
- Kim, N.-S.; Lee, D.-S. Headspace solid-phase microextraction for characterization of fragrances of lemon verbena (Aloysia triphylla) by gas chromatography-mass spectrometry. J. Sep. Sci. 2004, 27, 96–100. [Google Scholar] [CrossRef]
- Guimarães, A.C.; Meireles, L.; Lemos, M.F.; Guimarães, M.C.C.; Endringer, D.C.; Fronza, M.; Scherer, R. Antibacterial activity of terpenes and terpenoids present in essential oils. Molecules 2019, 24, 2471. [Google Scholar] [CrossRef] [Green Version]
Entry | Compound | Apex RT (min) | Area (%) |
---|---|---|---|
1 | 3-Methyl-2-buten-2-ol (prenol) | 7.34 | 1.08 |
2 | 1-Butanol, 3-methyl acetate (isoamyl acetate) | 8.27 | 0.73 |
3 | Limonene | 8.33 | 3.39 |
4 | 2-Methyl-1-butanol | 8.54 | 17.11 |
5 | 3-Methyl-1-butanol | 8.6 | 12.43 |
6 | Eucalyptol | 8.98 | 2.32 |
7 | 1-Hexanol | 9.95 | 2.52 |
8 | 2-Hexen-1-ol | 10.33 | 2.33 |
9 | 6-Hepten-1-ol, 2-methyl | 10.88 | 1.52 |
10 | α-Linalool | 11.73 | 4.94 |
11 | Terpinen-4-ol | 12.88 | 21.85 |
12 | α-Citral | 13.62 | 0.58 |
13 | α-Terpineol | 13.72 | 27.42 |
14 | Safranal | 14.15 | 1.11 |
15 | 2,4-Cyclohexadiene-1-methanol, α,α-4-trimethyl | 14.88 | 0.65 |
Entry | Compound | RT (min) | %Area |
---|---|---|---|
1 | 1-Butanol, 3-methyl-acetate (isoamyl acetate) | 8.26 | 0.67 |
2 | Limonene | 8.31 | 11.77 |
3 | 2-Methyl-1-butanol | 8.54 | 12.91 |
4 | 3-Methyl-1-butanol | 8.6 | 15.17 |
5 | 1-Hexanol | 9.94 | 3.24 |
6 | 3-Hexen-1-ol | 10.33 | 1.28 |
7 | cis-Linalool oxide | 11.26 | 14.4 |
8 | trans-Linalool oxide | 11.66 | 1.76 |
9 | α-Linalool | 11.71 | 12.01 |
10 | Terpinen-4-ol | 12.88 | 9.37 |
11 | α-Terpineol | 13.73 | 17.4 |
Sample/Matrix: | 0.827 g Freeze-Dried, Ground Grapefruit IntegroPectin; 0.868 g Freeze-Dried, Ground Lemon IntegroPectin |
---|---|
SPME fiber: | 50/30 μm DVB/CAR/PDMS |
Sample equilibration: | 24 h, room temperature |
Extraction: | 2 min, headspace, room temperature |
Column: | TRACE TR-FAME, 100 m × 0.25 mm I.D., 0.20 μm |
Oven: | 50 °C (0 min), 10 °C/min to 250 °C (5 min) |
Injection T: | 260 °C |
Detector: | DynaMax XR with off-axis dynode, discrete dynode electron multiplier and electrometer, linear range of > 107 |
Scan range: | full scan, m/z 50–500 |
Carrier gas: | He 99.9999%, 1 mL/min constant flow |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scurria, A.; Sciortino, M.; Presentato, A.; Lino, C.; Piacenza, E.; Albanese, L.; Zabini, F.; Meneguzzo, F.; Nuzzo, D.; Pagliaro, M.; et al. Volatile Compounds of Lemon and Grapefruit IntegroPectin. Molecules 2021, 26, 51. https://doi.org/10.3390/molecules26010051
Scurria A, Sciortino M, Presentato A, Lino C, Piacenza E, Albanese L, Zabini F, Meneguzzo F, Nuzzo D, Pagliaro M, et al. Volatile Compounds of Lemon and Grapefruit IntegroPectin. Molecules. 2021; 26(1):51. https://doi.org/10.3390/molecules26010051
Chicago/Turabian StyleScurria, Antonino, Marzia Sciortino, Alessandro Presentato, Claudia Lino, Elena Piacenza, Lorenzo Albanese, Federica Zabini, Francesco Meneguzzo, Domenico Nuzzo, Mario Pagliaro, and et al. 2021. "Volatile Compounds of Lemon and Grapefruit IntegroPectin" Molecules 26, no. 1: 51. https://doi.org/10.3390/molecules26010051
APA StyleScurria, A., Sciortino, M., Presentato, A., Lino, C., Piacenza, E., Albanese, L., Zabini, F., Meneguzzo, F., Nuzzo, D., Pagliaro, M., Chillura Martino, D. F., Alduina, R., Avellone, G., & Ciriminna, R. (2021). Volatile Compounds of Lemon and Grapefruit IntegroPectin. Molecules, 26(1), 51. https://doi.org/10.3390/molecules26010051