Palladium-Catalyzed C–H Arylation of Benzofurans with Triarylantimony Difluorides for the Synthesis of 2-Arylbenzofurans
Abstract
:1. Introduction
2. Results and Discussion
2.1. Pd-Catalyzed C–H Arylation of Benzofurans with Triarylantimony Difluorides
2.2. X-ray Crystal Structure of Triarylantimony Difluoride
3. Materials and Methods
3.1. General
3.2. General Procedure for the C–H Arylation
3.2.1. 2-Phenylbenzofuran (13a)
3.2.2. 2-(4-Methoxyphenyl) Benzofuran (13b)
3.2.3. 2-(p-Tolyl) Benzofuran (13c)
3.2.4. 2-(4-Chlorophenyl) Benzofuran (13d)
3.2.5. 2-(4-Bromophenyl) Benzofuran (13e)
3.2.6. Ethyl 4-(benzofuran-2-yl) Benzoate (13f)
3.2.7. 2-[4-(Trifluoromethyl)phenyl] Benzofuran (13g)
3.2.8. 2-(o-Tolyl) Benzofuran (13i)
3.2.9. 5-Methoxy-2-phenylbanzofuran (13j)
3.2.10. 5-Methyl-2-phenylbanzofuran (13k)
3.2.11. 5-Chloro-2-phenylbanzofuran (13l)
3.2.12. 5-Bromo-2-phenylbanzofuran (13m)
3.2.13. 2-Phenylbanzofuran-5-carbonitrile (13n)
3.3. Crystal Structure Determination
Crystal Data for 2c
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Sample Availability
References and Note
- Miao, Y.; Hu, Y.; Yang, J.; Liu, T.; Sun, J.; Wang, X. Natural source, bioactivity and synthesis of benzofuran derivatives. RSC Adv. 2019, 9, 27510–27540. [Google Scholar] [CrossRef] [Green Version]
- Heravi, M.M.; Zadsirjan, V.; Hamidi, H.; Amiri, P.H.T. Total synthesis of natural products containing benzofuran rings. RSC Adv. 2017, 7, 24470–24521. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z.; Zhao, S.; Lv, Z.; Feng, L.; Wang, Y.; Zhang, F.; Bai, L.; Deng, J. Benzofuran derivatives and their anti-tubercular, anti-bacterial activities. Eur. J. Med. Chem. 2019, 162, 266–276. [Google Scholar] [CrossRef] [PubMed]
- Goyal, D.; Kaur, A.; Goyal, B. Benzofuran and indole: Promising scaffolds for drug development in alzheimer’s disease. ChemMedChem 2018, 13, 1275–1299. [Google Scholar] [CrossRef] [PubMed]
- Hiremathad, A.; Patil, M.R.; Chethana, R.K.; Chand, K.; Santos, M.A.; Keri, R.S. Benzofuran: An emerging scaffold for antimicrobial agents. RSC Adv. 2015, 5, 96809–96828. [Google Scholar] [CrossRef]
- Tsuji, H.; Nakamura, E. Design and functions of semiconducting fused polycyclic furans for optoelectronic applications. Acc. Chem. Res. 2017, 50, 396–406. [Google Scholar] [CrossRef] [PubMed]
- Chand, K.; Rajeshwari; Hiremathad, A.; Singh, M.; Santos, M.A.; Keri, R.S. A review on antioxidant potential of bioactive heterocycle benzofuran: Natural and synthetic derivatives. Pharmacol. Rep. 2017, 69, 281–295. [Google Scholar] [CrossRef]
- Hilditch, A.; Prior, H.M.; Drew, G.M. Further investigations into the mechanism of the antihypertensive activity of the angiotensin AT1 receptor antagonist, GR138950. Br. J. Pharmacol. 1996, 118, 711–719. [Google Scholar] [CrossRef] [Green Version]
- Forhead, A.J.; Whybrew, K.; Hughes, P.; Pipkin, F.B.; Sutherland, M.; Fowden, A.L. Comparison of angiotensin II type 1 receptor blockade and angiotensin-converting enzyme inhibition in pregnant sheep during late gestation. Br. J. Pharmacol. 1996, 119, 393–401. [Google Scholar] [CrossRef] [Green Version]
- Kapche, G.D.W.F.; Amadou, D.; Waffo-Teguo, P.; Donfack, J.H.; Fozing, C.D.; Harakat, D.; Tchana, A.N.; Mérillon, J.M.; Moundipa, P.F.; Ngadjui, B.T.; et al. Hepatoprotective and antioxidant arylbenzofurans and flavonoids from the twigs of morus mesozygia. Planta Med. 2011, 77, 1044–1047. [Google Scholar] [CrossRef]
- Salomé, C.; Narbonne, V.; Ribeiro, N.; Thuaud, F.; Serova, M.; de Gramont, A.; Faivre, S.; Raymond, E.; Désaubry, L. Benzofuran derivatives as a novel class of inhibitors of mTOR signaling. Eur. J. Med. Chem. 2014, 74, 41–49. [Google Scholar] [CrossRef] [PubMed]
- Pu, W.; Yuan, Y.; Lu, D.; Wang, X.; Liu, H.; Wang, C.; Wang, F.; Zhang, G. 2-Phenylbenzo[b]furans: Synthesis and promoting activity on estrogen biosynthesis. Bioorg. Med. Chem. Lett. 2016, 26, 5497–5500. [Google Scholar] [CrossRef] [PubMed]
- Bheeter, C.B.; Chen, L.; Soulé, J.-F.; Doucet, H. Regioselectivity in palladium-catalysed direct arylation of 5-membered ring heteroaromatics. Catal. Sci. Technol. 2016, 6, 2005–2049. [Google Scholar] [CrossRef]
- Choy, P.Y.; Wong, S.M.; Kapdi, A.; Kwong, F.Y. Recent developments in palladium-catalysed non-directed coupling of (hetero)arene C–H bonds with C–Z (Z = B, Si, Sn, S, N, C, H) bonds in bi(hetero)aryl synthesis. Org. Chem. Front. 2018, 5, 288–321. [Google Scholar] [CrossRef]
- Ohta, A.; Akita, Y.; Ohkuwa, T.; Chiba, M.; Fukunaga, R.; Miyafuji, A.; Nakata, T.; Tani, N.; Aoyagi, Y. Palladium-catalyze arylation of furan, thiophene, benzo[b]furan and benzo[b]thiophene. Heterocycles 1990, 31, 1951–1958. [Google Scholar] [CrossRef]
- Nandurkar, N.S.; Bhanushali, M.J.; Bhor, M.D.; Bhanage, B.M. Palladium bis(2,2,6,6-tetramethyl-3,5-heptanedionate): An efficient catalyst for regioselective C-2 arylation of heterocycles. Tetrahedron Lett. 2008, 49, 1045–1048. [Google Scholar] [CrossRef]
- Yanagisawa, S.; Itami, K. Palladium/2,2′-bipyridyl/Ag2CO3 catalyst for C–H bond arylation of heteroarenes with haloarenes. Tetrahedron 2011, 67, 4425–4430. [Google Scholar] [CrossRef]
- Dao-Huy, T.; Haider, M.; Glatz, F.; Schnürch, M.; Mihovilovic, M.D. Direct arylation of benzo[b]furan and other benzo-fused heterocycles. Eur. J. Org. Chem. 2014, 2014, 8119–8125. [Google Scholar] [CrossRef] [Green Version]
- Yin, S.-C.; Zhou, Q.; Zhao, X.-Y.; Shao, L.-X. N-heterocyclic carbene-palladium(II)-1-methylimdazole complex catalyzed direct C–H bond arylation of benzo[b]furans with aryl chlorides. J. Org. Chem. 2015, 80, 8916–8921. [Google Scholar] [CrossRef]
- Xu, Z.; Xu, Y.; Lu, H.; Yang, T.; Lin, X.; Shao, L.; Ren, F. Efficient and C2-selective arylation of indoles, benzofurans, and benzothiophenes with iodobenzenes in water at room temperature. Tetrahedron 2015, 71, 2616–2621. [Google Scholar] [CrossRef]
- Yang, S.-D.; Sun, C.-L.; Fang, Z.; Li, B.-J.; Li, Y.-Z.; Shi, Z.-J. Palladium-Catalyzed Direct Arylation of (Hetero)Arenes with Aryl Boronic Acids. Angew. Chem. Int. Ed. 2008, 47, 1473–1476. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Li, Y.; Yan, B.; Huang, M.; Wu, Y. Palladium-catalyzed phosphine-free direct C–H arylation of benzothiophenes and benzofurans involving MIDA boronates. Synlett 2015, 26, 531–536. [Google Scholar] [CrossRef]
- Biajoli, A.F.P.; da Penha, E.T.; Correia, C.R.D. Palladium catalysed regioselective arylation of indoles, benzofuran and benzothiophene with aryldiazonium salts. RSC Adv. 2012, 2, 11930–11935. [Google Scholar] [CrossRef] [Green Version]
- Loukotova, L.; Yuan, K.; Doucet, H. Regiocontroled Palladium-Catalysed Direct Arylation at Carbon C2 of Benzofurans using Benzenesulfonyl Chlorides as the Coupling Partners. ChemCatChem 2014, 6, 1303–1309. [Google Scholar] [CrossRef]
- Li, H.; Roisnel, T.; Soulé, J.-F.; Doucet, H. Regiocontrolled palladium-catalyzed direct C2-arylations of Methoxalen using benzenesulfonyl chlorides and C2,C3-diarylations using aryl bromides as the aryl sources. Tetrahedron Lett. 2020, 61, 151342. [Google Scholar] [CrossRef]
- Tang, D.-T.D.; Collins, K.D.; Ernst, J.B.; Glorius, F. Pd/C as a catalyst for completely regioselective C–H functionalization of thiophenes under mild conditions. Angew. Chem. Int. Ed. 2014, 53, 1809–1813. [Google Scholar] [CrossRef]
- Cano, R.; Pérez, J.M.; Ramón, D.J.; McGlacken, G.P. Impregnated palladium on magnetite as catalyst for direct arylation of heterocycles. Tetrahedron 2016, 72, 1043–1050. [Google Scholar] [CrossRef] [Green Version]
- Duan, L.; Fu, R.; Zhang, B.; Shi, W.; Chen, S.; Wan, Y. An efficient reusable mesoporous solid-based Pd catalyst for selective C2 arylation of indoles in water. ACS Catal. 2016, 6, 1062–1074. [Google Scholar] [CrossRef]
- Cao, J.; Chen, Z.-L.; Li, S.-M.; Zhu, G.-F.; Yang, Y.-Y.; Wang, C.; Chen, W.-Z.; Wang, J.-T.; Zhang, J.-Q.; Tang, L. Palladium-catalyzed regioselective C-2 arylation of benzofurans with N′-acyl arylhydrazines. Eur. J. Org. Chem. 2018, 2774–2779. [Google Scholar] [CrossRef]
- Gushchin, A.V.; Moiseev, D.V.; Dodonov, V.A. Catalytic C-phenylation of methyl acrylate with triphenylantimony(v) dicarboxylates. Russ. Chem. Bull. Int. Ed. 2001, 50, 1291–1294. [Google Scholar] [CrossRef]
- Moiseev, D.V.; Gushchin, A.V.; Shavirin, A.S.; Kursky, Y.A.; Dodonov, V.A. Pd-catalyzed C-arylation of unsaturated compounds with pentavalent triarylantimony dicarboxylates. J. Organomet. Chem. 2003, 667, 176–184. [Google Scholar] [CrossRef]
- Moiseev, D.V.; Morugova, V.A.; Gushchin, A.V.; Shavirin, A.S.; Kursky, Y.A.; Dodonov, V.A. Tetraphenylantimony carboxylates in the cascade Pd-catalyzed C-phenylation reaction of methyl acrylate in the presence of peroxide. J. Organomet. Chem. 2004, 689, 731–737. [Google Scholar] [CrossRef]
- Kang, S.-K.; Ryu, H.-C.; Lee, S.-W. Preparation of triarylantimony(V) diacetates and palladium-catalyzed cross-coupling and carbonylative cross-coupling of triarylantimony(V) diacetates and dichlorides with organostannanes. J. Organomet. Chem. 2000, 610, 38–41. [Google Scholar] [CrossRef]
- Kang, S.-K.; Ryu, H.-C.; Hong, Y.-T. Pd(0)–Cu(I)-catalyzed cross-coupling of alkynylsilanes with triarylantimony(V) diacetates. J. Chem. Soc. Perkin Trans. 2001, 1, 736–739. [Google Scholar] [CrossRef]
- Yasuike, S.; Qin, W.; Sugawara, Y.; Kurita, J. Suzuki-type cross-coupling reaction of pentavalent triarylantimony diacetates with arylboronic acids without a base. Tetrahedron Lett. 2007, 48, 721–724. [Google Scholar] [CrossRef]
- Qin, W.; Yasuike, S.; Kakusawa, N.; Sugawara, Y.; Kawahata, M.; Yamaguchi, K.; Kurita, J. Triarylantimony dicarboxylates as pseudo-halides for palladium-catalyzed cross-coupling reaction with arylboronic acids and triarylbismuthanes without any base. J. Organomet. Chem. 2008, 693, 109–116. [Google Scholar] [CrossRef]
- Wang, X.; Qin, W.; Kakusawa, N.; Yasuike, S.; Kurita, J. Copper- and base-free Sonogashira-type cross-coupling reaction of triarylantimony dicarboxylates with terminal alkynes under an aerobic condition. Tetrahedron Lett. 2009, 50, 6293–6297. [Google Scholar] [CrossRef]
- Kitamura, Y.; Murata, Y.; Oguri, A.; Matsumura, M.; Kakusawa, N.; Naka, H.; Yasuike, S. Pd-Catalyzed β-Selective C−H Arylation of Thiophenes with Triarylantimony Difluorides. Asian J. Org. Chem. 2019, 8, 138–143. [Google Scholar] [CrossRef]
- Hara, T.; Nakano, S.; Kitamura, Y.; Yamamoto, C.; Yasuike, S.; Kaji, T. Intracellular accumulation-independent cytotoxicity of pentavalent organoantimony compounds in cultured vascular endothelial cells. J. Toxic. Sci. 2019, 44, 845–848. [Google Scholar] [CrossRef] As note: Ar3SbF2 does not exhibit cytotoxicity at 25 µM and less in cultured vascular endothelial cells. Ph3SbF2 was undetectable within the cells even after treatment at 10 µM for 24 h. The cells are a cell type that cover the luminal surface of blood vessels in a monolayer and directly contact with blood. The concentration of 25 µM and more is virtually impossible conditions as the blood concentration in human.[Green Version]
- Kitamura, Y.; Matsumura, M.; Murata, Y.; Yamada, M.; Kakusawa, N.; Tanaka, M.; Okabe, H.; Naka, H.; Obata, T.; Yasuike, S. A versatile synthesis of triarylantimony difluorides by fluorination of triarylstibanes with nitrosyl tetrafluoroborate and their antitumor activity. J. Fluor. Chem. 2017, 199, 1–6. [Google Scholar] [CrossRef]
- Emsley, J. The Elements, 3rd ed.; Oxford University Press: New York, NY, USA, 1997. [Google Scholar]
- Dániel, L.; Ádám, M.; Zoltán, N.; Gergely, L.T. Catalytic activation of trimethylsilylacetylenes: A one-pot route to unsymmetrical acetylenes and heterocycles. J. Org. Chem. 2018, 83, 8281–8291. [Google Scholar]
- Bosiak, M.J. A convenient synthesis of 2-arylbenzo[b]furan from aryl halides and 2-halophenols by catalytic one-pot cascade method. ACS Catal. 2016, 6, 2429–2434. [Google Scholar] [CrossRef]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. The program OLEX2 provides tools for the determination, visualization and analysis of molecular crystal structures. J. Appl. Cryst. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Sheldrick, G.M. SHELXT—Integrated space-group and crystal-structure determination. Acta Cryst. 2015, A71, 3–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Cryst. 2015, C71, 3–8. [Google Scholar]
Entry | Sb Reagent | Time (h) | Yield (%) b | |
---|---|---|---|---|
13a | 14 | |||
1 | Ph3SbF2 2a | 3 | 93 (90) c | --- |
2 | Ph3SbCl2 3 | 6 | 88 | 3 |
3 | Ph3SbBr2 4 | 24 | 2 | <1 |
4 | Ph3Sb(OAc)2 5 | 3 | 62 | 37 |
5 | Ph3Sb(OCOCF3)2 6 | 6 | 72 | 23 |
6 | Ph3Sb(OBz)2 7 | 6 | 70 | 24 |
7 | Ph3Sb(OTs)2 8 | 6 | 79 | --- |
8 | Ph3Sb(OCHO)2 9 | 6 | 58 | 11 |
9 | Ph4SbBr 10 | 6 | 47 | 7 d |
10 | Ph4SbOAc 11 | 6 | 63 | 25 d |
11 | Ph5Sb 12 | 24 | 77 | 22 e |
13b: 19% (1 h) 13bc: 60% (3 h) | 13c: 74% (1.5 h) | 13d: 81% (4 h) |
13e: 91% (5 h) | 13f: 53% (24 h) | 13g: 37% (72 h) |
13h: 0% (72 h) | 13i: 61% (24 h) | 13j: 56% (24 h) |
13k: 76% (5 h) | 13l: 98% (24 h) | 13m: 82% (24 h) |
13n: 79% (24 h) | 13od: 0% (24 h) | 13p (M = Se): 0% (24 h) 13q (M = Te): 0% (24 h) |
p-Tol3SbF2 | |||
---|---|---|---|
Bond lengths (Å) | Atomic distance (Å) | ||
Sb–F(1) | 1.9839(10) | H(2)…F(1) | 2.30(3) |
Sb–F(2) | 1.9843(10) | H(5)…F(1) | 2.43(3) |
Sb–C(1) | 2.1021(17) | H(8)…F(1) | 2.49(2) |
Sb–C(4) | 2.1017(16) | H(3)…F(2) | 2.34(3) |
Sb–C(7) | 2.1012(16) | H(6)…F(2) | 2.28(3) |
Bond angles (°) | H(9)…F(2) | 2.50(2) | |
F(1)–Sb–F(2) | 178.93(4) | Dihedral angles (°) | |
C(1)–Sb–C(4) | 123.62(6) | C(2)–C(1)–Sb–F(1) | −8.58(13) |
C(1)–Sb–C(7) | 118.16(6) | C(5)–C(4)–Sb–F(1) | −10.80(18) |
C(4)–Sb–C(7) | 118.22(6) | C(8)–C(7)–Sb–F(1) | 23.45(14) |
F(1)–Sb–C(1) | 89.19(6) | C(3)–C(1)–Sb–F(2) | −6.71(13) |
F(1)–Sb–C(4) | 90.36(6) | C(6)–C(4)–Sb–F(2) | −14.45(18) |
F(1)–Sb–C(7) | 90.83(5) | C(9)–C(7)–Sb–F(2) | 25.99(15) |
F(2)–Sb–C(1) | 89.98(6) | ||
F(2)–Sb–C(4) | 89.53(6) | ||
F(2)–Sb–C(7) | 90.16(5) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kitamura, Y.; Murata, Y.; Iwai, M.; Matsumura, M.; Yasuike, S. Palladium-Catalyzed C–H Arylation of Benzofurans with Triarylantimony Difluorides for the Synthesis of 2-Arylbenzofurans. Molecules 2021, 26, 97. https://doi.org/10.3390/molecules26010097
Kitamura Y, Murata Y, Iwai M, Matsumura M, Yasuike S. Palladium-Catalyzed C–H Arylation of Benzofurans with Triarylantimony Difluorides for the Synthesis of 2-Arylbenzofurans. Molecules. 2021; 26(1):97. https://doi.org/10.3390/molecules26010097
Chicago/Turabian StyleKitamura, Yuki, Yuki Murata, Mizuki Iwai, Mio Matsumura, and Shuji Yasuike. 2021. "Palladium-Catalyzed C–H Arylation of Benzofurans with Triarylantimony Difluorides for the Synthesis of 2-Arylbenzofurans" Molecules 26, no. 1: 97. https://doi.org/10.3390/molecules26010097
APA StyleKitamura, Y., Murata, Y., Iwai, M., Matsumura, M., & Yasuike, S. (2021). Palladium-Catalyzed C–H Arylation of Benzofurans with Triarylantimony Difluorides for the Synthesis of 2-Arylbenzofurans. Molecules, 26(1), 97. https://doi.org/10.3390/molecules26010097