The Hydrolysis of Phosphinates and Phosphonates: A Review
Abstract
:1. Introduction
2. Acidic Hydrolysis of Phosphinates and Phosphonates
2.1. Acidic Hydrolysis of Phosphinates
2.2. Acidic Hydrolysis of Phosphonates
3. Alkaline and Basic Hydrolysis
3.1. Alkaline and Basic Hydrolysis of Phosphinates
3.2. Alkaline and Basic Hydrolysis of Phosphonates
4. Dealkylation
4.1. Dealkylation of Phosphinates
4.2. Dealkylation of Phosphonates
5. Conclusions
Funding
Conflicts of Interest
References
- Horsman, G.P.; Zechel, D.L. Phosphonate biochemistry. Chem. Rev. 2017, 117, 5704–5783. [Google Scholar] [CrossRef]
- Falagas, M.E.; Vouloumanou, E.K.; Samonis, G.; Vardakas, K.Z. Fosfomycin. Clin. Microbiol. Rev. 2016, 29, 321–347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pulwer, M.J.; Matthazor, T.M. A convenient synthesis of aminomethylphosphonic acid. Synth. Commun. 1986, 16, 733–739. [Google Scholar] [CrossRef]
- De Clercq, E. Potential of acyclic nucleoside phosphonates in the treatment of DNA virus and retrovirus infections. Clin. Microbiol. Rev. 2003, 1, 21–43. [Google Scholar] [CrossRef]
- Virieux, D.; Volle, J.-N.; Bakalara, N.; Pirat, J.-L. Synthesis and biological applications of phosphinates and derivatives. Top. Curr. Chem. 2014, 360, 39–114. [Google Scholar] [CrossRef]
- Froestl, W.; Mickel, S.J.; von Sprecher, G.; Diel, P.J.; Hall, R.G.; Maier, L.; Strub, D.; Melillo, V.; Baumann, P.A.; Bernasconi, R.; et al. Phosphinic acid analogues of GABA. 2. Selective, orally active GABAB antagonists. J. Med. Chem. 1995, 38, 3313–3331. [Google Scholar] [CrossRef]
- Gavande, N.; Yamamoto, I.; Salam, N.K.; Ai, T.H.; Burden, P.M.; Johnston, G.A.R.; Hanrahan, J.R.; Chebib, M. Novel cyclic phosphinic acids as GABAC receptor antagonists: Design, synthesis, and pharmacology. ACS Med. Chem. Lett. 2011, 2, 11–16. [Google Scholar] [CrossRef] [Green Version]
- Reid, D.M.; Devogelaer, J.P.; Saag, K.; Roux, C.; Lau, C.S.; Reginster, J.Y.; Papanastasiou, P.; Ferreira, A.; Hartl, F.; Fashola, T.; et al. Zoledronic acid and risedronate in the prevention and treatment of glucocorticoid-induced osteoporosis (HORIZON): A multicentre, double-blind, double-dummy, randomised controlled trial. Lancet 2009, 373, 1253–1263. [Google Scholar] [CrossRef]
- Black, D.M.; Cummings, S.R.; Karpf, D.B.; Cauley, J.A.; Thompson, D.E.; Nevitt, M.C.; Bauer, D.C.; Genant, H.K.; Haskell, W.L.; Marcus, R.; et al. Randomised trial of effect of alendronate on risk of fracture in women with existing vertebral fractures. Lancet 1996, 348, 1535–1541. [Google Scholar] [CrossRef]
- Brücher, K.; Gräwert, T.; Konzuch, S.; Held, J.; Lienau, C.; Behrendt, C.; Illarionov, B.; Maes, L.; Bacher, A.; Wittlin, S.; et al. Prodrugs of reverse fosmidomycin analogues. J. Med. Chem. 2015, 58, 2025–2035. [Google Scholar] [CrossRef]
- Verbrugghen, T.; Vandurm, P.; Pouyez, J.; Maes, L.; Wouters, J.; Van Calenbergh, S. Alpha-heteroatom derivatized analogues of 3-(acetylhydroxyamino)propyl phosphonic acid (FR900098) as antimalarials. J. Med. Chem. 2013, 56, 376–380. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Cao, R.; Yin, F.; Lin, F.Y.; Wang, H.; Krysiak, K.; No, J.H.; Mukkamala, D.; Houlihan, K.; Li, J.; et al. Lipophilic pyridinium bisphosphonates: Potent γδT cell stimulators. Angew. Chem. Int. Ed. 2010, 49, 1136–1138. [Google Scholar] [CrossRef] [Green Version]
- Fonseca, E.M.B.; Trivella, D.B.B.; Scorsato, V.; Dias, M.P.; Bazzo, N.L.; Mandapati, K.R.; De Oliveira, F.L.; Ferreira-Halder, C.V.; Pilli, R.A.; Miranda, P.C.M.L.; et al. Crystal structures of the apo form and a complex of human LMW-PTP with a phosphonic acid provide new evidence of a secondary site potentially related to the anchorage of natural substrates. Bioorg. Med. Chem. 2015, 23, 4462–4471. [Google Scholar] [CrossRef] [PubMed]
- Morita, C.T.; Jin, C.; Sarikonda, G.; Wang, H. Nonpeptide antigens, presentation mechanisms, and immunological memory of human Vγ2Vδ2 T cells: Discriminating friend from foe through the recognition of prenyl pyrophosphate antigens. Immunol. Rev. 2007, 215, 59–76. [Google Scholar] [CrossRef]
- Kramer, G.J.; Mohd, A.; Schwager, S.L.U.; Masuyer, G.; Acharya, K.R.; Sturrock, E.D.; Bachmann, B.O. Interkingdom pharmacology of angiotensin-I converting enzyme inhibitor phosphonates produced by actinomycetes. ACS Med. Chem. Lett. 2014, 5, 346–351. [Google Scholar] [CrossRef]
- Myers, J.P.; Antoniou, M.N.; Blumberg, B.; Carroll, L.; Colborn, T.; Everett, L.G.; Hansen, M.; Landrigan, P.J.; Lanphear, B.P.; Mesnage, R.; et al. Concerns over use of glyphosate-based herbicides and risks associated with exposures: A consensus statement. Environ. Health 2016, 15, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reiter, L.A.; Jones, B.P. Amide-assisted hydrolysis of β-carboxamido-substituted phosphinic acid esters metal ions, and appropriately substituted phosphinic responsible for promoting the cleavage of the phosphinic acid esters. J. Org. Chem. 1997, 62, 2808–2812. [Google Scholar] [CrossRef]
- Nguyen, C.; Lee, M.; Kim, J. Relationship between structures of phosphorus compounds and flame retardancies of the mixtures with acrylonitrile—butadiene—styrene and ethylene—vinyl acetate copolymer. Polym. Adv. Technol. 2011, 22, 512–519. [Google Scholar] [CrossRef]
- Kosolapoff, G.M.; Maier, L. Organic Phosphorus Compounds; J. Wiley & Sons, Inc.: New York, NY, USA, 1972; Volume 4, pp. 264–273. [Google Scholar]
- Jansa, P.; Baszczyňski, O.; Procházková, E.; Dračínský, M.; Janeba, Z. Microwave-assisted hydrolysis of phosphonate diesters: An efficient protocol for the preparation of phosphonic acids. Green Chem. 2012, 14, 2282–2288. [Google Scholar] [CrossRef]
- Sevrain, C.M.; Berchel, M.; Couthon, H.; Jaffrès, P. Phosphonic acid: Preparation and applications. J. Org. Chem. 2017, 13, 2186–2213. [Google Scholar] [CrossRef]
- Rahil, J.; Pratt, R.F. Intramolecular participation of the amide group in acid- and base-catalysed phosphonate monoester hydrolysis. J. Chem. Soc. Perkin Trans. 2 1991, 947–950. [Google Scholar] [CrossRef]
- Kuzdin, Z.H.; Stec, W.J. Phosphohomocysteine derivates. Synthesis (Stuttg) 1980, 12, 1032–1034. [Google Scholar] [CrossRef]
- Wȩglarz-Tomczak, E.; Berlicki, Ł.; Pawełczak, M.; Nocek, B.; Joachimiak, A.; Mucha, A. A structural insight into the P1 S1 binding mode of diaminoethylphosphonic and phosphinic acids, selective inhibitors of alanine aminopeptidases. Eur. J. Med. Chem. 2016, 117, 187–196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hugot, N.; Roger, M.; Rueff, J.M.; Cardin, J.; Perez, O.; Caignaert, V.; Raveau, B.; Rogez, G.; Jaffrès, P.A. Copper-fluorenephosphonate Cu(PO3-C13H9)·H2O: A layered antiferromagnetic hybrid. Eur. J. Inorg. Chem. 2016, 266–271. [Google Scholar] [CrossRef]
- Chauveau, E.; Marestin, C.; Mercier, R.; Brunaux, A.; Martin, V.; Nogueira, R.P.; Percheron, A.; Roche, V.; Waton, H. Phosphonic acid-containing polysulfones as anticorrosive layers. J. Appl. Polym. Sci. 2015, 132, 1–9. [Google Scholar] [CrossRef]
- Fischer, T.; Duong, Q.N.; García Mancheño, O. Triazole-based anion-binding catalysis for the enantioselective dearomatization of N-heteroarenes with phosphorus nucleophiles. Chem. Eur. J. 2017, 23, 5983–5987. [Google Scholar] [CrossRef]
- Sánchez-Moreno, M.J.; Gómez-Coca, R.B.; Fernández-Botello, A.; Ochocki, J.; Kotynski, A.; Griesser, R.; Sigel, H. Synthesis and acid-base properties of (1H-benzimidazol-2-yl-methyl)phosphonate (Bimp2-). Evidence for intramolecular hydrogen-bond formation in aqueous solution between (N-1)H and the phosphonate group. Org. Biomol. Chem. 2003, 1, 1819–1826. [Google Scholar] [CrossRef]
- Jaffrès, P.A.; Caignaert, V.; Villemin, D. A direct access to layered zirconium-phosphonate materials from dialkylphosphonates. Chem. Commun. 1999, 1997–1998. [Google Scholar] [CrossRef]
- Griffiths, D.V.; Hughes, J.M.; Brown, J.W.; Caesar, J.C.; Swetnam, S.P.; Cumming, S.A.; Kelly, J.D. The synthesis of 1-amino-2-hydroxy- and 2-amino-1-hydroxy-substituted ethylene-1,1-bisphosphonic acids and their N-methylated derivatives. Tetrahedron 1997, 53, 17815–17822. [Google Scholar] [CrossRef]
- Kafarski, P.; Lejczak, B.; Szewczyk, J. Optically active 1-aminoalkanephosphonic acids. Dibenzoyl- L -tartaric anhydride as an effective agent for the resolution of racemic diphenyl 1-aminoalkanephosphonates. Can. J. Chem. 1983, 61, 2425–2430. [Google Scholar] [CrossRef]
- Ikenberry, M.; Peña, L.; Wei, D.; Wang, H.; Bossmann, S.H.; Wilke, T.; Wang, D.; Komreddy, V.R.; Rillema, D.P.; Hohn, K.L. Acid monolayer functionalized iron oxide nanoparticles as catalysts for carbohydrate hydrolysis. Green Chem. 2014, 16, 836–843. [Google Scholar] [CrossRef] [Green Version]
- Broeren, M.A.C.; De Waal, B.F.M.; Van Genderen, M.H.P.; Sanders, H.M.H.F.; Fytas, G.; Meijer, E.W. Multicomponent host-guest chemistry of carboxylic acid and phosphonic acid based guests with dendritic hosts: An NMR study. J. Am. Chem. Soc. 2005, 127, 10334–10343. [Google Scholar] [CrossRef] [PubMed]
- Otaka, A.; Burke, T.R.; Smyth, M.S.; Nomizu, M.; Roller, P.P. Deprotection and cleavage methods for protected peptide resins containing 4-[(diethylphosphono)difluoromethyl]-D,L-phenylalanine residues. Tetrahedron Lett. 1993, 34, 7039–7042. [Google Scholar] [CrossRef]
- Bunnett, J.F.; Edwards, J.O.; Wells, D.V.; Brass, H.J.; Curci, R. The hydrolysis of methyl methylarylphosphinates in perchloric acid solution. J. Org. Chem. 1973, 38, 2703–2707. [Google Scholar] [CrossRef]
- Haake, P.; Hurst, G. Reactions of phosphinates. The acid-catalyzed and acid-inhibited hydrolysis of p-nitrophenyl diphenylphosphinate. J. Am. Chem. Soc. 1966, 88, 2544–2550. [Google Scholar] [CrossRef]
- Kim, S.M.; Lee, M.; Lee, S.Y.; Park, E.; Lee, S.M.; Kim, E.J.; Han, M.Y.; Yoo, T.; Ann, J.; Yoon, S.; et al. Discovery of an orally bioavailable gonadotropin-releasing hormone receptor antagonist. J. Med. Chem. 2016, 59, 9150–9172. [Google Scholar] [CrossRef]
- Yuan, C.; Li, S.; Liao, X. Studies on Organophosphorus Compounds. XXXVI * In alkaline hydrolysis. J. Phys. Org. Chem. 1990, 3, 48–54. [Google Scholar] [CrossRef]
- Bergesen, K. Alkaline hydrolysis of the cis and trans isomers of the cyclic phosphinate: 1-Oxo-1-ethoxy-2,2,3,4,4-pentamethyl-phospha-cyclobutan. Acta Chem. Scand. 1967, 21, 1587–1591. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.; Liu, J.T. Convenient synthesis of β-allenic α-difluoromethylenephosphonic acid monoesters: Potential synthons for cyclic phosphate mimics. Chin. Chem. Lett. 2007, 18, 33–36. [Google Scholar] [CrossRef]
- Wróblewski, A.E.; Verkade, J.G. 1-Oxo-2-oxa-1-phosphabicyclo[2.2.2]octane: A new mechanistic probe for the basic hydrolysis of phosphate esters. J. Am. Chem. Soc. 1996, 118, 10168–10174. [Google Scholar] [CrossRef]
- Palacios, F.; Alonso, C.; de los Santos, J.M. Synthesis of β-aminophosphonates and -phosphinates. Chem. Rev. 2005, 105, 899–931. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Glunz, P.W.; Johnson, J.A.; Jiang, W.; Jacutin-Porte, S.; Ladziata, V.; Zou, Y.; Phillips, M.S.; Wurtz, N.R.; Parkhurst, B.; et al. Discovery of a highly potent, selective, and orally bioavailable macrocyclic inhibitor of blood coagulation factor VIIa-tissue factor complex. J. Med. Chem. 2016, 59, 7125–7137. [Google Scholar] [CrossRef] [PubMed]
- Moss, R.A.; Morales-Rojas, H.; Vijayaraghavan, S.; Tian, J. Metal-cation-mediated hydrolysis of phosphonoformate diesters: Chemoselectivity and catalysis. J. Am. Chem. Soc. 2004, 126, 10923–10936. [Google Scholar] [CrossRef] [PubMed]
- Mabey, W.; Mill, T. Critical review of hydrolysis of organic compounds in water under environmental conditions. J. Phys. Ref. Data 1978, 7, 383–415. [Google Scholar] [CrossRef] [Green Version]
- Haake, P.; Diebert, C.E. Phosphinic acids and derivates. Pyrolytic elimination in phosphinate esters. J. Am. Chem. Soc. 1971, 93, 6931–6937. [Google Scholar] [CrossRef]
- Zeuner, F.; Angermann, J.; Moszner, N. Synthesis of novel 2-vinylcyclopropane phosphonic acids. Synth. Commun. 2006, 36, 3679–3691. [Google Scholar] [CrossRef]
- Åkerfeldt, K.S.; Bartlett, P.A. Synthesis and evaluation of glucose-ADP hybrids as inhibitors of hexokinase. J. Org. Chem. 1991, 56, 7133–7144. [Google Scholar] [CrossRef]
- Alley, S.R.; Henderson, W. Synthesis and characterisation of ferrocenyl-phosphonic and -arsonic acids. J. Organomet. Chem. 2001, 637, 216–229. [Google Scholar] [CrossRef] [Green Version]
- Smits, J.P.; Wiemer, D.F. Synthesis and reactivity of alkyl-1, 1, 1-trisphosphonate esters. J. Org. Chem. 2011, 76, 8807–8813. [Google Scholar] [CrossRef] [Green Version]
- Green, O.M. A rapid dealkylation of phosphonate diester for the preparation of 4-phosphonomethylphenylalanine-containing peptides. Tetrahedron Lett. 1994, 35, 8081–8084. [Google Scholar] [CrossRef]
- Jiménez-García, L.; Kaltbeitzel, A.; Pisula, W.; Gutmann, J.S.; Klapper, M.; Müllen, K. Phosphonated hexaphenylbenzene: A crystalline proton conductor. Angew. Chem. Int. Ed. 2009, 48, 9951–9953. [Google Scholar] [CrossRef]
- Gauvry, N.; Mortier, J. Dealkylation of dialkyl phosphonates with boron tribromide. Synthesis (Stuttg) 2001, 4, 553–554. [Google Scholar] [CrossRef]
- Bryant, D.E.; Kilner, C.; Kee, T.P. Facile one-pot mono-dealkylation of H-phosphonate esters in high yield. Inorg. Chim. Acta 2009, 362, 614–616. [Google Scholar] [CrossRef]
- Imamura, M.; Hashimoto, H. Synthesis of novel CMP-NeuNAc analogues having a glycosyl phosphonate structure. Tetrahedron Lett. 1996, 37, 1451–1454. [Google Scholar] [CrossRef]
- Georgiev, E.M.; Roundhillt, D.M. Dealkylation of phosphorus-containing alkylammonium salts formed by the interaction of phosphonic, methanephosphonic and phosphoric acid esters with diamines. Phosphorus Sulfur Silicon Relat. Elem. 1994, 92, 101–107. [Google Scholar] [CrossRef]
- McKenna, C.E.; Higa, M.T.; Cheung, N.H.; McKenna, M.C. The facile dealkylation of phosphonic acid dialkyl esters by bromotrimethylsilane. Tetrahedron Lett. 1977, 2, 155–158. [Google Scholar] [CrossRef]
- Dhawan, B.; Redmore, D. O-hydroxyaryl diphosphonic acids. J. Org. Chem. 1984, 49, 4018–4021. [Google Scholar] [CrossRef]
- Rabinowitz, R. The reactions of phosphonic acid esters with acid chlorides. A very mild hydrolytic route. J. Org. Chem. 1963, 28, 2975–2978. [Google Scholar] [CrossRef]
- Grothusen, J.R.; Bryson, P.K.; Zimmerman, J.K.; Brown, T.M. Hydrolysis of 4-nitrophenyl organophosphinates by arylester hydrolase from rabbit serum. J. Agric. Food Chem. 1986, 34, 513–515. [Google Scholar] [CrossRef]
- Natchev, I.A. Synthesis, enzyme-substrate interaction, and herbicidal activity of phosphoryl analogues of glycine. Liebigs. Ann. Chem. 1988, 861–867. [Google Scholar] [CrossRef]
- Kelly, S.J.; Butler, L.G. Enzymic hydrolysis of phosphonate esters. Biochem. Biophys. Res. Commun. 1975, 66, 316–321. [Google Scholar] [CrossRef]
- Kelly, S.J.; Dardinger, D.E.; Butler, L.G. Hydrolysis of phosphonate esters catalyzed by 5′-nucleotide phosphodiesterase. Biochemistry 1975, 14, 4983–4988. [Google Scholar] [CrossRef] [PubMed]
- Becker, E.L.; Barbaro, J.F. The enzymatic hydrolysis of p-nitrophenyl ethyl phosphonates by mammalian plasmas. Biochem. Pharmacol. 1964, 13, 1219–1227. [Google Scholar] [CrossRef]
- Agranoff, W. Hydrolysis of long-chain alkyl phosphates and phosphatidic acid by an enzyme purified from pig brain. J. Lipid Res. 1962, 3, 190–196. [Google Scholar] [CrossRef]
- Alvarez, E.F. The kinetics and mechanism of the hydrolysis of phosphoric acid esters by potato acid phosphatase. Biochim. Biophys. Acta 1962, 59, 663–672. [Google Scholar] [CrossRef]
- King, E.J.; Delory, G.E. The rates of enzymic hydrolysis of phosphoric esters. Biochem. J. 1939, 33, 1185–1190. [Google Scholar] [CrossRef] [Green Version]
- Walker, P.G.; King, E.J. The rate of enzymic hydrolysis of phosphoric esters. 3. Carboxy-substituted phenyl phosphates. Biochem. J. 1950, 47, 93–95. [Google Scholar] [CrossRef] [Green Version]
- Whitfeld, P.R.; Heppel, L.A.; Markham, R. The enzymic hydrolysis of ribonucleoside-2′:3′ phosphates. Biochem. J. 1955, 60, 15–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mäkinen, K.K. Hydrolysis of phosphates by enzyme preparations derived from carious dentine, bacterial plaque and saliva. Caries Res. 1970, 4, 14–22. [Google Scholar] [CrossRef]
- O’Brien, P.J.; Herschlag, D. Alkaline phosphatase revisited: Hydrolysis of alkyl phosphates. Biochemistry 2002, 41, 3207–3225. [Google Scholar] [CrossRef]
- Ray, R.; Boucher, L.J.; Broomfield, C.A.; Lenz, D.E. Specific soman-hydrolyzing enzyme activity in chlonal neuronal cell culture. Biochim. Biophys. Acta 1988, 967, 373–381. [Google Scholar] [CrossRef]
- Gabdrakhamanov, D.R.; Samarkina, D.A.; Semenov, V.E.; Saifina, L.F.; Valeeva, F.G.; Reznik, V.S.; Zakharova, L.Y. Substrate specific nanoreactors based on pyrimidine-containing amphiphiles of various structures for cleavage of phosphonates. Phosphorus Sulfur Silicon Relat. Elem. 2016, 191, 1673–1675. [Google Scholar] [CrossRef]
- Tsubouchi, A.; Bruice, T.C. Remarkable (~1013) rate enhancement in phosphonate ester hydrolysis catalyzed by two metal ions. J. Am. Chem. Soc. 1994, 116, 11614–11615. [Google Scholar] [CrossRef]
- Schneider, H.-J.; Rammo, J.; Hettich, R. Catalysis of the hydrolysis of phosphoric acid diesters by lanthanide ions and the influence of ligands. Angew. Chem. Int. Ed. 1993, 32, 1716–1719. [Google Scholar] [CrossRef]
- Joseph, S.K.; Esch, T.; Bonner, W.D. Hydrolysis of inositol phosphates by plant cell extracts. Biochem. J. 1989, 264, 851–856. [Google Scholar] [CrossRef] [Green Version]
- Samarkina, D.A.; Gabdrakhmanov, D.R.; Semenov, V.E.; Valeeva, F.G.; Gubaidullina, L.M.; Zakharova, L.Y.; Reznik, V.S.; Konovalov, A.I. Self-assembling catalytic systems based on new amphiphile containing purine fragment, exhibiting substrate specificity in hydrolysis of phosphorus acids esters. Russ. J. Gen. Chem. 2016, 86, 656–660. [Google Scholar] [CrossRef]
- Keglevich, G.; Kovács, A.; Tőke, L.; Újszászy, K.; Argay, G.; Czugler, M.; Kálmán, A. P-substituted 3-phosphabicyclo[3.1.0] hexane 3-oxides from diastereoselective substitution at phosphorus. Heteroatom Chem. 1993, 4, 329–335. [Google Scholar] [CrossRef]
- Weyl, T. Houben-Weyl Methoden der Organischen Chemie; ASC Publications: New York, NY, USA, 1982; Volume 2, pp. 310–313. [Google Scholar]
- Cook, R.D.; Abbas, K.A. The acid catalyzed hydrolysis of methyl dialkylphosphinates. Tetrahedron Lett. 1973, 14, 519–520. [Google Scholar] [CrossRef]
- Abbas, K.A.; Cook, R.D. The acid-catalyzed hydrolysis of phosphinates. II. The mechanism of hydrolysis of methyl dialkylphosphinates. Tetrahedron Lett. 1975, 41, 3559–3562. [Google Scholar] [CrossRef]
- Abbas, K.A.; Cook, R.D. The acid-catalyzed hydrolysis of phosphinates. III. The mechanism of hydrolysis of methyl and benzyl dialkylphosphinates. Can. J. Chem. 1977, 55, 3740–3750. [Google Scholar] [CrossRef] [Green Version]
- Cook, R.D.; Metni, M. The acid-catalyzed hydrolysis of phosphinates. IV. Pentacoordinate intermediate formation during hydrolysis of a phosphinothionate. Can. J. Chem. 1985, 63, 3155–3159. [Google Scholar] [CrossRef]
- Tcarkova, K.V.; Artyushin, O.I.; Bondarenko, N.A. Synthetic routes to bis(3-aminophenyl) phosphinic acid. Phosphorus Sulfur Silicon Relat. Elem. 2016, 191, 1520–1522. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Y.; Yu, J.; Miao, Z.; Chen, R. Stereoselective synthesis of α-amino(phenyl)methyl(phenyl)phosphinic acids with O-pivaloylated D-galactoslamine as chiral auxiliary. Chem. Eur. J. 2009, 15, 9290–9293. [Google Scholar] [CrossRef] [PubMed]
- Rossi, J.C.; Marull, M.; Larcher, N.; Taillades, J.; Pascal, R.; van der Lee, A.; Gerbier, P. A recyclable chiral auxiliary for the asymmetric syntheses of α-aminonitriles and α-aminophosphinic derivatives. Tetrahedron Asymmetry 2008, 19, 876–883. [Google Scholar] [CrossRef]
- Dingwall, J.G.; Ehrenfreund, J.; Hall, R.G. Diethoxymethylphosphonites and phosphinates. Intermediates for thesynthesis of α,β- and γ-aminoalkylphosphonous acids. Tetrahedron 1989, 45, 3787–3808. [Google Scholar] [CrossRef]
- Cristau, H.J.; Hervé, A.; Virieux, D. Synthesis of new α or γ-functionalized hydroxymethylphosphinic acid derivatives. Tetrahedron 2004, 60, 877–884. [Google Scholar] [CrossRef]
- Dennis, E.A.; Westheimer, F.H. The rates of hydrolysis of esters of cyclic phosphinic acids. J. Am. Chem. Soc. 1966, 88, 3431–3432. [Google Scholar] [CrossRef] [PubMed]
- Keglevich, G.; Rádai, Z.; Harsági, N.; Szigetvári, Á.; Kiss, N.Z. A study on the acidic hydrolysis of cyclic phosphinates: 1-Alkoxy-3-phospholene 1-oxides, 1-ethoxy-3-methylphospholane 1-oxide, and 1-ethoxy-3-methyl-1,2,3,4,5,6-hexahydrophosphinine 1-oxide. Heteroatom Chem. 2017, 28, e21394. [Google Scholar] [CrossRef]
- Harsági, N.; Szőllősi, B.; Kiss, N.Z.; Keglevich, G. MW irradiation and ionic liquids as green tools in hydrolyses and alcoholyses. Green Process. Synth. 2021, 10, 1–10. [Google Scholar] [CrossRef]
- Hudson, R.F.; Keay, L. The hydrolysis of phosphonate esters. J. Chem. Soc. 1956, 2463–2469. [Google Scholar] [CrossRef]
- Keglevich, G.; Grün, A.; Bölcskei, A.; Drahos, L.; Kraszni, M.; Balogh, G.T. Synthesis and proton dissociation properties of arylphosphonates: A microwave-assisted catalytic Arbuzov reaction with aryl bromides. Heteroatom Chem. 2012, 23, 574–582. [Google Scholar] [CrossRef]
- Harsági, N.; Rádai, Z.; Kiss, N.Z.; Szigetvári, A.; Keglevich, G. Two step acidic hydrolysis of dialkyl arylphosphonates. Mendeleev Commun. 2020, 30, 38–39. [Google Scholar] [CrossRef]
- Desai, J.; Wang, Y.; Wang, K.; Malwal, S.R.; Oldfield, E. Isoprenoid biosynthesis inhibitors targeting bacterial cell growth. Chem. Med. Chem. 2016, 11, 2205–2215. [Google Scholar] [CrossRef]
- Kolodyazhnaya, A.O.; Kukhar, V.P.; Kolodyazhnyi, O.I. Organic catalysis of Phospha-Aldol condensation. Russ. J. Gen. Chem. 2008, 78, 2043–2051. [Google Scholar] [CrossRef]
- Kiss, N.Z.; Henyecz, R.; Keglevich, G. Continuous flow esterification of a H-phosphinic acid, and transesterification of H-phosphinates and H-phosphonates under microwave conditions. Molecules 2020, 25, 719. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ősapay, G.; Szilágyi, I.; Seres, J. Conversion of amino acids and dipeptides into their phosphonic analogs. Tetrahedron 1987, 43, 2977–2983. [Google Scholar] [CrossRef]
- Dabrowska, E.; Burzyńska, A.; Mucha, A.; Matczak-Jon, E.; Sawka-Dobrowolska, W.; Berlicki, Ł.; Kafarski, P. Insight into the mechanism of three component condensation leading to aminomethylenebisphosphonates. J. Organomet. Chem. 2009, 694, 3806–3813. [Google Scholar] [CrossRef]
- Kannan Sivaraman, K.; Paiardini, A.; Sieńczyk, M.; Ruggeri, C.; Oellig, C.A.; Dalton, J.P.; Scammells, P.J.; Drag, M.; McGowan, S. Synthesis and structure-activity relationships of phosphonic arginine mimetics as inhibitors of the M1 and M17 aminopeptidases from plasmodium falciparum. J. Med. Chem. 2013, 56, 5213–5217. [Google Scholar] [CrossRef]
- Kuzdin, Z.H.; Stec, W.J. Synthesis of 1-aminoalkenephosphonates via thio-ureidoalkanephosphonates. Synthesis (Stuttg.) 1978, 6, 469–472. [Google Scholar] [CrossRef]
- Jansa, P.; Hradil, O.; Baszczyňski, O.; Dračínský, M.; Klepetářová, B.; Holý, A.; Balzarini, J.; Janeba, Z. An efficient microwave-assisted synthesis and biological properties of polysubstituted pyrimidinyl- and 1,3,5-triazinylphosphonic acids. Tetrahedron 2012, 68, 865–871. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cadogan, J.I.G.; Eastlick, D.T. Neighbouring group-induced phosphorus-oxygen fission in acidic hydrolysis of phosphonates. J. Chem. Soc. 1970, 1546–1547. [Google Scholar] [CrossRef]
- Cook, R.D.; Diebert, C.E.; Schwarz, W.; Turley, P.C.; Haake, P. Mechanism of nucleophilic displacement at phosphorus in the alkaline hydrolysis of phosphinate esters. J. Am. Chem. Soc. 1973, 95, 8088–8096. [Google Scholar] [CrossRef]
- Clarke, F.B.; Westheimer, F.H. Substituted 1-oxyphosphole. J. Am. Chem. Soc. 1971, 93, 4541–4545. [Google Scholar] [CrossRef]
- Hong, H.J.; Lee, J.; Bae, A.R.; Um, I.H. Kinetics and reaction mechanism for alkaline hydrolysis of Y-substituted-phenyl diphenylphosphinates. Bull. Korean Chem. Soc. 2013, 34, 2001–2005. [Google Scholar] [CrossRef] [Green Version]
- Cevasco, G.; Thea, S. The Quest for carbanion-promoted dissociative pathways in the hydrolysis of aryl phosphinates. J. Chem. Soc. Perkin Trans. 2 1993, 1103–1106. [Google Scholar] [CrossRef]
- Cevasco, G.; Thea, S. Kinetic study on the alkaline hydrolysis of some tetracoordinate P(V) esters of 2, 4-Dinitrophenol. J. Chem. Soc. Perkin Trans. 2 1994, 53, 1103–1105. [Google Scholar] [CrossRef]
- Kluger, R.; Taylor, S.D. Endocyclic cleavage in the alkaline hydrolysis of the cyclic phosphonate methyl propylphostonate: Dianionic intermediates and barriers to pseudorotation. J. Am. Chem. Soc. 1991, 113, 5714–5719. [Google Scholar] [CrossRef]
- Qi, N.; Zhang, N.; Allu, S.R.; Gao, J.; Guo, J.; He, Y. Insertion of arynes into P-O bonds: One-step simultaneous construction of C-P and C-O bonds. Org. Lett. 2016, 18, 6204–6207. [Google Scholar] [CrossRef]
- Hawes, W.; Trippett, S. Steric hindrance in the alkaline hydrolysis of phosphinate esters. Chem. Commun. 1968, 577–578. [Google Scholar] [CrossRef]
- Rahil, J.; Haake, P. Rates and mechanism of the alkaline hydrolysis of a sterically hindered phosphinate ester. Partial reaction by nucleophilic attack at carbon. J. Org. Chem. 1981, 46, 3048–3052. [Google Scholar] [CrossRef]
- Haake, P.; Schwartz, W.; McCoy, D.R. Phosphinic acids and derivates 6. Esters of dialkylphosphinic acids. Tetrahedron Lett. 1968, 9, 5251–5254. [Google Scholar] [CrossRef]
- Aksnes, G.; Bergesen, K. Rate studies of cyclic phosphinates, phosphonates and phosphates. Acta Chem. Scand. 1966, 20, 2508–2514. [Google Scholar] [CrossRef]
- Allen, D.W.; Hutley, B.G.; Mellor, M.T.J. The chemistry of heteroarylphosphorus compounds. Part 10. Synthesis and kinetics of alkaline hysrolysis of heterarylphosphinate esters and hydrolysis of heteroarylphosphine oxides. J. Chem. Soc. Perkin Trans. 2 1977, 1705–1708. [Google Scholar] [CrossRef]
- Williams, A.; Naylor, R.A. Hydrolysis of phosphinic esters: General- base catalysis by imidazole. J. Chem. Soc 1971, 10, 1967–1972. [Google Scholar] [CrossRef]
- Cook, R.D.; Rahhal-Arabi, L. The kinetics of the alkaline hydrolysis of aryl diphenylphoshpinothioates; the significance for the mechanism of displacement at phosphorus. Tetrahedron Lett. 1985, 26, 3147–3150. [Google Scholar] [CrossRef]
- Cook, R.D.; Farah, S.; Ghawi, L.; Itani, A.; Rahil, J. The influence of the changing of P=O to P=S and P—O—R to P—S—R on the reactivity of phosphinate esters under alkaline hydrolysis conditions. Can. J. Chem. 1986, 64, 1630–1637. [Google Scholar] [CrossRef]
- Blaskó, A.; Bunton, C.A.; Hong, Y.S.; Mhala, M.M.; Moffatt, J.R.; Wright, S. Micellar rate effects on reactions of hydroxide ion with phosphinate and thiophosphinate esters. J. Phys. Org. Chem. 1991, 4, 618–628. [Google Scholar] [CrossRef]
- Aksnes, G.; Songstad, J. Alkaline hydrolysis of diethyl esters of alkylphosphonic acids and some chloro-substituted derivatives. Acta Chem. Scand. 1965, 19, 893–897. [Google Scholar] [CrossRef]
- Kim, B.-S.; Kim, B.-T.; Hwang, K.-J. A practical method to cleave diphenyl phosphonate esters to their corresponding phosphonic acids in one step. Bull. Korean Chem. Soc. 2009, 30, 1391–1393. [Google Scholar] [CrossRef]
- Freeman, G.A.; Rideout, J.L.; Miller, W.H.; Reardon, J.E. 3′-Azido-3′,5′-dideoxythymidine-5′-methylphosphonic acid diphosphate: Synthesis and HIV-1 reverse transcriptase inhibition. J. Med. Chem. 1992, 35, 3192–3196. [Google Scholar] [CrossRef]
- Yuan, C.; Li, S.; Liao, X. Studies on organophosphorus compounds XXXI. Alkaline hydrolysis of 2-alkyl-2-oxo-1,3,2-dioxa-phosphorinane and -phosphepane. Phosphorous Sulfur Relat. Elem. 1988, 37, 205–212. [Google Scholar] [CrossRef]
- Behrman, E.J.; Biallas, M.J.; Brass, H.J.; Edwards, J.O.; Isaks, M. Reactions of phosphonic acid esters with nucleophiles I. Hydrolysis. J. Org. Chem. 1970, 35, 3063–3069. [Google Scholar] [CrossRef]
- Kóšiová, I.; Točík, Z.; Buděšínský, M.; Šimák, O.; Liboska, R.; Rejman, D.; Pačes, O.; Rosenberg, I. Methyl 4-toluenesulfonyloxymethylphosphonate, a new and versatile reagent for the convenient synthesis of phosphonate-containing compounds. Tetrahedron Lett. 2009, 50, 6745–6747. [Google Scholar] [CrossRef]
- Zakharova, L.Y.; Valeeva, F.G.; Kudryavtseva, L.A.; Konovalov, A.I.; Zakharchenko, N.L.; Zuev, Y.F.; Fedotov, V.D. Alkaline hydrolysis of ethyl p-nitrophenyl chloromethylphosphonate in the reverse micellar AOT-decane-water system. Russ. Chem. Bull. 1999, 48, 2240–2244. [Google Scholar] [CrossRef]
- Zakharova, L.Y.; Kudryavtsev, D.B.; Valeeva, F.G.; Kudryavtseva, L.A. Inhibition of alkaline hydrolysis of ethyl p-nitrophenyl (cloromethyl)phosphonate in the system cationic surfactant-water-electrolyte. Russ. J. Gen. Chem. 2002, 72, 1215–1221. [Google Scholar] [CrossRef]
- Kehler, J.; Hansen, H.I.; Sanchez, C. Novel phosphinic and phosphonic acid analogues of the anticonvulsant valproic acid. Bioorg. Med. Chem. Lett. 2000, 10, 2547–2548. [Google Scholar] [CrossRef]
- Dunne, K.S.; Bisaro, F.; Odell, B.; Paris, J.-M.; Gouverneur, V. Diastereoselective ring-closing metathesis: Synthesis of P-stereogenic phosphinates from prochiral phosphinic acid derivatives. J. Org. Chem. 2005, 70, 10803–10809. [Google Scholar] [CrossRef]
- Hum, G.; Wooler, K.; Lee, J.; Taylor, S.D. Cyclic five-membered phosphinate esters as transition state analogues for obtaining phosphohydrolase antibodies. Can. J. Chem. 2000, 78, 642–655. [Google Scholar] [CrossRef]
- Årstad, E.; Hoff, P.; Skattebøl, L.; Skretting, A.; Breistøl, K. Studies on the synthesis and biological properties of non-carrier-added [125I and 131I]-labeled arylalkylidenebisphosphonates: Potent bone-seekers for diagnosis and therapy of malignant osseous lesions. J. Med. Chem. 2003, 46, 3021–3032. [Google Scholar] [CrossRef]
- Brunet, E.; Alhendawi, H.M.H.; Cerro, C.; de la Mata, M.J.; Juanes, O.; Rodríguez-Ubis, J.C. Easy γ-to-α transformation of zirconium phosphate/polyphenylphosphonate salts: Porosity and hydrogen physisorption. Chem. Eng. J. 2010, 158, 333–344. [Google Scholar] [CrossRef]
- Demmer, C.S.; Krogsgaard-Larsen, N.; Bunch, L. Review on modern advances of chemical methods for the introduction of a phosphonic acid group. Chem. Rev. 2011, 111, 7981–8006. [Google Scholar] [CrossRef]
- Frantz, R.; Carré, F.; Durand, J.O.; Lanneau, G.F. New phosphonates containing a π-conjugated ferrocenyl unit. New, J. Chem. 2001, 25, 188–190. [Google Scholar] [CrossRef]
- Rudinskas, A.J.; Hullar, T.L.; Salvador, R.L. Phosphonic acid chemistry. 2. Studies on the Arbuzov reaction of 1-bromo-4,4-diethoxy-2-butyne and Rabinowitch method of dealkylation of phosphonate diesters using chloro- and bromotrimethylsilane. J. Org. Chem. 1977, 42, 2771–2776. [Google Scholar] [CrossRef]
- Jaffrès, P.-A.; Bar, N.; Villemin, D. Phosphonation of 1,1′-binaphthalene-2,2′-diol ( BINOL ): Synthesis of (R)-and (S)-2,2′-dihydroxy-1,1′-binaphthalene-6,6′-diyldiphosphonic acid. J. Chem. Soc. Perkin Trans. 1 1998, 2083–2089. [Google Scholar] [CrossRef]
- McKenna, C.E.; Schmidhuser, J. Functional selectivity in phosphonate ester dealkylation with bromotrimethylsilane. J. Chem. Soc. 1979, 739. [Google Scholar] [CrossRef]
- Błazewska, K.M. McKenna reaction-Which oxygen attacks bromotrimethylsilane? J. Org. Chem. 2014, 79, 408–412. [Google Scholar] [CrossRef] [PubMed]
- Blackburn, G.M.; Ingleson, D. Specific dealkylation of phosphonate esters using iodotrimethylsilane. J. Chem. Soc. Chem. Commun. 1978, 870–871. [Google Scholar] [CrossRef]
- Blackburn, G.M.; Ingleson, D. The dealkylation of phosphate and phosphonate esters by iodotrimethyl-silane: A mild and selective procedure. J. Chem. Soc. Chem. Commun. 1980, 6, 1150–1153. [Google Scholar] [CrossRef]
- Gutierrez, A.J.; Prisbe, E.J.; Rohloff, J.C. Dealkylation of phosphonate esters with chlorotrimethylsilane. Nucleosides Nucleotides and Nucleic Acids 2001, 20, 1299–1302. [Google Scholar] [CrossRef] [PubMed]
- He, H.; Liu, X.; Hu, L.; Wang, S.; Liu, Z. Synthesis and dealkylation of 1-(dichloro-phenoxyacetoxy) alkyl phosphonates. Phosphorus Sulfur Silicon Relat. Elem. 1999, 144, 633–636. [Google Scholar] [CrossRef]
- Morita, T.; Okamoto, Y.; Sakurai, H. Dealkylation reaction of acetals, phosphonate and phosphate esters with chlorotrimethylsilane/metal halide reagent in acetonitrile, and its application to the synthesis of phosphonic acids and vinyl phosphates. Bull. Chem. Soc. Jpn. 1981, 54, 267–273. [Google Scholar] [CrossRef] [Green Version]
- Machida, Y.; Nomoto, S.; Saito, I. A useful method for the delakylation of dialkyl phosphonates. Synth. Commun. 1979, 9, 97–102. [Google Scholar] [CrossRef]
- Boutevin, B.; Hamoui, B.; Parisi, J. New diethyl phosphonoalkyl acrylates and their reactivity in copolimerization. Polym. Bull. 1993, 30, 243–248. [Google Scholar] [CrossRef]
- Regitz, M.; Martin, R. Untersuchungen an diazoverbindungen und aziden-il: Tert-butylammoniumsalze von α-diazophosphin- und α-diazophosphonsäuren. Tetrahedron 1985, 41, 819–824. [Google Scholar] [CrossRef]
- Cermak, D.M.; Cermak, S.C.; Deppe, A.B.; Durham, A.L. Novel α-hydroxy phosphonic acids via castor oil. Ind. Crops Prod. 2012, 37, 394–400. [Google Scholar] [CrossRef]
- Deemie, R.W.; Fettinger, J.C.; Knight, D.A. Synthesis and characterization of an organometallic phosphonic acid: X-ray crystal structure of. J. Organomet. Chem. 1997, 538, 257–259. [Google Scholar] [CrossRef]
- Meziane, D.; Hardouin, J.; Elias, A.; Guénin, E.; Lecouvey, M. Microwave Michaelis-Becker synthesis of diethyl phosphonates, tertaethyl diphosphonates, and their total or partial dealkylation. Heteroat. Chem. 2009, 20, 369–377. [Google Scholar] [CrossRef]
- Gan, X.M.; Rapko, B.M.; Fox, J.; Binyamin, I.; Pailloux, S.; Duesler, E.N.; Paine, R.T. A three-dimensional framework structure constructed from 2-(2-pyridyl-N-oxide) ethylphosphonic acid and Nd(III). Inorg. Chem. 2006, 45, 3741–3745. [Google Scholar] [CrossRef]
- Ganguly, S.; Mague, J.T.; Roundhill, D.M. Synthesis and characterization of new water solube tertiary phosphines having terminally substituted alkylene sulfonate or alkylene phosphonate chains. Inorg. Chem. 1992, 31, 3500–3501. [Google Scholar] [CrossRef]
- Kadina, A.P.; Kashemirov, B.A.; Oertell, K.; Batra, V.K.; Wilson, S.H.; Goodman, M.F.; McKenna, C.E. Two scaffolds from two flips: (α,β)/(β,γ) CH2/NH “Met-Im” analogues of dTTP. Org. Lett. 2015, 17, 2586–2589. [Google Scholar] [CrossRef] [Green Version]
- Klein, Y.M.; Willgert, M.; Prescimone, A.; Constable, E.C.; Housecroft, C.E. Positional isomerism makes a difference: Phosphonic acid anchoring ligands with thienyl spacers in copper(I)-based dye-sensitized solar cells. Dalton Trans. 2016, 45, 4659–4672. [Google Scholar] [CrossRef] [Green Version]
- Marma, M.S.; Khawli, L.A.; Harutunian, V.; Kashemirov, B.A.; McKenna, C.E. Synthesis of α-fluorinated phosphonoacetate derivatives using electrophilic fluorine reagents: Perchloryl fluoride versus 1-chloromethyl-4- fluoro-1,4-diazoniabicyclo[2.2.2]octane bis(tetrafluoroborate) (Selectfluor®). J. Fluor. Chem. 2005, 126, 1467–1475. [Google Scholar] [CrossRef]
- Marquick, A.L.; Montero, J.L.; Lebrun, A.; Barragan-Montero, V. Straightforward synthesis towards mono and bis-phosphonic acid functionalised β-cyclodextrins. Tetrahedron 2015, 71, 1616–1621. [Google Scholar] [CrossRef]
- Matthiesen, R.A.; Wills, V.S.; Metzger, J.I.; Holstein, S.A.; Wiemer, D.F. Stereoselective synthesis of homoneryl and homogeranyl triazole bisphosphonates. J. Org. Chem. 2016, 81, 9438–9442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rudolf, B.; Salmain, M.; Palusiak, M.; Zakrzewski, J. The phospha-Michael addition of dimethyl- and diphenylphosphites to the η1-N-maleimidato ligand: Inhibition of serine hydrolases by half-sandwich metallocarbonyl azaphosphonates. J. Organomet. Chem. 2009, 694, 908–915. [Google Scholar] [CrossRef]
- Taylor, S.D.; Mirzaei, F.; Bearne, S.L. An unsymmetrical approach to the synthesis of bismethylene triphosphate analogues. Org. Lett. 2006, 8, 4243–4246. [Google Scholar] [CrossRef]
- Rueff, J.-M.; Perez, O.; Pautrat, A.; Barrier, N.; Hix, G.B.; Hernot, S.; Couthon-Gourvés, H.; Jaffrés, P.-A. Structural study of hydrated/dehydrated manganese thiophene-2,5-diphosphonate metal organic frameworks, Mn2(O+P-C4H2S9PO3)*2H2O. Inorg. Chem. 2012, 51, 10251–10261. [Google Scholar] [CrossRef]
- Wanat, P.; Walczak, S.; Wojtczak, B.A.; Nowakowska, M.; Jemielity, J.; Kowalska, J. Ethynyl, 2-propynyl, and 3-butynyl C-phosphonate analogues of nucleoside di- and triphosphates: Synthesis and reactivity in CuAAC. Org. Lett. 2015, 17, 3062–3065. [Google Scholar] [CrossRef]
- Liu, D.; Xu, X.; Su, Y.; He, Z.; Xu, J.; Miao, Q. Self-assembled monolayers of phosphonic acids with enhanced surface energy for high-performance solution-processed N-channel organic thin-film transistors. Angew. Chemie Int. Ed. 2013, 52, 6222–6227. [Google Scholar] [CrossRef]
- Lejeune, N.; Dez, I.; Jaffrès, P.A.; Lohier, J.F.; Madec, P.J.; Santos, J.S.D.O. Synthesis, crystal structure and thermal properties of phosphorylated cyclotriphosphazenes. Eur. J. Inorg. Chem. 2008, 138–143. [Google Scholar] [CrossRef]
- Liu, X.; Adams, H.; Blackburn, G.M. Synthesis of novel ‘supercharged’ analogues of pyrophosphoric acid. Chem. Commun. 1998, 2619–2620. [Google Scholar] [CrossRef]
- Lee, S.I.; Yoon, K.H.; Song, M.; Peng, H.; Page, K.A.; Soles, C.L.; Yoon, D.Y. Structure and properties of polymer electrolyte membranes containing phosphonic acids for anhydrous fuel cells. Chem. Mater. 2012, 24, 115–122. [Google Scholar] [CrossRef]
- Rolland, O.; Griffe, L.; Poupot, M.; Maraval, A.; Ouali, A.; Coppel, Y.; Fournié, J.J.; Bacquet, G.; Turrin, C.O.; Caminade, A.M.; et al. Tailored control and optimisation of the number of phosphonic acid termini on phosphorus-containing dendrimers for the ex-vivo activation of human monocytes. Chem. Eur. J. 2008, 14, 4836–4850. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Leung, C.Y.; Matralis, A.N.; Lacbay, C.M.; Tsakos, M.; Fernandez De Troconiz, G.; Berghuis, A.M.; Tsantrizos, Y.S. Pharmacophore mapping of thienopyrimidine-based monophosphonate (ThP-MP) inhibitors of the human farnesyl pyrophosphate synthase. J. Med. Chem. 2017, 60, 2119–2134. [Google Scholar] [CrossRef] [PubMed]
- Pailloux, S.; Shirima, C.E.; Smith, K.A.; Duesler, E.N.; Paine, R.T.; Williams, N.J.; Hancock, R.D. Synthesis and reactivity of (benzoxazol-2-ylmethyl)phosphonic acid. Inorg. Chem. 2010, 49, 9369–9379. [Google Scholar] [CrossRef]
- Opper, K.L.; Fassbender, B.; Brunklaus, G.; Spiess, H.W.; Wagener, K.B. Polyethylene functionalized with precisely spaced phosphonic acid groups. Macromolecules 2009, 42, 4407–4409. [Google Scholar] [CrossRef]
- Turrin, C.O.; Hameau, A.; Caminade, A.M. Application of the Kabachnik-Fields and Moedritzer-Irani procedures for the preparation of bis(phosphonomethyl)amino- and bis[(dimethoxyphosphoryl)-methyl] amino-terminated poly(ethylene glycol). Synthesis 2012, 44, 1628–1630. [Google Scholar] [CrossRef]
- Tulsi, N.S.; Downey, A.M.; Cairo, C.W. A protected l-bromophosphonomethylphenylalanine amino acid derivative (BrPmp) for synthesis of irreversible protein tyrosine phosphatase inhibitors. Bioorg. Med. Chem. 2010, 18, 8679–8686. [Google Scholar] [CrossRef] [PubMed]
- Chougrani, K.; Niel, G.; Boutevin, B.; David, G. Regioselective ester cleavage during the preparation of bisphosphonate methacrylate monomers. Beilstein J. Org. Chem. 2011, 7, 364–368. [Google Scholar] [CrossRef]
- Houghton, S.R.; Melton, J.; Fortunak, J.; Brown Ripid, D.H.; Boddy, C.N. Rapid, mild method for phosphonate diester hydrolysis: Development of a one-pot synthesis of tenofovir disoproxil fumarate from tenofovir diethyl ester. Tetrahedron 2010, 66, 8137–8144. [Google Scholar] [CrossRef]
- Kim, S.; Hong, J.H. Synthesis and anti-HIV activity of novel 2′-deoxy-2′-β-fluoro-threosyl nucleoside phosphonic acid analogues. Nucleosides Nucleotides Nucleic Acids 2015, 34, 815–833. [Google Scholar] [CrossRef]
- Salomon, C.J.; Breuer, E. Efficient and selective dealkylation of phosphonate dilsopropyl esters using Me3SiBr. Tetrahedron Lett. 1995, 36, 6759–6760. [Google Scholar] [CrossRef]
- Dang, Q.; Brown, B.S.; Liu, Y.; Rydzewski, R.M.; Robinson, E.D.; Van Poelje, P.D.; Reddy, M.R.; Erion, M.D. Fructose-1,6-bisphosphatase inhibitors. 1. Purine phosphonic acids as novel AMP mimics. J. Med. Chem. 2009, 52, 2880–2898. [Google Scholar] [CrossRef] [PubMed]
- Kruithof, C.A.; Dijkstra, H.P.; Lutz, M.; Spek, A.L.; Egmond, M.R.; Klein Gebbink, R.J.M.; Van Koten, G. Non-tethered organometallic phosphonate inhibitors for lipase inhibition: Positioning of the metal center in the active site of cutinase. Eur. J. Inorg. Chem. 2008, 4425–4432. [Google Scholar] [CrossRef] [Green Version]
- Mortier, J.; Gridnev, I.D.; Fortineau, A.D. Synthesis of N-alkyl/aryl-α/ β-aminoalkylphosphonic acids from organodichloroboranes and α/β-azidoalkylphosphonates via polyborophosphonates. Org. Lett. 1999, 1, 981–984. [Google Scholar] [CrossRef]
- Nitta, Y.; Yasushi, A. The selective dealkylation of mixed esters of phosphoric acid and phenylphosphonic acid using cation exchange resin. Chem. Pharm. Bull. 1986, 34, 3121–3129. [Google Scholar] [CrossRef] [Green Version]
- Weller, S.W.; Choksi, B.C.; Sanyal, S.K. Catalytic Dealkylation of esters acid-catalyzed dealkylation of diethyl ethylphosphonate. Ind. Eng. Chem. Prod. Res. Dev. 1971, 10, 38–42. [Google Scholar] [CrossRef]
- André, V.; Lahrache, H.; Robin, S.; Rousseau, G. Reaction of unsaturated phosphonate monoesters with bromo- and iodo(bis-collidine) hexafluorophosphates. Tetrahedron 2007, 63, 10059–10066. [Google Scholar] [CrossRef]
- Chi, G.; Nair, V.; Semenova, E.; Pommier, Y. A novel diketo phosphonic acid that exhibits specific, strand-transfer inhibition of HIV integrase and anti-HIV activity. Bioorg. Med. Chem. Lett. 2007, 17, 1266–1269. [Google Scholar] [CrossRef] [Green Version]
- Tashma, Z. N-alkyl thiocarbamoyl phosphonic acid esters-2. Alkylation by methyl iodide accompanied by phosphonate dealkylation. Tetrahedron 1982, 38, 3745–3747. [Google Scholar] [CrossRef]
- Petneházy, I.; Szakál, G.; Tőke, L. Mono-dealkylation of phosphonic acid-esters and phosphoric-acid esters using halide-ions under phase-transfer conditions. Snythesis 1983, 6, 453–456. [Google Scholar] [CrossRef]
- Krawczyk, H. A convenient route for monodealkylation of diethyl phosphonates. Synth. Commun. 1997, 27, 3151–3161. [Google Scholar] [CrossRef]
- Chowdhury, S.; Muni, N.J.; Greenwood, N.P.; Pepperberg, D.R.; Standaert, R.F. Phosphonic acid analogs of GABA through reductive dealkylation of phosphonic diesters with lithium trialkylborohydrides. Bioorg. Med. Chem. Lett. 2007, 17, 3745–3748. [Google Scholar] [CrossRef] [PubMed]
- Pardasani, D.; Purohit, A.; Kumar, A.; Tak, V.; Raghavender Goud, D.; Gupta, A.K.; Dubey, D.K. Synthesis of O-alkyl alkylphosphonates via hydrazine mediated partial dealkylation of phosphonate diesters. ChemistrySelect 2018, 3, 12312–12314. [Google Scholar] [CrossRef] [Green Version]
Compound | t (h) | Composition of Product (%) | Yield (%) | |
---|---|---|---|---|
2-Phospholene | 3-Phospholene | |||
3 | 79 | 21 | 85 | |
6 | 90 | 10 | 84 | |
6 | 21 | 73 | 86 | |
8 | – | 82 | ||
10 | – | 80 |
Entry | R | kΔ (h−1) | kMW (h−1) |
---|---|---|---|
1 | Me | 1.36 | 1.52 |
2 | Et | 0.62 | 0.86 |
3 | nPr | 0.62 | – |
4 | iPr | 1.60 | 1.92 |
5 | nBu | 0.57 | – |
R2 | R1 | k1 (h−1) | k2 (h−1) | tcompl | Yield (%) |
---|---|---|---|---|---|
Me | H | 2.67 | 0.70 | 5.5 h | 95 |
Et | H | 0.88 | 0.27 | 9.5 h | 90 |
iPr | H | 2.08 | 1.33 | 4.5 h | 99 |
Bn | H | 23.8 | 9.36 | 45 min | 80 |
Et | Me | 0.86 | 0.16 | 17.5 h | 87 |
Et | MeC(O) | 0.90 | 0.35 | 8.5 h | 86 |
Entry | Y | R | Yield (%) | tr (h) | k1 (h−1) | k2 (h−1) |
---|---|---|---|---|---|---|
1 | H | Me | 80 | 6.5 | 2.64 | 0.60 |
2 | NO2 | Me | 82 | 2.5 | 5.18 | 1.24 |
3 | Cl | Me | 90 | 5.5 | 3.36 | 0.79 |
4 | F | Me | 85 | 6.0 | 3.93 | 0.67 |
5 | CF3 | Me | 80 | 5.5 | 2.03 | 0.61 |
6 | Me | Me | 79 | 8 | 1.64 | 0.31 |
7 | H | Et | 82 | 9.5 | 1.03 | 0.35 |
8 | NO2 | Et | 92 | 5.5 | 1.40 | 0.61 |
9 | Cl | Et | 87 | 8.0 | 1.08 | 0.42 |
10 | F | Et | 83 | 9.0 | 1.35 | 0.31 |
Starting Phosphinate | Solvent | Rate Constant, 1 mole−1 s−1 × 104 | ||
---|---|---|---|---|
50 °C | 60 °C | 70 °C | ||
50% alcohol–water | 1.18 | 2.24 | 4.22 | |
80% alcohol–water | 0.300 | 0.568 | 1.08 | |
50% alcohol–water | 0.730 | 1.39 | 2.63 |
Dialkyl Phosphonate RP(O)(OR′)2 | TMSCl | TMSBr | |||||||
---|---|---|---|---|---|---|---|---|---|
R | R′ | Equiv. | Temp. (°C) | Time (days) | Yields (%) | Equiv. | Temp. (°C) | Time (h) | Yields (%) |
CH2=CH | Et | 2.7 | 69–72 | 5 | 94 | 1.5 | 25 | 1.2 | >99 |
PhCH2 | Et | 2.2 | 40 | 1 | <5 | 1.7 | 25 | 2.0 | >99 |
EtOCH2CH2 | Et | 2.9 | 40 | 1 | <10 | 1.7 | 25 | 0.7 | >99 |
Cl3C | Et | 5.4 | >72 | 8 | 13 | 1.5 | 61–69 | 2.7 | >99 |
PhC(O) | Me | 1.9 | 25 | 9 | 12 | 1.5 | 25 | 1.7 | >99 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Harsági, N.; Keglevich, G. The Hydrolysis of Phosphinates and Phosphonates: A Review. Molecules 2021, 26, 2840. https://doi.org/10.3390/molecules26102840
Harsági N, Keglevich G. The Hydrolysis of Phosphinates and Phosphonates: A Review. Molecules. 2021; 26(10):2840. https://doi.org/10.3390/molecules26102840
Chicago/Turabian StyleHarsági, Nikoletta, and György Keglevich. 2021. "The Hydrolysis of Phosphinates and Phosphonates: A Review" Molecules 26, no. 10: 2840. https://doi.org/10.3390/molecules26102840
APA StyleHarsági, N., & Keglevich, G. (2021). The Hydrolysis of Phosphinates and Phosphonates: A Review. Molecules, 26(10), 2840. https://doi.org/10.3390/molecules26102840