Cardiometabolic Risk Factors in Rosuvastatin-Treated Men with Mixed Dyslipidemia and Early-Onset Androgenic Alopecia
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Patients
4.2. Study Design
4.3. Laboratory Assays
4.4. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
Abbreviations
References
- Azziz, R. Polycystic ovary syndrome. Obstet. Gynecol. 2018, 132, 321–336. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, B.; Vellanki, P.; Ata, B.; Yildiz, B.O. Metabolic syndrome, hypertension, and hyperlipidemia in mothers, fathers, sisters, and brothers of women with polycystic ovary syndrome: A systematic review and meta-analysis. Fertil. Steril. 2018, 109, 356–364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baillargeon, J.P.; Carpentier, A.C. Brothers of women with polycystic ovary syndrome are characterised by impaired glucose tolerance, reduced insulin sensitivity and related metabolic defects. Diabetologia 2007, 50, 2424–2432. [Google Scholar] [CrossRef] [Green Version]
- Sam, S.; Coviello, A.D.; Sung, Y.A.; Legro, R.S.; Dunaif, A. Metabolic phenotype in the brothers of women with polycystic ovary syndrome. Diabetes Care 2008, 31, 1237–1241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karthik, S.; Vipin, V.P.; Kapoor, A.; Tripathi, A.; Shukla, M.; Dabadghao, P. Cardiovascular disease risk in the siblings of women with polycystic ovary syndrome. Hum. Reprod. 2019, 34, 1559–1566. [Google Scholar] [CrossRef]
- Subramaniam, K.; Tripathi, A.; Dabadghao, P. Familial clustering of metabolic phenotype in brothers of women with polycystic ovary syndrome. Gynecol. Endocrinol. 2019, 35, 601–603. [Google Scholar] [CrossRef]
- Coviello, A.D.; Sam, S.; Legro, R.S.; Dunaif, A. High prevalence of metabolic syndrome in first-degree male relatives of women with polycystic ovary syndrome is related to high rates of obesity. J. Clin. Endocrinol. Metab. 2009, 94, 4361–4366. [Google Scholar] [CrossRef] [Green Version]
- Yilmaz, B.; Vellanki, P.; Ata, B.; Yildiz, B.O. Diabetes mellitus and insulin resistance in mothers, fathers, sisters, and brothers of women with polycystic ovary syndrome: A systematic review and meta-analysis. Fertil. Steril. 2018, 110, 523–533. [Google Scholar] [CrossRef]
- Kurzrock, R.; Cohen, P.R. Polycystic ovary syndrome in men: Stein-Leventhal syndrome revisited. Med. Hypotheses 2007, 68, 480–483. [Google Scholar] [CrossRef]
- Cohen, P.R.; Kurzrock, R. Polycystic ovary syndrome in men. Med. Hypotheses 2017, 103, 64. [Google Scholar] [CrossRef] [Green Version]
- Lolli, F.; Pallotti, F.; Rossi, A.; Fortuna, M.C.; Caro, G.; Lenzi, A.; Sansone, A.; Lombardo, F. Androgenetic alopecia: A review. Endocrine 2017, 57, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Kelly, Y.; Blanco, A.; Tosti, A. Androgenetic alopecia: An update of treatment options. Drugs 2016, 76, 1349–1364. [Google Scholar] [CrossRef]
- Lie, C.; Liew, C.F.; Oon, H.H. Alopecia and the metabolic syndrome. Clin. Dermatol. 2018, 36, 54–61. [Google Scholar] [CrossRef] [PubMed]
- Sanke, S.; Chander, R.; Jain, A.; Garg, T.; Yadav, P. A comparison of the hormonal profile of early androgenetic alopecia in men with the phenotypic equivalent of polycystic ovarian syndrome in women. JAMA Dermatol. 2016, 152, 986–991. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, D.X.; Wu, L.F.; Yang, Z.X. Association between androgenetic alopecia and metabolic syndrome: A meta-analysis. Zhejiang Da Xue Xue Bao Yi Xue Ban 2014, 43, 597–601. [Google Scholar]
- Roth, M.M.; Leader, N.; Kroumpouzos, G. Gynecologic and andrologic dermatology and the metabolic syndrome. Clin. Dermatol. 2018, 36, 72–80. [Google Scholar] [CrossRef] [PubMed]
- Krysiak, R.; Szkróbka, W.; Okopień, B. The impact of atorvastatin on cardiometabolic risk factors in brothers of women with polycystic ovary syndrome. Pharmacol. Rep. 2021, 73, 261–268. [Google Scholar] [CrossRef]
- Krysiak, R.; Okopień, B. The effect of aggressive rosuvastatin treatment on steroid hormone production in men with coronary artery disease. Basic Clin. Pharmacol. Toxicol. 2014, 114, 330–335. [Google Scholar]
- Diver, M. Laboratory measurement of testosterone. Front. Horm. Res. 2009, 37, 21–31. [Google Scholar]
- Ho, C.K.; Stoddart, M.; Walton, M.; Anderson, R.A.; Beckett, G.J. Calculated free testosterone in men: Comparison of four equations and with free androgen index. Ann. Clin. Biochem. 2006, 43, 389–397. [Google Scholar] [CrossRef]
- George, M.M.; New, M.I.; Ten, S.; Sultan, C.; Bhangoo, A. The clinical and molecular heterogeneity of 17βHSD-3 enzyme deficiency. Horm. Res. Paediatr. 2010, 74, 229–240. [Google Scholar] [CrossRef] [PubMed]
- Longcope, C. Dehydroepiandrosterone metabolism. J. Endocrinol. 1996, 150, S125–S127. [Google Scholar] [CrossRef] [PubMed]
- Krysiak, R.; Okopień, B.; Herman, Z. Effects of HMG-CoA reductase inhibitors on coagulation and fibrinolysis processes. Drugs 2003, 63, 1821–1854. [Google Scholar] [CrossRef] [PubMed]
- Laakso, M.; Kuusisto, J. Diabetes secondary to treatment with statins. Curr. Diab. Rep. 2017, 17, 10. [Google Scholar] [CrossRef]
- Greenwood, J.; Steinman, L.; Zamvil, S.S. Statin therapy and autoimmune disease: From protein prenylation to immunomodulation. Nat. Rev. Immunol. 2006, 6, 358–370. [Google Scholar] [CrossRef] [Green Version]
- Gårevik, N.; Skogastierna, C.; Rane, A.; Ekström, L. Single dose testosterone increases total cholesterol levels and induces the expression of HMG CoA reductase. Subst. Abuse Treat. Prev. Policy 2012, 7, 12. [Google Scholar] [CrossRef] [Green Version]
- Mokarram, P.; Alizadeh, J.; Razban, V.; Barazeh, M.; Solomon, C.; Kavousipour, S. Interconnection of estrogen/testosterone metabolism and mevalonate pathway in breast and prostate cancers. Curr. Mol. Pharmacol. 2017, 10, 86–114. [Google Scholar]
- Hamilton, J.B. Patterned loss of hair in man; types and incidence. Ann. N Y Acad Sci. 1951, 53, 708–728. [Google Scholar] [CrossRef]
- Norwood, O.T. Male pattern baldness: Classification and incidence. South. Med. J. 1975, 68, 1359–1365. [Google Scholar] [CrossRef]
Variable | Group A a | Group B b | p-Value (Group A vs. Group B) |
---|---|---|---|
Number (n) | 25 | 25 | - |
Age (years; mean (SD)) | 30 (5) | 31 (5) | 0.4829 |
Smokers (%) | 32 | 28 | - |
Body mass index (kg/m2; mean (SD)) | 28.9 (4.3) | 28.7 (4.6) | 0.8745 |
Systolic blood pressure (mmHg; mean (SD)) | 131 (14) | 129 (15) | 0.62828 |
Systolic blood pressure (mmHg; mean (SD)) | 85 (6) | 84 (6) | 0.5585 |
Variable | Group A a | Group B b | p-Value |
---|---|---|---|
(Group A vs. Group B) | |||
Total cholesterol (mg/dL; mean (SD)) | |||
At the beginning of the study | 262 (32) | 267 (35) | 0.6005 |
At the end of the study | 216 (28) | 196 (25) * | 0.0105 |
p-value (post-treatment vs. baseline) | <0.0001 | <0.0001 | - |
LDL cholesterol (mg/dL; mean (SD)) | |||
At the beginning of the study | 167 (23) | 171 (26) | 0.5672 |
At the end of the study | 124 (20) | 103 (15) * | 0.0001 |
p-value (post-treatment vs. baseline) | <0.0001 | <0.0001 | - |
HDL cholesterol (mg/dL; mean (SD)) | |||
At the beginning of the study | 43 (7) | 42 (7) | 0.6158 |
At the end of the study | 46 (8) | 48 (8) * | 0.3812 |
p-value (post-treatment vs. baseline) | 0.1647 | 0.0069 | - |
Triglycerides (mg/dL; mean (SD)) | |||
At the beginning of the study | 240 (62) | 252 (58) | 0.4832 |
At the end of the study | 218 (51) | 195 (43) * | 0.0912 |
p-value (post-treatment vs. baseline) | 0.177 | 0.0003 | - |
Glucose (mg/dl; mean (SD)) | |||
At the beginning of the study | 95 (10) | 93 (12) | 0.5251 |
At the end of the study | 97 (11) | 93 (8) | 0.148 |
p-value (post-treatment vs. baseline) | 0.5044 | 1 | - |
HOMA1-IR (mean (SD)) | |||
At the beginning of the study | 3.4 (0.7) | 3.0 (0.6) | 0.035 |
At the end of the study | 3.9 (0.8) * | 2.8 (0.7) | < 0.0001 |
p-value (post-treatment vs. baseline) | 0.0228 | 0.2835 | - |
DHEA-S (µmol/L; mean (SD)) | |||
At the beginning of the study | 4.8 (0.9) | 4.1 (1.0) | 0.0123 |
At the end of the study | 5.0 (1.2) | 4.2 (1.1) | 0.0177 |
p-value (post-treatment vs. baseline) | 0.5082 | 0.7381 | - |
Total testosterone (nmol/L; mean (SD)) | |||
At the beginning of the study | 20.8 (6.4) | 17.9 (6.0) | 0.1049 |
At the end of the study | 20.4 (7.2) | 16.8 (5.8) | 0.0574 |
p-value (post-treatment vs. baseline) | 0.8364 | 0.5131 | - |
Calculated bioavailable testosterone | |||
(nmol/L; mean (SD)) | 8.09 (2.11) | 6.31 (1.98) | 0.0035 |
At the beginning of the study | 8.26 (2.28) | 6.02 (2.06) | 0.0007 |
At the end of the study | 0.7856 | 0.6141 | - |
p-value (post-treatment vs. baseline) | |||
Estradiol (pmol/L; mean (SD)) | |||
At the beginning of the study | 140 (29) | 148 (32) | 0.359 |
At the end of the study | 135 (25) | 143 (34) | 0.348 |
p-value (post-treatment vs. baseline) | 0.5169 | 0.5982 | - |
Uric acid (mg/dL; mean (SD)) | |||
At the beginning of the study | 4.9 (1.3) | 4.2 (1.0) | 0.038 |
At the end of the study | 4.7 (1.2) | 3.6 (1.0) * | 0.001 |
p-value (post-treatment vs. baseline) | 0.1641 | 0.0391 | - |
hsCRP (mg/L; mean (SD)) | |||
At the beginning of the study | 3.4 (0.9) | 2.8 (0.8) | 0.0162 |
At the end of the study | 2.8 (0.9) | 1.8 (0.7) * | 0.0001 |
p-value (post-treatment vs. baseline) | 0.0225 | < 0.0001 | - |
Fibrinogen (mg/dL; mean (SD)) | |||
At the beginning of the study | 375 (82) | 329 (64) | 0.0318 |
At the end of the study | 324 (70) | 260 (59) * | 0.001 |
p-value (post-treatment vs. baseline) | 0.0221 | 0.0002 | - |
Homocysteine (μmol/L; mean (SD)) | |||
At the beginning of the study | 24 (8) | 25 (9) | 0.6798 |
At the end of the study | 20 (7) | 15 (6) * | 0.0093 |
p-value (post-treatment vs. baseline) | 0.0661 | <0.0001 | - |
25-hydroxyvitamin D (ng/mL; mean (SD)) | |||
At the beginning of the study | 25 (10) | 32 (10) | 0.0169 |
At the end of the study | 27 (8) | 38 (9) * | <0.0001 |
p-value (post-treatment vs. baseline) | 0.6446 | 0.0305 | - |
Estimated glomerular filtration rate (ml/min/1.73 m2; mean (SD)) | |||
At the beginning of the study | 92 (15) | 93 (16) | 0.8206 |
At the end of the study | 92 (13) | 94 (14) | 0.6031 |
p-value (post-treatment vs. baseline) | 1 | 0.8151 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krysiak, R.; Basiak, M.; Okopień, B. Cardiometabolic Risk Factors in Rosuvastatin-Treated Men with Mixed Dyslipidemia and Early-Onset Androgenic Alopecia. Molecules 2021, 26, 2844. https://doi.org/10.3390/molecules26102844
Krysiak R, Basiak M, Okopień B. Cardiometabolic Risk Factors in Rosuvastatin-Treated Men with Mixed Dyslipidemia and Early-Onset Androgenic Alopecia. Molecules. 2021; 26(10):2844. https://doi.org/10.3390/molecules26102844
Chicago/Turabian StyleKrysiak, Robert, Marcin Basiak, and Bogusław Okopień. 2021. "Cardiometabolic Risk Factors in Rosuvastatin-Treated Men with Mixed Dyslipidemia and Early-Onset Androgenic Alopecia" Molecules 26, no. 10: 2844. https://doi.org/10.3390/molecules26102844
APA StyleKrysiak, R., Basiak, M., & Okopień, B. (2021). Cardiometabolic Risk Factors in Rosuvastatin-Treated Men with Mixed Dyslipidemia and Early-Onset Androgenic Alopecia. Molecules, 26(10), 2844. https://doi.org/10.3390/molecules26102844