Preparation and Characterization of Optically Active Polyurethane from Rotatory Binaphthol Monomer and Polyurethane Prepolymer
Abstract
:1. Introduction
2. Results and Discussion
2.1. FTIR Spectra
2.2. H NMR Spectra
2.3. Molecular Weight
2.4. Thermal Stability
2.5. XRD Pattern
2.6. Mechanical Properties
2.7. Infrared Emitting Ability
2.8. Infrared Thermography Analysis
3. Materials and Methods
3.1. Materials
3.2. Preparation of OPUs
3.3. Characterization and Measurements
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Matusiak, M. Investigation of the thermal insulation properties of multilayer textiles. Fibres Text. East. Eur. 2006, 14, 98–102. [Google Scholar]
- Mondal, S. Phase change materials for smart textiles—An overview. Appl. Therm. Eng. 2008, 28, 1536–1550. [Google Scholar] [CrossRef]
- Luamkanchanaphan, T.; Chotikaprakhan, S.; Jarusombati, S. A Study of Physical, Mechanical and Thermal Properties for Thermal Insulation from Narrow-leaved Cattail Fibers. APCBEE Procedia 2012, 1, 46–52. [Google Scholar] [CrossRef] [Green Version]
- Korjenic, A.; Petránek, V.; Zach, J.; Hroudová, J. Development and performance evaluation of natural thermal-insulation materials composed of renewable resources. Energy Build. 2011, 43, 2518–2523. [Google Scholar] [CrossRef]
- Zhang, J.; Rajkhowa, R.; Li, J.L.; Liu, X.Y.; Wang, X.G. Silkworm cocoon as natural material and structure for thermal insulation. Mater. Des. 2013, 49, 842–849. [Google Scholar] [CrossRef]
- Zhou, X.; Zheng, F.; Li, H.; Lu, C. An environment-friendly thermal insulation material from cotton stalk fibers. Energy Build. 2010, 42, 1070–1074. [Google Scholar] [CrossRef]
- Sarier, N.; Onder, E. Thermal insulation capability of PEG-containing polyurethane foams. Thermochim. Acta 2008, 475, 15–21. [Google Scholar] [CrossRef]
- Briga-Sá, A.; Nascimento, D.; Teixeira, N.; Pinto, J.; Caldeira, F.; Varum, H.; Paiva, A. Textile waste as an alternative thermal insulation building material solution. Constr. Build. Mater. 2013, 38, 155–160. [Google Scholar] [CrossRef]
- Liang, Z.; Zhu, J.T.; Li, F.Q.; Wu, Z.M.; Liu, Y.J.; Xiong, D. Synthesis and properties of self-crosslinking waterborne polyurethane with side chain for water-based varnish. Prog. Org. Coat. 2021, 150, 105927. [Google Scholar] [CrossRef]
- Lu, K.L.; Ji, Z.G.; Kong, Z.; Li, H.X.; Zhang, J. Preparation and Thermal Insulating Properties of Antimony Doped Nano-SnO2/Waterborne Polyurethane Composite Coatings. J. Inorg. Mater. 2013, 27, 1117–1120. [Google Scholar] [CrossRef]
- Li, Q.; Wang, Y.; Sha, L.; Zhao, J.; Zhu, Y.; Wang, N. Influence Study on the Thermal Insulation Effect of Mg(OH)2 Based Coated Fabric. Adv. Text. Technol. 2018, 26, 70–72. [Google Scholar]
- Dai, Z.; Li, Z.; Li, L.; Xu, G. Synthesis and thermal properties of antimony doped tin oxide/waterborne polyurethane nanocomposite films as heat insulating materials. Polym. Adv. Technol. 2011, 22, 1905–1911. [Google Scholar] [CrossRef]
- Lu, H.; Kobayashi, N. Optically Active Porphyrin and Phthalocyanine Systems. Chem. Rev 2016, 116, 6184–6261. [Google Scholar] [CrossRef] [PubMed]
- Shalibor, A.; Modarresi-Alam, A.R.; Kaner, R.B. Optically Active Poly[2 -(sec-butyl)aniline] Nanofibers Prepared via Enantioselective Polymerization. ACS Omega 2018, 3, 18895–18905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wolska, J.M.; Wilk, J.; Pociecha, D.; Mieczkowskim, J.; Gorecka, E. Optically Active Cubic Liquid Crystalline Phase Made of Achiral Polycatenar Stilbene Derivatives. Chemistry 2017, 23, 6853–6857. [Google Scholar] [CrossRef]
- Nakano, T. Optically active synthetic polymers as chiral stationary phases in HPLC. J. Chromatogr. A 2001, 906, 205–225. [Google Scholar] [CrossRef]
- Fujiki, M. Optically Active Polysilylenes: State-of-the-Art Chiroptical Polymers. Macromol. Rapid Commun 2001, 22, 539–563. [Google Scholar] [CrossRef]
- Yong, Y.; Chen, S.; Zhou, Y.; Wang, T.; Zhang, Y. Optically active polyurethane based on tyrosine: Synthesis, characterization and study of hydrogen bonding. Polym. J. 2016, 48, 807–812. [Google Scholar] [CrossRef]
- Kizuka, K.; Inoue, S.I. Synthesis and Properties of Chiral Polyurethane Elastomers Using Tartaric Acids. Open J. Org. Polym. Mater. 2016, 06, 38–52. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Li, Y.; Liu, S.; Li, F.; Zhu, C.; Li, S.; Cheng, Y. Regulating Circularly Polarized Luminescence Signals of Chiral Binaphthyl-Based Conjugated Polymers by Tuning Dihedral Angles of Binaphthyl Moieties. Macromolecules 2016, 49, 5444–5451. [Google Scholar] [CrossRef]
- Gong, A.; Liu, W.; Chen, Y.; Zhang, X.; Chen, C.; Xi, F. Optically active cyclic and linear poly(aryl esters) based on chiral 1,1′-bi-2-naphthol. Tetrahedron Asymmetry 1999, 10, 2079–2086. [Google Scholar] [CrossRef]
- Chen, J.; Zhou, Y.; Nan, Q.; Ye, X.; Sun, Y.; Zhang, F.; Wang, Z. Preparation and properties of optically active polyurethane/TiO nanocomposites derived from optically pure 1, 1′-binaphthyl. Eur. Polym. J. 2007, 43, 4151–4159. [Google Scholar] [CrossRef]
- Gudeangadi, P.G.; Sakamoto, T.; Shichibu, Y.; Konishi, K.; Nakano, T. Chiral Polyurethane Synthesis Leading to π-Stacked 2/1-Helical Polymer and Cyclic Compounds. ACS Macro Lett. 2015, 4, 901–906. [Google Scholar] [CrossRef]
- Zhou, X.; Fang, C.; Lei, W.; Su, J.; Li, L.; Li, Y. Thermal and Crystalline Properties of Waterborne Polyurethane by in situ water reaction process and the potential application as biomaterial. Prog. Org. Coat. 2017, 104, 1–10. [Google Scholar] [CrossRef]
- Yang, Y.; Zhou, Y.; Ge, J.; Yang, X. Optically active polyurethane@ indium tin oxide nanocomposite: Preparation, characterization and study of infrared emissivity. Mater. Res. Bull. 2012, 47, 2264–2269. [Google Scholar] [CrossRef]
- Wang, Z.; Zhou, Y.; Sun, Y.; Yao, Q. Optically active helical polyurethane-urea with single-handed conformation for infrared low emissivity. Macromolecules 2009, 42, 4972–4976. [Google Scholar] [CrossRef]
- Zhou, H.; Wang, H.; Tian, X.; Zheng, K.; Cheng, Q. Preparation and properties of waterborne polyurethane/antimony doped tin oxide nanocomposite coatings via sol–gel reactions. Polym. Compos. 2014, 35, 1169–1175. [Google Scholar] [CrossRef]
Sample | Mn | Mw | PDI |
---|---|---|---|
OPU1 | 15,960 | 28,131 | 1.76 |
OPU3 | 18338 | 48059 | 2.62 |
WPU | 19,444 | 40,971 | 2.11 |
Samples | Right (°) | Left (°) | Infrared Emissivity |
---|---|---|---|
OPU1 | +73.70 | −108.55 | 0.572 |
OPU2 | +69.80 | −107.47 | 0.602 |
OPU3 | +68.13 | −108.92 | 0.688 |
OPU4 | +71.72 | −106.65 | 0.850 |
WPU | +69.33 | −107.12 | 0.866 |
Code | IPDI | PCDL | DMPA | BINOL | BDO | TEA |
---|---|---|---|---|---|---|
OPU1 | 5 | 1.5 | 1.5 | 2 | 0 | 1.5 |
OPU2 | 5 | 1.5 | 1.5 | 1.5 | 0.5 | 1.5 |
OPU3 | 5 | 1.5 | 1.5 | 1 | 1 | 1.5 |
OPU4 | 5 | 1.5 | 1.5 | 0.5 | 1.5 | 1.5 |
WPU | 5 | 1.5 | 1.5 | 0 | 2 | 1.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, L.; Mao, H.; Li, Z.; Li, W.; Wang, C. Preparation and Characterization of Optically Active Polyurethane from Rotatory Binaphthol Monomer and Polyurethane Prepolymer. Molecules 2021, 26, 2986. https://doi.org/10.3390/molecules26102986
Lin L, Mao H, Li Z, Li W, Wang C. Preparation and Characterization of Optically Active Polyurethane from Rotatory Binaphthol Monomer and Polyurethane Prepolymer. Molecules. 2021; 26(10):2986. https://doi.org/10.3390/molecules26102986
Chicago/Turabian StyleLin, Ling, Haiyan Mao, Ziyin Li, Wenyao Li, and Chaoxia Wang. 2021. "Preparation and Characterization of Optically Active Polyurethane from Rotatory Binaphthol Monomer and Polyurethane Prepolymer" Molecules 26, no. 10: 2986. https://doi.org/10.3390/molecules26102986
APA StyleLin, L., Mao, H., Li, Z., Li, W., & Wang, C. (2021). Preparation and Characterization of Optically Active Polyurethane from Rotatory Binaphthol Monomer and Polyurethane Prepolymer. Molecules, 26(10), 2986. https://doi.org/10.3390/molecules26102986