Modern Synthetic Strategies with Organoselenium Reagents: A Focus on Vinyl Selenones
Abstract
:1. Introduction
2. Synthesis of Vinyl Selenones and Their Biological Activities
3. Michael-Initiated Ring Closures
4. Enantioselective Organocatalytic Transformations
5. Cycloaddition Reactions of Vinyl Selenones
6. Transition-Metal Catalyzed Cross-Coupling of Vinyl Selenones
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Wirth, T. (Ed.) Organoselenium Chemistry: Synthesis and Reactions; Wiley-WCH: Weinheim, Germany, 2011. [Google Scholar]
- Santi, C. (Ed.) Organoselenium Chemistry: Between Synthesis and Biochemistry; Bentham Science Publishers: Sharjah, United Arab Emirates, 2014. [Google Scholar]
- Lenardão, E.J.; Santi, C.; Sancineto, L. New Frontiers in Organoselenium Compounds; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Perin, G.; Lenardão, E.J.; Jacob, R.G.; Panatieri, R.B. Synthesis of vinyl selenides. Chem. Rev. 2009, 109, 1277–1301. [Google Scholar] [CrossRef]
- Palomba, M.; Bagnoli, L.; Marini, F.; Santi, C.; Sancineto, L. Recent advances in the chemistry of vinylchalcogenides. Phosphorus Sulfur Silicon Relat. Elem. 2016, 191, 235–244. [Google Scholar] [CrossRef]
- Krief, A.; Dumont, W.; Denis, J.-N.; Evrard, G.; Norberg, B. Synthesis of selenones: A comparative study. J. Chem. Soc. Chem. Commun. 1985, 569–570. [Google Scholar] [CrossRef]
- Temperini, A.; Curini, M.; Rosati, O.; Minuti, L. Magnesium bis(monoperoxyphthalate) hexahydrate as mild and efficient oxidant for the synthesis of selenones. Beilstein J. Org. Chem. 2014, 10, 1267–1271. [Google Scholar] [CrossRef] [Green Version]
- Krief, A.; Dumont, W.; De Mahiee, A.F. Novel synthesis of selenones. Tetrahedron Lett. 1988, 29, 3269–3272. [Google Scholar] [CrossRef]
- Khurana, M.; Agrawal, A.; Kumar, S. Oxidation of chalcogenides using the peroxo complex of molybdenum [MoO(O2)2(H2O)(hmpa)], hmpa = hexamethylphosphoramide. J. Braz. Chem. Soc. 2009, 20, 1256–1261. [Google Scholar] [CrossRef] [Green Version]
- Ceccherelli, P.; Curini, M.; Epifano, F.; Marcotullio, M.C.; Rosati, O. Oxone oxidation of selenides: A mild and efficient method for the preparation of selenones. J. Org. Chem. 1995, 60, 8412–8413. [Google Scholar] [CrossRef]
- Potash, S.; Rozen, S. A general and efficient method to convert selenides into selenones by using HOF·CH3CN. Eur. J. Org. Chem. 2013, 5574–5579. [Google Scholar] [CrossRef]
- Tiecco, M.; Chianelli, D.; Tingoli, M.; Testaferri, L.; Bartoli, D. Formation and reactivity of the addition products of alkoxides and thiolate anions to vinyl selenones. Tetrahedron 1986, 42, 4897–4906. [Google Scholar] [CrossRef]
- Palomba, M.; Trappetti, F.; Bagnoli, L.; Santi, C.; Marini, F. Oxone mediated oxidation of vinyl selenides in water. Eur. J. Org. Chem. 2018, 3914–3919. [Google Scholar] [CrossRef]
- Jain, V.K.; Priyadarsini, K.I. (Eds.) Organoselenium Compounds in Biology and Medicine: Synthesis, Biological and Therapeutic Treatments; Royal Society of Chemistry: London, UK, 2018. [Google Scholar]
- Zhu, H.; Honghao, S.; Liu, Y.; Duan, Y.; Liu, J.; Yang, X.; Li, W.; Qina, S.; Xu, S.; Zhu, Z.; et al. Design, synthesis and biological evaluation of vinyl selenone derivatives as novel microtubule polymerization inhibitors. Eur. J. Med. Chem. 2020, 207, 112716. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.-I.; Spears, C.P. Phenyl selenones: Alkyl transfer by selenium-carbon bond cleavage. J. Med. Chem. 1990, 33, 1544–1547. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Liu, R.; Gong, X.; Li, Z.; Huang, Q.; Wang, H.; Song, G. Synthesis and herbicidal activity of N,N-diethyl-3-(arylselenonyl)-1H-1,2,4-triazole-1-carboxamide. J. Agric. Food Chem. 2006, 54, 7724–7728. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.K. Synthesis and fungicidal activity of novel 3-(substituted/unsubstituted phenylselenonyl)-1-ribosyl/deoxyribosyl-1H-1,2,4-triazole. J. Agric. Food Chem. 2012, 60, 5813–5818. [Google Scholar] [CrossRef] [PubMed]
- Kuwajima, I.; Ando, R.; Sugawara, T. Regio- and site-selective activation of carbon-carbon double bonds to nucleophilic reagents. Cyclopropanation of vinylselenones with active methylene compounds. Tetrahedron Lett. 1983, 24, 4429–4432. [Google Scholar] [CrossRef]
- Ando, R.; Sugawara, T.; Shimizu, M.; Kuwajima, I. Reactions with enolates with vinyl selenonxides and vinyl selenones. One-step synthesis of cyclopropylcarbonyl compounds. Bull. Chem. Soc. Jpn. 1984, 57, 2897–2904. [Google Scholar] [CrossRef] [Green Version]
- Tiecco, M.; Chianelli, D.; Testaferri, L.; Tingoli, M.; Bartoli, D. Competition between vinyl substitution and conjugate addition in the reactions of vinyl selenoxides and vinyl selenones with nucleophiles in DMF. Tetrahedron 1986, 42, 4889–4896. [Google Scholar] [CrossRef]
- Bagnoli, L.; Scarponi, C.; Testaferri, L.; Tiecco, M. Preparation of both enantiomers of cyclopropane derivatives from the reaction of vinyl selenones with di-(−)-bornyl malonate. Tetrahedron Asymmetry 2009, 20, 1506–1514. [Google Scholar] [CrossRef]
- Antoniak, D.; Barbasiewicz, M. Corey-Chaykovsky cyclopropanation of nitronaphthalenes: Access to benzonorcaradienes and related systems. Org. Lett. 2019, 21, 9320–9325. [Google Scholar] [CrossRef]
- Boddy, A.J.; Bull, J.A. Stereoselective synthesis and applications of spirocyclic oxindoles. Org. Chem. Front. 2021, 8, 1026–1084. [Google Scholar] [CrossRef]
- Hiesinger, K.; Dar’in, D.; Proschak, E.; Krasavin, M. Spirocyclic scaffolds in medicinal chemistry. J. Med. Chem. 2021, 64, 150–183. [Google Scholar] [CrossRef]
- Palomba, M.; Rossi, L.; Sancineto, L.; Tramontano, E.; Corona, A.; Bagnoli, L.; Santi, C.; Pannecouque, C.; Tabarrini, O.; Marini, F. A new vinyl selenone-based domino approach to spirocyclopropyl oxindoles endowed with anti-HIV RT activity. Org. Biomol. Chem. 2016, 14, 2015–2024. [Google Scholar] [CrossRef] [PubMed]
- Palomba, M.; Scarcella, E.; Sancineto, L.; Bagnoli, L.; Santi, C.; Marini, F. Synthesis of Spirooxindole Oxetanes Through a Domino Reaction of 3-hydroxyoxindoles and phenyl vinyl selenone. Eur. J. Org. Chem. 2019, 5396–5401. [Google Scholar] [CrossRef]
- Shimizu, M.; Kuwajima, I. 3-(Phenylseleno)-2-propenal as a versatile unit for oxetane ring formation. J. Org. Chem. 1980, 45, 4063–4065. [Google Scholar] [CrossRef]
- Sternativo, S.; Marini, F.; Del Verme, F.; Calandriello, A.; Testaferri, L.; Tiecco, M. One-pot synthesis of aziridines from vinyl selenones and variously functionalized primary amines. Tetrahedron 2010, 66, 6851–6857. [Google Scholar] [CrossRef]
- Sternativo, S.; Battistelli, B.; Bagnoli, L.; Santi, C.; Testaferri, L.; Marini, F. Synthesis of γ-lactams via a domino Michael addition/cyclization reaction of vinyl selenone with substituted amides. Tetrahedron Lett. 2013, 54, 6755–6757. [Google Scholar] [CrossRef]
- Buyck, T.; Pasche, D.; Wang, Q.; Zhu, J. Synthesis of oxazolidin-2-ones by oxidative coupling of isonitriles, phenyl vinyl selenone, and water. Chem. Eur. J. 2016, 22, 2278–2281. [Google Scholar] [CrossRef]
- Bagnoli, L.; Scarponi, C.; Rossi, M.G.; Testaferri, L.; Tiecco, M. Synthesis of enantiopure 1,4-dioxanes, morpholines, and piperazines from the reaction of chiral 1,2-diols, amino alcohols, and diamines with vinyl selenones. Chem. Eur. J. 2011, 17, 993–999. [Google Scholar] [CrossRef] [PubMed]
- Bagnoli, L.; Casini, S.; Marini, F.; Santi, C.; Testaferri, L. Vinyl selenones: Annulation agents for the synthesis of six-membered benzo-1,4-heterocyclic compounds. Tetrahedron 2013, 69, 481–486. [Google Scholar] [CrossRef]
- Palomba, M.; Vinti, E.; Marini, F.; Santi, S.; Bagnoli, L. Synthesis of oxazino [4,3-a]indoles by domino addition-cyclization reactions of (1H-indol-2-yl)methanols and vinyl selenones in the presence of 18-crown-6. Tetrahedron 2016, 72, 7059–7064. [Google Scholar] [CrossRef]
- Palomba, M.; Sancineto, L.; Marini, F.; Santi, C.; Bagnoli, L. A domino approach to pyrazino-indoles and pyrroles using vinyl selenones. Tetrahedron 2018, 74, 7156–7163. [Google Scholar] [CrossRef]
- Wu, J.-C.; Chattopadhyaya, J. Michael addition reactions of αβ-ene-3′-phenylselenone of uridine. New synthesis of 2′,3′-dideoxy-ribo-aziridino-, 2′,3′-dideoxy-2′, 3′-ribo-cyclopropyl- and 2,2′-O-anhydro-3′-deoxy-3′-amino uridine derivatives. Tetrahedron 1989, 45, 4507–4522. [Google Scholar] [CrossRef]
- Tong, W.; Xi, Z.; Gioeli, C.; Chattopadhyaya, J. Synthesis of new 2′, 3′-modified uridine derivatives from 2′,3′-ene-2′-phenylselenonyl uridine by Michael addition reactions. Tetrahedron 1991, 47, 3431–3450. [Google Scholar] [CrossRef]
- Wu, J.-C.; Chattopadhyaya, J. A new stereospecific synthesis of [3.1.0]bicyclic cyclopropano analog of 2’3’-dideoxyuridine. Tetrahedron 1990, 46, 2587–2592. [Google Scholar] [CrossRef]
- Tong, W.; Wu, J.-C.; Sandström, A.; Chattopadhyaya, J. Synthesis of new 2’,3’-dideoxy-2’,3’-α-fused-heterocyclic uridines, and some 2’, 3’-ene-2’-substituted uridines from easily accessible 2’,3’- ene-3’phenylselenonyl uridine. Tetrahedron 1990, 46, 3037–3060. [Google Scholar] [CrossRef]
- Bhaumik, A.; Pathak, T. Methyl-α D 2-selenonyl Pent-2-enofuranoside: A reactive selenosugar for the diversity oriented synthesis of enantiomerically pure heterocycles, carbocycles, and isonucleosides. J. Org. Chem. 2015, 80, 11057–11064. [Google Scholar] [CrossRef] [PubMed]
- Bhaumik, A.; Das, A.; Pathak, T. Vinyl selenones derived from d-Fructose: A new platform for fructochemistry. Asian J. Org. Chem. 2016, 5, 1048–1062. [Google Scholar] [CrossRef]
- Das, A.; Bhaumik, A.; Pathak, T. Epoxides of d-fructose and l-sorbose: A convenient class of “click” functionality for the synthesis of a rare family of amino- and thio-sugars. Carbohydr. Res. 2020, 487, 107870. [Google Scholar] [CrossRef] [PubMed]
- Pathak, T. Vinyl sulfone-modified carbohydrates:an inconspicuous group of chiral building blocks. Tetrahedron 2008, 64, 3605–3628. [Google Scholar] [CrossRef]
- Subhawan Verma, R.; Tiwari, B. Direct construction of 2,3-dihydroxy-2,3-diaryltetrahydrofurans via N heterocyclic carbene/base-mediated domino reactions of aromatic aldehydes and vinyl selenone. Org. Lett. 2017, 19, 444–447. [Google Scholar] [CrossRef]
- Bhaumik, A.; Azaz, T.; Singh, V.; Khatana, A.K.; Tiwari, B. Carbene/base-mediated redox alkenylation of isatins using β-substituted organoselenones and aldehydes. J. Org. Chem. 2019, 84, 14898–14903. [Google Scholar] [CrossRef]
- Dalko, P.I. (Ed.) Comprehensive Enantioselective Organocatalysis: Catalysts, Reactions, and Applications; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2013. [Google Scholar]
- Marini, F.; Sternativo, S.; Del Verme, F.; Testaferri, L.; Tiecco, M. Enantioselective organocatalytic Michael addition of α-substituted cyanoacetates to α,β-unsaturated selenones. Adv. Synth. Catal. 2009, 351, 103–106. [Google Scholar] [CrossRef]
- Marini, F.; Sternativo, S.; Del Verme, F.; Testaferri, L.; Tiecco, M. A new stereoselective synthesis of cyclopropanes containing quaternary stereocentres via organocatalytic Michael addition to vinyl selenones. Adv. Synth. Catal. 2009, 351, 1801–1806. [Google Scholar] [CrossRef]
- Sternativo, S.; Calandriello, A.; Costantino, F.; Testaferri, L.; Tiecco, M.; Marini, F. A highly enantioselective one-pot synthesis of spirolactones by an organocatalyzed Michael addition/cyclization sequence. Angew. Chem. Int. Ed. 2011, 50, 9382. [Google Scholar] [CrossRef] [PubMed]
- Sternativo, S.; Walczak, O.; Battistelli, B.; Testaferri, L.; Marini, F. Organocatalytic Michael addition of indanone carboxylates to vinyl selenone for the asymmetric synthesis of polycyclic pyrrolidines. Tetrahedron 2012, 68, 10536–10541. [Google Scholar] [CrossRef]
- Sardella, R.; Ianni, F.; Lisanti, A.; Scorzoni, S.; Marini, F.; Sternativo, S.; Natalini, B. Direct chromatographic enantioresolution of fully constrained β-amino acids: Exploring the use of high-molecular weight chiral selectors. Amino Acids 2014, 46, 1235–1242. [Google Scholar] [CrossRef] [PubMed]
- Mimini, V.; Ianni, F.; Marini, F.; Hettegger, H.; Sardella, R.; Lindner, W. Electrostatic attraction-repulsion model with Cinchona alkaloid-based zwitterionic chiral stationary phases exemplified for zwitterionic analytes. Anal. Chim. Acta 2019, 1078, 212–220. [Google Scholar] [CrossRef]
- Buyck, T.; Wang, Q.; Zhu, J. Catalytic enantioselective Michael addition of α-aryl-α-isocyanoacetates to vinyl selenone: Synthesis of α,α-disubstituted α-amino acids and (+)- and (–)-trigonoliimine A. Angew. Chem. Int. Ed. 2013, 52, 12714–12718. [Google Scholar] [CrossRef]
- Buyck, T.; Wang, Q.; Zhu, J. From racemic to enantioselective total synthesis of trigonoliimines via development of an organocatalytic enantioselective Michael addition of α-aryl-α-isocyanoacetate to vinyl phenyl selenone. Chimia 2015, 69, 199–202. [Google Scholar] [CrossRef] [PubMed]
- Torres-Ochoa, R.O.; Buyck, T.; Wang, Q.; Zhu, J. Heteroannulation of arynes with α-amino Imides: Synthesis of 2,2-disubstituted indolin-3-ones and application to the enantioselective total synthesis of (+)-Hinckdentine A. Angew. Chem. Int. Ed. 2018, 57, 5679–5683. [Google Scholar] [CrossRef] [PubMed]
- Buyck, T.; Wang, Q.; Zhu, J. Triple role of phenylselenonyl group enabled a one-pot synthesis of 1,3-oxazinan-2-ones from α-isocyanoacetates, phenyl vinyl selenones, and water. J. Am. Chem. Soc. 2014, 136, 11524–11528. [Google Scholar] [CrossRef] [PubMed]
- Simlandy, A.K.; Mukherjee, S. Catalytic asymmetric formal γ-allylation of deconjugated butenolides. Org. Biomol. Chem. 2016, 14, 5659–5664. [Google Scholar] [CrossRef]
- Clemenceau, A.; Wang, Q.; Zhu, J. Enantioselective synthesis of quaternary α-amino acids enabled by the versatility of the phenylselenonyl group. Chem. Eur. J. 2016, 22, 18368–18372. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Cheng, L.; Hameed, S.; Liu, L.; Wang, D.; Chen, Y.-J. Highly enantioselective Michael addition of 2-oxindoles to vinyl selenone in RTILs catalyzed by a Cinchona alkaloid-based thiourea. Chem. Commun. 2011, 47, 6644–6646. [Google Scholar] [CrossRef]
- Bhaumik, A.; Samanta, S.; Pathak, T. Enantiopure 1,4,5-trisubstituted 1,2,3-triazoles from carbohydrates: Applications of organoselenium chemistry. J. Org. Chem. 2014, 79, 6895–6904. [Google Scholar] [CrossRef] [PubMed]
- Palomba, M.; De Monte, E.; Mambrini, A.; Bagnoli, L.; Santi, C.; Marini, F. A three-component 1,3-dipolar cycloaddition/elimination cascade for the synthesis of 3-spirooxindole-pyrrolizines. Org. Biomol. Chem. 2021, 19, 667–676. [Google Scholar] [CrossRef]
- Beng, T.K.; Silaire, A.W.V.; Alwali, A.; Bassler, D.P. One-shot access to α,β-difunctionalized azepenes and dehydropiperidines by reductive cross-coupling of α-selenonyl-β-selenyl enamides with organic bromides. Org. Biomol. Chem. 2015, 13, 7915–7919. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palomba, M.; Franco Coelho Dias, I.; Rosati, O.; Marini, F. Modern Synthetic Strategies with Organoselenium Reagents: A Focus on Vinyl Selenones. Molecules 2021, 26, 3148. https://doi.org/10.3390/molecules26113148
Palomba M, Franco Coelho Dias I, Rosati O, Marini F. Modern Synthetic Strategies with Organoselenium Reagents: A Focus on Vinyl Selenones. Molecules. 2021; 26(11):3148. https://doi.org/10.3390/molecules26113148
Chicago/Turabian StylePalomba, Martina, Italo Franco Coelho Dias, Ornelio Rosati, and Francesca Marini. 2021. "Modern Synthetic Strategies with Organoselenium Reagents: A Focus on Vinyl Selenones" Molecules 26, no. 11: 3148. https://doi.org/10.3390/molecules26113148
APA StylePalomba, M., Franco Coelho Dias, I., Rosati, O., & Marini, F. (2021). Modern Synthetic Strategies with Organoselenium Reagents: A Focus on Vinyl Selenones. Molecules, 26(11), 3148. https://doi.org/10.3390/molecules26113148