Anti-Ageing Potential of S. euboea Heldr. Phenolics
Abstract
:1. Introduction
2. Results
2.1. Phytochemical Content
2.2. In Silico Screening and In Vitro Evaluation of the Inhibition of S. euboea Ethyl Acetate Residue and Its Isolated Compounds towards Hyaluronidase
2.3. In Silico Docking of Isolated Compounds towards Hyaluronidase
3. Materials and Methods
3.1. General Procedures
3.2. Plant Material
3.3. Extraction and Isolation
3.4. Evaluation of the Inhibition of S. euboea Ethyl Acetate Residue and Its Isolated Compounds towards Hyaluronidase
3.5. In Silico Docking of Isolated Compounds towards Hyaluronidase and in Silico Based Screening
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Newman, D.J.; Cragg, G.M. Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019. J. Nat. Prod. 2020, 83, 770–803. [Google Scholar] [CrossRef]
- Hubert, J.; Nuzillard, J.-M.; Renault, J.-H. Dereplication strategies in natural product research: How many tools and methodologies behind the same concept? Phytochem. Rev. 2017, 16, 55–95. [Google Scholar] [CrossRef]
- Emwas, A.-H.; Szczepski, K.; Poulson, B.G.; Chandra, K.; McKay, R.T.; Dhahri, M.; AlAhmari, F.; Jaremko, L.; Lachowicz, J.I.; Jaremko, M. NMR as a “Gold Standard” Method in Drug Design and Discovery. Molecules 2020, 25, 4597. [Google Scholar] [CrossRef] [PubMed]
- Venturella, P.; Bellino, A. Eubotriol and eubol, new diterpenes from Sideritis euboea. Experientia 1977, 92, 1270–1271. [Google Scholar] [CrossRef]
- Tsaknis, J.; Lalas, S. Extraction and Identification of Natural Antioxidant from Sideritis euboea (Mountain Tea). J. Agric. Food Chem. 2005, 53, 6375–6381. [Google Scholar] [CrossRef] [PubMed]
- Dontas, I.A.; Lelovas, P.P.; Kourkoulis, S.K.; Aligiannis, N.; Paliogianni, A.; Mitakou, S.; Galanos, A.; Kassi, E.; Mitousoudis, A.; Xanthos, T.T.; et al. Protective effect of Sideritis euboea extract on bone mineral density and strength of ovariectomized rats. Menopause 2011, 915–922. [Google Scholar] [CrossRef] [PubMed]
- Kassi, E.; Paliogianni, A.; Dontas, I.; Aligiannis, N.; Halabalaki, M.; Papoutsi, Z.; Skaltsounis, A.-L.; Moutsatsou, P. Effects of Sideritis euboea (Lamiaceae) aqueous extract on IL-6, OPG and RANKL secretion by osteoblasts. Nat. Prod. Commun. 2011, 6, 1689–1696. [Google Scholar] [CrossRef] [Green Version]
- Tomou, E.; Chatzopoulou, P.; Skaltsa, H. NMR analysis of cultivated Sideritis euboea Heldr. Phytochem. Anal. 2019, 31, 147–153. [Google Scholar] [CrossRef]
- Tomou, E.-M.; Chatziathanasiadou, M.V.; Chatzopoulou, P.; Tzakos, A.G.; Skaltsa, H. NMR-Based Chemical Profiling, Isolation and Evaluation of the Cytotoxic Potential of the Diterpenoid Siderol from Cultivated Sideritis euboea Heldr. Molecules 2020, 25, 2382. [Google Scholar] [CrossRef]
- Lokeshwar, V.B.; Lokeshwar, B.L.; Pham, H.T.; Block, N.L. Association of elevated levels of hyaluronidase, a matrix-degrading enzyme, with prostate cancer progression. Cancer Res. 1996, 56, 651–657. [Google Scholar]
- Stern, R. Hyaluronan catabolism: A new metabolic pathway. Eur. J. Cell Biol. 2004, 83, 317–325. [Google Scholar] [CrossRef] [PubMed]
- Stern, R. Hyaluronidases in cancer biology. Eur. J. Cell Biol. 2008, 18, 275–280. [Google Scholar]
- Addotey, J.N.; Lengers, I.; Jose, J.; Gampe, N.; Béni, S.; Petereit, F.; Hensel, A. Isoflavonoids with inhibiting effects on human hyaluronidase-1 and norneolignan clitorienolactone B from Ononis spinosa L. root extract. Fitoterapia 2018, 130, 169–174. [Google Scholar] [CrossRef]
- Addotey, J.N.; Lengers, I.; Jose, J.; Hensel, A. Hyal-1 inhibitors from the leaves of Phyllanthus muellerianus (Kuntze) Excell. J. Ethnopharmacol. 2019, 236, 326–335. [Google Scholar] [CrossRef] [PubMed]
- Hamid, A.A.; Aiyelaagbe, O.O.; Kaneez, F.; Luqman, S.; Negi, A.S. Isolation, characterization and antiproliferative evaluation of constituents from stem extracts of Alafia barteri Oliv. Hook. F. Med. Chem. Res. 2017, 26, 3407–3416. [Google Scholar] [CrossRef]
- Piozzi, F.; Venturella, P.; Bellino, A.; Mondelli, R. Diterpenes from Sideritis sicula Ucria. Tetrahedron 1968, 24, 4073–4081. [Google Scholar] [CrossRef]
- El-Nagar, L.J.; Beal, J.L. Iridoids. A Review. J. Nat. Prod. 1980, 43, 649–707. [Google Scholar] [CrossRef]
- Boros, C.A.; Stermitz, F.R. Iridoids-An updated review. Part, I.J. Nat. Prod. 1990, 53, 1055–1147. [Google Scholar] [CrossRef]
- Muñoz, O.; Peña, R.C.; Montenegro, G. Iridoids from Stachys grandidentata (Labiatae). Z. Naturforsch. C J. Biosci. 2001, 56, 902–903. [Google Scholar] [CrossRef] [Green Version]
- Sa, F.A.D.S.; De Paula, J.A.M.; Dos Santos, P.A.; Oliveira, L.D.A.R.; Oliveira, G.D.A.R.; Liao, L.M.; De Paula, J.R.; Silva, M.D.R.R. Phytochemical Analysis and Antimicrobial Activity of Myrcia tomentosa (Aubl.) DC. Leaves. Molecules 2017, 22, 1100. [Google Scholar] [CrossRef] [Green Version]
- da Silva, L.A.L.; Faqueti, L.G.; Reginatto, F.H.; dos Santos, A.D.C.; Barison, A.; Biavatti, M.W. Phytochemical analysis of Vernonanthura tweedieana and a validated UPLC-PDA method for the quantification of eriodictyol. Rev. Bras. Farmacogn. 2015, 25, 375–381. [Google Scholar] [CrossRef] [Green Version]
- Zaabat, N.; Akkal, S.; Darboure, N.; Laouer, H.; Franca, M.G.D.; Duddeck, H. Secondary metabolites of an Algerian Phlomis bovei and their antioxidant activities. Chem. Nat. Compd. 2010, 46, 454–455. [Google Scholar] [CrossRef]
- El-Ansari, M.A.; Nawwar, M.A.; Saleh, N.M.A. Stachysetin a diapigenin-7-glucoside-p,p’-dihydroxy-truxinate from Stachys aegyptiaca. Phytochemistry 1995, 40, 1543–1548. [Google Scholar] [CrossRef]
- Venturella, P.; Bellino, A.; Marino, M.L. Three acylated flavone glycosides from Sideritis syriaca. Phytochemistry 1995, 38, 525–530. [Google Scholar] [CrossRef]
- Chaudhuri, P.K.; Thakur, R.S. An acylated flavone apigenin 7-O-β-D-(4″-cis-p-coumaroyl)glucoside from Echinops echinatus. Phytochemistry 1986, 25, 1770–1771. [Google Scholar] [CrossRef]
- Lenherr, A.; Mabry, T.J. Acetylated allose-containing flavonoid glucosides from Stachys anisochila. Phytochemistry 1987, 26, 1185–1188. [Google Scholar] [CrossRef]
- Chiou, W.-F.; Shen, C.-C.; Lin, L.-C. Anti-Inflammatory Principles from Balanophora laxiflora. J. Food Drug Anal. 2011, 19, 502–508. [Google Scholar] [CrossRef]
- Kuang, H.; Xia, Y.; Yang, B.; Wang, Q.; Lü, S. Lignan constituents from Chloranthus japonicus Sieb. Arch. Pharm. Res. 2009, 32, 329–334. [Google Scholar] [CrossRef]
- Kawada, T.; Asano, R.; Hayashida, S.; Sakuno, T. Total Synthesis of the Phenylpropanoid Glycoside, Acteoside. J. Org. Chem. 1999, 64, 9268–9271. [Google Scholar] [CrossRef]
- Budzianowski, J.; Skrzypczak, L. Phenylpropanoid esters from Lamium album flowers. Phytochemistry 1995, 38, 997–1001. [Google Scholar] [CrossRef]
- Miyase, T.; Koizumi, A.; Ueno, A.; Noro, T.; Kuroyanagi, M.; Fukushima, S.; Akiyama, Y.; Takemoto, T. Studies on the Acyl Glycosides from Leucoseptrum japonicum (MIQ.) KITAMURA et MURATA. Chem. Pharm. Bull. 1982, 30, 2732–2737. [Google Scholar] [CrossRef] [Green Version]
- Skrzypek, Z.; Wysokińska, H.; Swiatek, L.; Wróblewski, A.E. Phenylpropanoid glycosides from Penstemon serrulatus. J. Nat. Prod. 1999, 62, 127–129. [Google Scholar] [CrossRef] [PubMed]
- Akcos, Y.; Ezer, N.; Çalis, I.; Demirdamar, R.; Tel, B.C. Polyphenolic Compounds of Sideritis lycia and Their Anti-Inflammatory Activity. Pharm. Biol. 1999, 37, 118–122. [Google Scholar] [CrossRef]
- Torres-Naranjo, M.; Suárez, A.; Gilardoni, G.; Cartuche, L.; Flores, P.; Morocho, V. Chemical Constituents of Muehlenbeckia tamnifolia (Kunth) Meisn (Polygonaceae) and Its In Vitro α-Amilase and α-Glucosidase Inhibitory Activities. Molecules 2016, 21, 1461. [Google Scholar] [CrossRef]
- Chen, C.-Y.; Chang, F.-R.; Teng, C.-M.; Wu, Y.-C. Cheritamine, A New N-Fatty Acyl Tryptamine and Other Constituents from the Stems of Annona cherimola. J. Chin. Chem. Soc. 1999, 46, 77–86. [Google Scholar] [CrossRef]
- Kuang, Y.; Yang, S.X.; Sampietro, D.A.; Zhang, X.F.; Tan, J.; Gao, Q.X.; Liu, H.W.; Ni, Q.X.; Zhang, Y.Z. Phytotoxicity of leaf constituents from bamboo (Shibataea chinensis Nakai) on germination and seedling growth of lettuce and cucumber. Allelopathy J. 2017, 40, 133–142. [Google Scholar] [CrossRef]
- Dhakal, R.; Rajbhandari, M.; Kalauni, S.; Awale, S.; Gewali, M. Phytochemical Constituents of the Bark of Vitex negundo L. JNCS 2008, 23, 89–92. [Google Scholar] [CrossRef]
- Yang, Y.; Jiang, J.; Qimei, L.; Yan, X.; Zhao, J.; Yuan, H.; Qin, Z.; Wang, M. The fungicidal terpenoids and essential oil from Litsea cubeba in Tibet. Molecules 2010, 15, 7075–7082. [Google Scholar] [CrossRef]
- Liao, C.R.; Kuo, Y.H.; Ho, Y.L.; Wang, C.Y.; Yang, C.S.; Lin, C.W.; Chang, Y.S. Studies on cytotoxic constituents from the leaves of Elaeagnus oldhamii Maxim. in non-small cell lung cancer A549 cells. Molecules 2014, 19, 9515–9534. [Google Scholar] [CrossRef] [Green Version]
- Ramakrishna, E.; Dev, K.; Kothari, P.; Tripathi, A.K.; Trivedi, R.; Maurya, R. Phytochemical investigation of Kigelia pinnata leaves and identification of osteogenic agents. Med. Chem. Res. 2017, 26, 940–946. [Google Scholar] [CrossRef]
- Piozzi, F.; Bruno, M.; Rosselli, S.; Maggio, A. The Diterpenoids from the Genus Sideritis. In Studies in Natural Products Chemistry; Elsevier: Amsterdam, The Netherlands, 2006; Volume 33, pp. 493–540. [Google Scholar]
- Lytra, K.; Tomou, E.-M.; Chrysargyris, A.; Drouza, C.; Skaltsa, H.; Tzortzakis, N. Traditionally Used Sideritis cypria Post.: Phytochemistry, Nutritional Content, Bioactive Compounds of Cultivated Populations. Front. Pharmacol. 2020, 11, 650. [Google Scholar] [CrossRef] [PubMed]
- Chrysargyris, A.; Kloukina, C.; Vassiliou, R.; Tomou, E.-M.; Skaltsa, H.; Tzortzakis, N. Cultivation strategy to improve chemical profile and anti-oxidant activity of Sideritis perfoliata L. subsp. perfoliata. Ind. Crop. Prod. 2019, 140, 111694. [Google Scholar] [CrossRef]
- Charami, M.T.; Lazari, D.; Karioti, A.; Skaltsa, H.; Hadjipavlou-Litina, D.; Souleles, C. Antioxidant and Antiinflammatory Activities of Sideritis perfoliata subsp. perfoliata (Lamiaceae). Phytother. Res. 2008, 22, 450–454. [Google Scholar] [CrossRef] [PubMed]
- Żyżelewicz, D.; Kulbat-Warycha, K.; Oracz, J.; Żyżelewicz, K. Polyphenols and Other Bioactive Compounds of Sideritis Plants and Their Potential Biological Activity. Molecules 2020, 25, 3763. [Google Scholar] [CrossRef] [PubMed]
- Aneva, I.; Zhelev, P.; Kozuharova, E.; Danova, K.; Nabavi, S.F.; Behzad, S. Genus Sideritis section Empedoclia in southeastern Europe and Turkey – studies in ethnopharmacology and recent progress of biological activities. DARU J. Pharm. Sci. 2019, 27, 407–421. [Google Scholar] [CrossRef] [PubMed]
- González-Burgos, E.; Carretero, M.E.; Gómez-Serranillos, M.P. Sideritis spp.: Uses, chemical composition and pharmacological activities—A review. J. Ethnopharmacol. 2011, 135, 209–225. [Google Scholar] [CrossRef] [PubMed]
- Stanoeva, J.P.; Stefova, M.; Stefkov, G.; Kulevanova, S.; Alipieva, K.; Bankova, V.; Aneva, I.; Evstatieva, L.N. Chemotaxonomic contribution to the Sideritis species dilemma on the Balkans. Biochem Syst. Ecol. 2015, 61, 477–487. [Google Scholar] [CrossRef]
- Lytra, K.; Tomou, E.-M.; Chrysargyris, A.; Christofi, M.-D.; Miltiadous, P.; Tzortzakis, N.; Skaltsa, H. Bio-guided investigation of Sideritis cypria Post. methanol extract driven by in vitro antioxidant and cytotoxic assays. Chem. Biodivers. 2021, 18, e2000966. [Google Scholar] [CrossRef]
- Kırmızıbekmez, H.; Erdoğan, M.; Kúsz, N.; Karaca, N.; Erdem, U.; Demirci, F.; Hohmann, J. Secondary metabolites from the aerial parts of Sideritis germanicopolitana and their in vitro enzyme inhibitory activities. Nat. Prod. Res. 2019, 1–4. [Google Scholar] [CrossRef]
- Çarıkçı, S.; Kılıç, T.; Azizogl, A.; Topçu, G. Chemical constituents of two endemic Sideritis species from Turkey with antioxidant activity. Rec. Nat. Prod. 2012, 6, 101–109. [Google Scholar]
- Sagir, Z.O.; Carikci, S.; Kilic, T.; Goren, A.C. Metabolic profile and biological activity of Sideritis brevibracteata P. H. Davis endemic to Turkey. Int. J. Food Prop. 2017, 20, 2994–3005. [Google Scholar] [CrossRef] [Green Version]
- Reissig, J.L.; Storminger, J.L.; Leloir, L.F. A modified colorimetric method for the estimation of N-acetylamino sugars. J. Biol. Chem. 1955, 217, 959–966. [Google Scholar] [CrossRef]
- Yan, X.; Li, J.; Liu, Z.; Zheng, M.; Ge, H.; Xu, J. Enhancing Molecular Shape Comparison by Weighted Gaussian Functions. J. Chem. Inf. Model. 2013, 53, 1967–1978. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Jiang, H.; Li, H. SHAFTS: A Hybrid Approach for 3D Molecular Similarity Calculation. 1. Method and Assessment of Virtual Screening. J. Chem. Inf. Model. 2011, 51, 2372–2385. [Google Scholar] [CrossRef] [PubMed]
- Forli, S.; Huey, R.; Pique, M.E.; Sanner, M.F.; Goodsell, D.S.; Olson, A.J. Computational protein–ligand docking and virtual drug screening with the AutoDock suite. Nat. Protocols 2016, 11, 905–919. [Google Scholar] [CrossRef] [Green Version]
- Zeng, H.; Yang, R.; You, J.; Qu, L.; Sun, Y. Spectroscopic and Docking Studies on the Binding of Liquiritigenin with Hyaluronidase for Antiallergic Mechanism. Scientifica 2016, 2016, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Harder, E.; Damm, W.; Maple, J.R.; Wu, C.; Reboul, M.; Xiang, J.Y.; Wang, L.; Lupyan, D.; Dahlgren, M.K.; Knight, J.L.; et al. OPLS3: A Force Field Providing Broad Coverage of Drug-like Small Molecules and Proteins. J. Chem. Theory Comput. 2016, 12, 281–296. [Google Scholar] [CrossRef] [PubMed]
- Watts, K.S.; Dalal, P.; Murphy, R.B.; Sherman, W.; Friesner, R.A.; Shelley, J.C. ConfGen: A conformational search method for efficient generation of bioactive conformers. J. Chem. Inf. Model. 2010, 50, 534–546. [Google Scholar] [CrossRef] [PubMed]
- Sastry, G.M.; Adzhigirey, M.; Day, T.; Annabhimoju, R.; Sherman, W. Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments. J. Comput Aided Mol. Des. 2013, 27, 221–234. [Google Scholar] [CrossRef]
- Friesner, R.A.; Murphy, R.B.; Repasky, M.P.; Frye, L.L.; Greenwood, J.R.; Halgren, T.A.; Sanschagrin, P.C.; Mainz, D.T. Extra Precision Glide: Docking and Scoring Incorporating a Model of Hydrophobic Enclosure for Protein−Ligand Complexes. J. Med. Chem. 2006, 49, 6177–6196. [Google Scholar] [CrossRef] [Green Version]
δH (ppm) | Protons | Major Chemical Categories |
---|---|---|
8.00–6.21 | Aromatic | Flavonoids, Phenylethanoid glycosides, Lignans, Phenolic acids |
5.88–5.70 | Olefinic | Iridoids, cis-Phenylethanoid glycosides, Flavone cis-p-coumaroyl-glucosides |
5.50–3.12 | Methine, Methylene, Protons bonded to oxygen group | Iridoids, Lignans, Sugars |
2.80 | Benzylic methylene | Phenylethanoid glycosides |
1.98–2.06 | Methyl of acetyl groups | Iridoids, Flavonoids |
1.82–0.72 | Methyl | Diterpenes, Rhamnose |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tomou, E.-M.; Papaemmanouil, C.D.; Diamantis, D.A.; Kostagianni, A.D.; Chatzopoulou, P.; Mavromoustakos, T.; Tzakos, A.G.; Skaltsa, H. Anti-Ageing Potential of S. euboea Heldr. Phenolics. Molecules 2021, 26, 3151. https://doi.org/10.3390/molecules26113151
Tomou E-M, Papaemmanouil CD, Diamantis DA, Kostagianni AD, Chatzopoulou P, Mavromoustakos T, Tzakos AG, Skaltsa H. Anti-Ageing Potential of S. euboea Heldr. Phenolics. Molecules. 2021; 26(11):3151. https://doi.org/10.3390/molecules26113151
Chicago/Turabian StyleTomou, Ekaterina-Michaela, Christina D. Papaemmanouil, Dimitrios A. Diamantis, Androniki D. Kostagianni, Paschalina Chatzopoulou, Thomas Mavromoustakos, Andreas G. Tzakos, and Helen Skaltsa. 2021. "Anti-Ageing Potential of S. euboea Heldr. Phenolics" Molecules 26, no. 11: 3151. https://doi.org/10.3390/molecules26113151
APA StyleTomou, E. -M., Papaemmanouil, C. D., Diamantis, D. A., Kostagianni, A. D., Chatzopoulou, P., Mavromoustakos, T., Tzakos, A. G., & Skaltsa, H. (2021). Anti-Ageing Potential of S. euboea Heldr. Phenolics. Molecules, 26(11), 3151. https://doi.org/10.3390/molecules26113151