Comparison of Resveratrol Supplementation and Energy Restriction Effects on Sympathetic Nervous System Activity and Vascular Reactivity: A Randomized Clinical Trial
Abstract
:1. Introduction
2. Results
2.1. Baseline and Post-Intervention Data
2.2. Correlations between Changes (Δ = Post-Intervention—Baseline) of Vascular Reactivity, Plasma Noradrenaline, and Cardiometabolic Parameters
2.3. Cardiometabolic Variables and Plasma Noradrenaline Changes
3. Discussion
4. Materials and Methods
4.1. Participants and Study Design
4.2. Biochemical Analyses
4.3. Vascular Reactivity Test
4.4. Resveratrol Purity and Formulation Analysis
4.5. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Deanfield, J.E.; Halcox, J.P.; Rabelink, T.J. Endothelial function and dysfunction: Testing and clinical relevance. Circulation 2007, 115, 1285–1295. [Google Scholar] [CrossRef] [PubMed]
- Libby, P.; Buring, J.E.; Badimon, L.; Hansson, G.K.; Deanfield, J.; Bittencourt, M.S.; Tokgözoğlu, L.; Lewis, E.F. Atherosclerosis. Nat. Rev. Dis. Prim. 2019, 5, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Neunteufl, T.; Heher, S.; Katzenschlager, R.; Wölfl, G.; Kostner, K.; Maurer, G.; Weidinger, F. Late prognostic value of flow-mediated dilation in the brachial artery of patients with chest pain. Am. J. Cardiol. 2000, 86, 207–210. [Google Scholar] [CrossRef]
- Lind, L.; Fors, N.; Hall, J.; Marttala, K.; Stenborg, A. A comparison of three different methods to evaluate endothelium-dependent vasodilation in the elderly: The prospective investigation of the vasculature in Uppsala seniors (PIVUS) study. Arterioscler. Thromb. Vasc. Biol. 2005, 25, 2368–2375. [Google Scholar] [CrossRef] [Green Version]
- Lind, L. Relationships between three different tests to evaluate endothelium-dependent vasodilation and cardiovascular risk in a middle-aged sample. J. Hypertens. 2013, 31, 1570–1574. [Google Scholar] [CrossRef]
- Chan, N.N.; Colhoun, H.M.; Vallance, P. Cardiovascular risk factors as determinants of endothelium-dependent and endothelium-independent vascular reactivity in the general population. J. Am. Coll. Cardiol. 2001, 38, 1814–1820. [Google Scholar] [CrossRef] [Green Version]
- Hijmering, M.L.; Stroes, E.S.G.; Olijhoek, J.; Hutten, B.A.; Blankestijn, P.J.; Rabelink, T.J. Sympathetic activation markedly reduces endothelium-dependent, flow-mediated vasodilation. J. Am. Coll. Cardiol. 2002, 39, 683–688. [Google Scholar] [CrossRef] [Green Version]
- Santulli, G.; Iaccarino, G. Adrenergic signaling in heart failure and cardiovascular aging. Maturitas 2016, 93, 65–72. [Google Scholar] [CrossRef] [Green Version]
- De Lucia, C.; Piedepalumbo, M.; Paolisso, G.; Koch, W.J. Sympathetic nervous system in age-related cardiovascular dysfunction: Pathophysiology and therapeutic perspective. Int. J. Biochem. Cell Biol. 2019, 108, 29–33. [Google Scholar] [CrossRef]
- Esler, M.D.; Hasking, G.J.; Willett, I.R.; Leonard, P.W.; Jennings, G.L. Noradrenaline release and sympathetic nervous system activity. J. Hypertens. 1985, 3, 117–129. [Google Scholar] [CrossRef]
- Ziegler, M.G.; Lake, C.R.; Kopin, I.J. Plasma noradrenaline increases with age. Nature 1976, 261, 333–335. [Google Scholar] [CrossRef]
- Emdin, M.; Gastaldelli, A.; Muscelli, E.; Macerata, A.; Natali, A.; Camastra, S.; Ferrannini, E. Hyperinsulinemia and autonomic nervous system dysfunction in obesity: Effects of weight loss. Circulation 2001, 103, 513–519. [Google Scholar] [CrossRef] [Green Version]
- Cohn, J.N.; Levine, T.B.; Olivari, M.T.; Garberg, V.; Lura, D.; Francis, G.S.; Simon, A.B.; Rector, T. Plasma norepinephrine as a guide to prognosis in patients with chronic congestive heart failure. N. Engl. J. Med. 1984, 311, 819–823. [Google Scholar] [CrossRef] [Green Version]
- Zbroch, E.; Musialowska, D.; Koc-Zorawska, E.; Malyszko, J. Age influence on renalase and catecholamines concentration in hypertensive patients, including maintained dialysis. Clin. Interv. Aging 2016, 11, 1545–1550. [Google Scholar] [CrossRef] [Green Version]
- Atsumi, W.; Tani, S.; Tachibana, E.; Hirayama, A. Combined evaluation of the plasma arginine vasopressin and noradrenaline levels may be a useful predictor of the prognosis of patients with acute decompensated heart failure. Int. Heart J. 2018, 59, 791–801. [Google Scholar] [CrossRef] [Green Version]
- Yufu, K.; Okada, N.; Ebata, Y.; Murozono, Y.; Shinohara, T.; Nakagawa, M.; Takahashi, N. Plasma norepinephrine is an independent predictor of adverse cerebral and cardiovascular events in type 2 diabetic patients without structural heart disease. J. Cardiol. 2014, 64, 225–230. [Google Scholar] [CrossRef] [Green Version]
- Zoccali, C.; Mallamaci, F.; Parlongo, S.; Cutrupi, S.; Benedetto, F.A.; Tripepi, G.; Bonanno, G.; Rapisarda, F.; Fatuzzo, P.; Seminara, G.; et al. Plasma norepinephrine predicts survival and incident cardiovascular events in patients with end-stage renal disease. Circulation 2002, 105, 1354–1359. [Google Scholar] [CrossRef] [Green Version]
- Park, C.S.; Lee, H.Y. Clinical utility of sympathetic blockade in cardiovascular disease management. Expert Rev. Cardiovasc. Ther. 2017, 15, 277–288. [Google Scholar] [CrossRef]
- Thorp, A.A.; Schlaich, M.P. Relevance of sympathetic nervous system activation in obesity and metabolic syndrome. J. Diabetes Res. 2015, 2015. [Google Scholar] [CrossRef] [Green Version]
- Bonnefont-Rousselot, D. Resveratrol and cardiovascular diseases. Nutrients 2016, 8, 250. [Google Scholar] [CrossRef]
- Ma, H.J.; Cao, Y.K.; Liu, Y.X.; Wang, R.; Wu, Y.M. Microinjection of resveratrol into rostral ventrolateral medulla decreases sympathetic vasomotor tone through nitric oxide and intracellular Ca 2+ in anesthetized male rats. Acta Pharmacol. Sin. 2008, 29, 906–912. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gentile, C.L.; Orr, J.S.; Davy, B.M.; Davy, K.P. Modest weight gain is associated with sympathetic neural activation in nonobese humans. Am. J. Physiol. Integr. Comp. Physiol. 2007, 292, R1834–R1838. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Masuo, K.; Mikami, H.; Ogihara, T.; Tuck, M.L. Weight gain-induced blood pressure elevation. Hypertension 2000, 35, 1135–1140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Masuo, K.; Kawaguchi, H.; Mikami, H.; Ogihara, T.; Tuck, M.L. Serum uric acid and plasma norepinephrine concentrations predict subsequent weight gain and blood pressure elevation. Hypertension 2003, 42, 474–480. [Google Scholar] [CrossRef]
- Masuo, K.; Rakugi, H.; Ogihara, T.; Lambert, G.W. Different mechanisms in weight loss-induced blood pressure reduction between a calorie-restricted diet and exercise. Hypertens. Res. 2012, 35, 41–47. [Google Scholar] [CrossRef] [Green Version]
- Straznicky, N.E.; Lambert, E.A.; Nestel, P.J.; McGrane, M.T.; Dawood, T.; Schlaich, M.P.; Masuo, K.; Eikelis, N.; De Courten, B.; Mariani, J.A.; et al. Sympathetic neural adaptation to hypocaloric diet with or without exercise training in obese metabolic syndrome subjects. Diabetes 2010, 59, 71–79. [Google Scholar] [CrossRef] [Green Version]
- Straznicky, N.E.; Lambert, E.A.; Lambert, G.W.; Masuo, K.; Esler, M.D.; Nestel, P.J. Effects of Dietary Weight Loss on Sympathetic Activity and Cardiac Risk Factors Associated with the Metabolic Syndrome. J. Clin. Endocrinol. Metab. 2005, 90, 5998–6005. [Google Scholar] [CrossRef]
- Alvarez, G.E.; Beske, S.D.; Ballard, T.P.; Davy, K.P. Sympathetic neural activation in visceral obesity. Circulation 2002, 106, 2533–2536. [Google Scholar] [CrossRef] [Green Version]
- Jones, P.P.; Davy, K.P.; Seals, D.R. Relations of total and abdominal adiposity to muscle sympathetic nerve activity in healthy older males. Int. J. Obes. 1997, 21, 1053–1057. [Google Scholar] [CrossRef] [Green Version]
- Kudchodkar, B.J.; Sodhi, H.S.; Mason, D.T.; Borhani, N.O. Effects of acute caloric restriction on cholesterol metabolism in man. Am. J. Clin. Nutr. 1977, 30, 1135–1146. [Google Scholar] [CrossRef] [Green Version]
- Simonen, P.; Gylling, H.; Miettinen, T.A. Acute effects of weight reduction on cholesterol metabolism in obese type 2 diabetes. Clin. Chim. Acta 2002, 316, 55–61. [Google Scholar] [CrossRef]
- Szramka, M.; Harriss, L.; Ninnio, D.; Windebank, E.; Brack, J.; Skiba, M.; Krum, H. The effect of rapid lipid lowering with atorvastatin on autonomic parameters in patients with coronary artery disease. Int. J. Cardiol. 2007, 117, 287–291. [Google Scholar] [CrossRef]
- Lewandowski, J.; Siński, M.; Bidiuk, J.; Abramczyk, P.; Dobosiewicz, A.; Ciarka, A.; Gaciong, Z. Simvastatin reduces sympathetic activity in men with hypertension and hypercholesterolemia. Hypertens. Res. 2010, 33, 1038–1043. [Google Scholar] [CrossRef]
- Grassi, G.; Biffi, A.; Seravalle, G.; Trevano, F.Q.; Dell’oro, R.; Corrao, G.; Mancia, G. Sympathetic neural overdrive in the obese and overweight state: Meta-analysis of published studies. Hypertension 2019, 74, 349–358. [Google Scholar] [CrossRef]
- Banks, W.A.; Farr, S.A.; Salameh, T.S.; Niehoff, M.L.; Rhea, E.M.; Morley, J.E.; Hanson, A.J.; Hansen, K.M.; Craft, S. Triglycerides cross the blood-brain barrier and induce central leptin and insulin receptor resistance. Int. J. Obes. 2018, 42, 391–397. [Google Scholar] [CrossRef] [Green Version]
- Shinohara, Y.; Toyohira, Y.; Ueno, S.; Liu, M.; Tsutsui, M.; Yanagihara, N. Effects of resveratrol, a grape polyphenol, on catecholamine secretion and synthesis in cultured bovine adrenal medullary cells. Biochem. Pharmacol. 2007, 74, 1608–1618. [Google Scholar] [CrossRef]
- Xin, P.; Pan, Y.; Zhu, W.; Huang, S.; Wei, M.; Chen, C. Favorable effects of resveratrol on sympathetic neural remodeling in rats following myocardial infarction. Eur. J. Pharmacol. 2010, 649, 293–300. [Google Scholar] [CrossRef]
- Thandapilly, S.J.; Louis, X.L.; Yang, T.; Stringer, D.M.; Yu, L.; Zhang, S.; Wigle, J.; Kardami, E.; Zahradka, P.; Taylor, C.; et al. Resveratrol prevents norepinephrine induced hypertrophy in adult rat cardiomyocytes, by activating NO-AMPK pathway. Eur. J. Pharmacol. 2011, 668, 217–224. [Google Scholar] [CrossRef]
- Göçmen, A.Y.; Burgucu, D.; Gümüşlü, S. Effect of resveratrol on platelet activation in hypercholesterolemic rats: CD40-CD40l system as a potential target. Appl. Physiol. Nutr. Metab. 2011, 36, 323–330. [Google Scholar] [CrossRef]
- Haghighatdoost, F.; Hariri, M. Effect of resveratrol on lipid profile: An updated systematic review and meta-analysis on randomized clinical trials. Pharmacol. Res. 2018, 129, 141–150. [Google Scholar] [CrossRef]
- Zhao, H.; Song, A.; Zhang, Y.; Shu, L.; Song, G.; Ma, H. Effect of Resveratrol on Blood Lipid Levels in Patients with Type 2 Diabetes: A Systematic Review and Meta-Analysis. Obesity 2019, 27, 94–102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berrougui, H.; Grenier, G.; Loued, S.; Drouin, G.; Khalil, A. A new insight into resveratrol as an atheroprotective compound: Inhibition of lipid peroxidation and enhancement of cholesterol efflux. Atherosclerosis 2009, 207, 420–427. [Google Scholar] [CrossRef] [PubMed]
- Roggerio, A.; Strunz, C.; Pacanaro, A.; Leal, D.; Takada, J.; Avakian, S.; Mansur, A. Gene Expression of Sirtuin-1 and Endogenous Secretory Receptor for Advanced Glycation End Products in Healthy and Slightly Overweight Subjects after Caloric Restriction and Resveratrol Administration. Nutrients 2018, 10, 937. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdollahi, S.; Salehi-Abargouei, A.; Toupchian, O.; Sheikhha, M.H.; Fallahzadeh, H.; Rahmanian, M.; Tabatabaie, M.; Mozaffari-Khosravi, H. The Effect of Resveratrol Supplementation on Cardio-Metabolic Risk Factors in Patients with Type 2 Diabetes: A Randomized, Double-Blind Controlled Trial. Phyther. Res. 2019, 33, 3153–3162. [Google Scholar] [CrossRef]
- Asgary, S.; Karimi, R.; Momtaz, S.; Naseri, R.; Farzaei, M.H. Effect of resveratrol on metabolic syndrome components: A systematic review and meta-analysis. Rev. Endocr. Metab. Disord. 2019, 20, 173–186. [Google Scholar] [CrossRef]
- Sahebkar, A.; Serban, C.; Ursoniu, S.; Wong, N.D.; Muntner, P.; Graham, I.M.; Mikhailidis, D.P.; Rizzo, M.; Rysz, J.; Sperling, L.S.; et al. Lack of efficacy of resveratrol on C-reactive protein and selected cardiovascular risk factors—Results from a systematic review and meta-analysis of randomized controlled trials. Int. J. Cardiol. 2015, 189, 47–55. [Google Scholar] [CrossRef]
- Redman, L.M. Little evidence of systemic and adipose tissue inflammation in overweight individuals. Front. Genet. 2012, 3, 58. [Google Scholar] [CrossRef] [Green Version]
- Kaplon, R.E.; Walker, A.E.; Seals, D.R. Plasma norepinephrine is an independent predictor of vascular endothelial function with aging in healthy women. J. Appl. Physiol. 2011, 111, 1416–1421. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, M.; Sugawara, S.; Arakawa, N.; Nagano, M.; Shizuka, T.; Shimoda, Y.; Sakai, T.; Hiramori, K. Reduced vascular compliance is associated with impaired endothelium-dependent dilatation in the brachial artery of patients with congestive heart failure. J. Card. Fail. 2004, 10, 36–42. [Google Scholar] [CrossRef]
- Higashi, Y.; Sasaki, S.; Nakagawa, K.; Kimura, M.; Sasaki, S.; Noma, K.; Matsuura, H.; Hara, K.; Goto, C.; Oshima, T.; et al. Excess norepinephrine impairs both endothelium-dependent and -independent vasodilation in patients with pheochromocytoma. Hypertension 2002, 39, 513–518. [Google Scholar] [CrossRef] [Green Version]
- Romero, T.R.L.; Guzzo, L.S.; Perez, A.C.; Klein, A.; Duarte, I.D.G. Noradrenaline activates the NO/cGMP/ATP-sensitive K + channels pathway to induce peripheral antinociception in rats. Nitric Oxide Biol. Chem. 2012, 26, 157–161. [Google Scholar] [CrossRef]
- Akbari, M.; Tamtaji, O.R.; Lankarani, K.B.; Tabrizi, R.; Dadgostar, E.; Kolahdooz, F.; Jamilian, M.; Mirzaei, H.; Asemi, Z. The effects of resveratrol supplementation on endothelial function and blood pressures among patients with metabolic syndrome and related disorders: A systematic review and meta-analysis of randomized controlled trials. High Blood Press. Cardiovasc. Prev. 2019, 26, 305–319. [Google Scholar] [CrossRef]
- Joris, P.J.; Plat, J.; Kusters, Y.H.A.M.; Houben, A.J.H.M.; Stehouwer, C.D.A.; Schalkwijk, C.G.; Mensink, R.P. Diet-induced weight loss improves not only cardiometabolic risk markers but also markers of vascular function: A randomized controlled trial in abdominally obese men. Am. J. Clin. Nutr. 2017, 105, 23–31. [Google Scholar] [CrossRef] [Green Version]
- Mavri, A.; Poredoš, P.; Šuran, D.; Gaborit, B.; Juhan-Vague, I.; Poredoš, P. Effect of diet-induced weight loss on endothelial dysfunction: Early improvement after the first week of dieting. Heart Vessel. 2011, 26, 31–38. [Google Scholar] [CrossRef]
- Joris, P.J.; Zeegers, M.P.; Mensink, R.P. Weight loss improves fasting flow-mediated vasodilation in adults: A meta-analysis of intervention studies. Atherosclerosis 2015, 239, 21–30. [Google Scholar] [CrossRef]
- Davies, C.L.; Molyneux, S.G. Routine determination of plasma catecholamines using reversed-phase, ion-pair high-performance liquid chromatography with electrochemical detection. J. Chromatogr. B Biomed. Sci. Appl. 1982, 231, 41–51. [Google Scholar] [CrossRef]
- Corretti, M.C.; Anderson, T.J.; Benjamin, E.J.; Celermajer, D.; Charbonneau, F.; Creager, M.A.; Deanfield, J.; Drexler, H.; Gerhard-Herman, M.; Herrington, D.; et al. Guidelines for the ultrasound assessment of endothelial-dependent flow-mediated vasodilation of the brachial artery: A report of the international brachial artery reactivity task force. J. Am. Coll. Cardiol. 2002, 39, 257–265. [Google Scholar] [CrossRef] [Green Version]
Resveratrol | p | Energy Restriction | p | |||
---|---|---|---|---|---|---|
Baseline | 30 days | Baseline | 30 days | |||
n = 24 | n = 24 | n = 24 | n = 24 | |||
Variables | Mean (SD) | Mean (SD) | Mean (SD) | Mean (SD) | ||
Age, y | 58.5 (3.4) | - | 58.6 (3.6) | - | ||
Body mass index, kg/m2 | 27.6 (4.2) | 27.8 (4.4) | 0.370 | 25.8 (3.2) | 25.5 (3.2) | 0.083 |
Waist circumference, cm | 96.8 (12.1) | 96.9 (11.4) | 0.457 | 94.2 (7.5) | 91.8 (7.1) | 0.011 |
Hear rate, bpm | 64.6 (8.5) | 65.7 (8.2) | 0.269 | 62.5 (9.6) | 62.3 (10.5) | 0.902 |
Systolic blood pressure, mmHg | 131.5 (15.5) | 129.0 (15.4) | 0.660 | 129.7 (15.6) | 124.2 (12.8) | 0.109 |
Diastolic blood pressure, mmHg | 81.2 (10.8) | 82.0 (9.2) | 0.612 | 82.9 (11.0) | 79.4 (9.9) | 0.070 |
Biochemical characteristics | ||||||
Total cholesterol, mg/dL | 207.71 (33.43) | 217.58 (44.99) | 0.030 | 216.21 (44.28) | 202.67 (39.73) | 0.007 |
HDL-c, mg/dL | 49.17 (13.85) | 48.17 (13.73) | 0.260 | 55.33 (18.52) | 52.00 (16.55) | 0.008 |
LDL-c, mg/dL | 132.33 (26.68) | 139.54 (40.53) | 0.089 | 138.67 (36.81) | 130.29 (33.37) | 0.031 |
Triglycerides, mg/dL | 124.04 (66.39) | 148.63 (93.00) | 0.075 | 111.21 (63.09) | 102.00 (61.01) | 0.233 |
Apoliproprotein A-I, g/L | 1.45 (0.21) | 1.44 (0.24) | 0.648 | 1.53 (0.27) | 1.43 (0.28) | 0.011 |
Apolipoprotein B, g/L | 0.98 (0.24) | 1.04 (0.27) | 0.034 | 1.01 (0.26) | 0.95 (0.26) | 0.057 |
Lp(a), mg/dL * | 10.87 (3.97–19.57) | 9.73 (3.06–16.40) | 0.688 | 11.95 (7.43–30.07) | 14.55 (8.98–27.47) | 0.463 |
Glucose, mg/dL | 96.04 (13.67) | 98.58 (14.26) | 0.153 | 93.63 (10.68) | 90.54 (5.89) | 0.119 |
Insulin, µUI/mL | 8.23 (5.48) | 8.47 (5.42) | 0.593 | 6.71 (4.37) | 6.02 (3.14) | 0.428 |
HOMA-IR | 2.06 (1.63) | 2.17 (1.75) | 0.422 | 1.59 (1.25) | 1.38 (0.75) | 0.307 |
NEFA, mEq/dL | 0.25 (0.15) | 0.24 (0.10) | 0.732 | 0.30 (0.37) | 0.20 (0.17) | 0.222 |
hs-CRP, mg/L * | 1.81 (0.94–2.34) | 1.46 (0.75–1.97) | 0.512 | 1.36 (0.94–1.92) | 1.18 (0.85–1.53) | 0.474 |
Noradrenaline, pg/dL | 269.33 (119.82) | 223.58 (93.75) | 0.065 | 347.50 (160.16) | 253.64 (171.08) | 0.008 |
Vascular reactivity | ||||||
Baseline artery diameter, mm | 4.31 (0.65) | 4.29 (0.64) | 0.776 | 4.42 (0.91) | 4.43 (0.98) | 0.833 |
ed-FMD, % | 3.26 (9.68) | 3.06 (5.04) | 0.940 | 3.41 (3.47) | 1.97 (6.40) | 0.395 |
ei-NMD, % | 17.25 (8.21) | 16.71 (6.89) | 0.785 | 17.06 (6.14) | 19.0 (8.81) | 0.151 |
Variables | Noradrenaline | WC | SBP | TC | HDL-c | LDL-c | TG * | ApoA-I | ApoB | NEFA | Glucose | HOMA-IR | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
All groups (n = 48) | |||||||||||||
Noradrenaline | r | 1.000 | 0.300 | 0.130 | 0.443 | 0.263 | 0.263 | 0.438 | 0.467 | 0.318 | −0.288 | 0.237 | 0.208 |
p | - | 0.060 | 0.405 | 0.002 | 0.077 | 0.078 | 0.002 | 0.001 | 0.032 | 0.058 | 0.112 | 0.166 | |
ed-FMD | r | 0.129 | 0.042 | 0.193 | 0.195 | 0.255 | 0.120 | −0.140 | 0.018 | 0.150 | −0.025 | −0.127 | −0.012 |
p | 0.446 | 0.821 | 0.253 | 0.249 | 0.127 | 0.481 | 0.445 | 0.916 | 0.374 | 0.885 | 0.454 | 0.946 | |
ei-NMD | r | 0.338 | −0.056 | −0.060 | 0.174 | 0.117 | 0.101 | 0.171 | 0.225 | 0.159 | −0.327 | 0.041 | 0.244 |
p | 0.041 | 0.766 | 0.723 | 0.303 | 0.491 | 0.551 | 0.310 | 0.180 | 0.347 | 0.055 | 0.808 | 0.146 | |
Resveratrol group (n = 24) | |||||||||||||
Noradrenaline | r | 1.000 | 0.514 | 0.006 | 0.377 | 0.399 | 0.128 | 0.494 | 0.508 | 0.218 | 0.020 | 0.420 | 0.166 |
p | - | 0.020 | 0.980 | 0.069 | 0.053 | 0.551 | 0.014 | 0.011 | 0.306 | 0.931 | 0.041 | 0.438 | |
ed-FMD | r | 0.006 | 0.125 | 0.180 | 0.211 | 0.373 | 0.171 | 0.135 | −0.112 | 0.265 | −0.049 | −0.048 | 0.326 |
p | 0.980 | 0.658 | 0.461 | 0.387 | 0.116 | 0.483 | 0.581 | 0.647 | 0.272 | 0.852 | 0.845 | 0.174 | |
ei-NMD | r | 0.336 | −0.122 | −0.132 | 0.389 | 0.354 | 0.157 | 0.435 | 0.469 | 0.307 | −0.012 | 0.390 | 0.561 |
p | 0.160 | 0.664 | 0.589 | 0.100 | 0.137 | 0.522 | 0.063 | 0.043 | 0.200 | 0.963 | 0.099 | 0.012 | |
Energy restriction group (n = 24) | |||||||||||||
Noradrenaline | r | 1.000 | 0.028 | 0.158 | 0.449 | 0.134 | 0.324 | 0.338 | 0.403 | 0.314 | −0.455 | 0.024 | 0.186 |
p | - | 0.907 | 0.482 | 0.036 | 0.552 | 0.141 | 0.124 | 0.063 | 0.155 | 0.033 | 0.917 | 0.408 | |
ed-FMD | r | 0.297 | −0.536 | 0.225 | 0.152 | 0.147 | −0.046 | 0.234 | 0.179 | −0.014 | −0.061 | −0.338 | −0.454 |
p | 0.231 | 0.033 | 0.368 | 0.547 | 0.559 | 0.855 | 0.350 | 0.478 | 0.955 | 0.810 | 0.170 | 0.058 | |
ei-NMD | r | 0.456 | −0.061 | 0.042 | 0.190 | 0.040 | 0.212 | −0.077 | 0.089 | 0.248 | −0.468 | −0.184 | 0.118 |
p | 0.057 | 0.822 | 0.869 | 0.451 | 0.875 | 0.398 | 0.763 | 0.724 | 0.322 | 0.050 | 0.466 | 0.640 |
Simple Model | Multivariate Model * | |||||||
---|---|---|---|---|---|---|---|---|
Noradrenaline | Noradrenaline | |||||||
Predictor Variables (Δ) | β | SE | OR | (95%CI) | β | SE | OR | (95%CI) |
ei-NMD, % | 0.189 | 0.074 | 1.208 | (1.044; 1.398) | 0.258 | 0.121 | 1.294 | (1.021; 1.640) |
Triglycerides, mg/dL | 0.022 | 0.010 | 1.022 | (1.003; 1.042) | 0.027 | 0.018 | 1.027 | (0.991; 1.065) |
Total cholesterol, mg/dL | 0.036 | 0.016 | 1.037 | (1.005; 1.069) | 0.026 | 0.025 | 1.026 | (0.977; 1.078) |
Waist circumference, cm | 0.011 | 0.023 | 1.011 | (0.966; 1.058) | 0.016 | 0.031 | 1.016 | (0.955; 1.081) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gonçalinho, G.H.F.; Roggerio, A.; Goes, M.F.d.S.; Avakian, S.D.; Leal, D.P.; Strunz, C.M.C.; Mansur, A.d.P. Comparison of Resveratrol Supplementation and Energy Restriction Effects on Sympathetic Nervous System Activity and Vascular Reactivity: A Randomized Clinical Trial. Molecules 2021, 26, 3168. https://doi.org/10.3390/molecules26113168
Gonçalinho GHF, Roggerio A, Goes MFdS, Avakian SD, Leal DP, Strunz CMC, Mansur AdP. Comparison of Resveratrol Supplementation and Energy Restriction Effects on Sympathetic Nervous System Activity and Vascular Reactivity: A Randomized Clinical Trial. Molecules. 2021; 26(11):3168. https://doi.org/10.3390/molecules26113168
Chicago/Turabian StyleGonçalinho, Gustavo Henrique Ferreira, Alessandra Roggerio, Marisa Fernandes da Silva Goes, Solange Desirée Avakian, Dalila Pinheiro Leal, Célia Maria Cassaro Strunz, and Antonio de Padua Mansur. 2021. "Comparison of Resveratrol Supplementation and Energy Restriction Effects on Sympathetic Nervous System Activity and Vascular Reactivity: A Randomized Clinical Trial" Molecules 26, no. 11: 3168. https://doi.org/10.3390/molecules26113168
APA StyleGonçalinho, G. H. F., Roggerio, A., Goes, M. F. d. S., Avakian, S. D., Leal, D. P., Strunz, C. M. C., & Mansur, A. d. P. (2021). Comparison of Resveratrol Supplementation and Energy Restriction Effects on Sympathetic Nervous System Activity and Vascular Reactivity: A Randomized Clinical Trial. Molecules, 26(11), 3168. https://doi.org/10.3390/molecules26113168