The Nitric Oxide (NO) Donor Sodium Nitroprusside (SNP) and Its Potential for the Schizophrenia Therapy: Lights and Shadows
Abstract
:1. Schizophrenia
2. Nitric oxide (NO)
3. NO and Schizophrenia
4. Sodium Nitroprusside (SNP)
5. SNP and Schizophrenia
5.1. Preclinical Studies
5.2. Clinical Studies
5.3. Potential Mechanism(s) of Action of SNP in Schizophrenia
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Freedman, R. Schizophrenia. N. Engl. J. Med. 2003, 349, 1738–1749. [Google Scholar] [CrossRef] [PubMed]
- Lewis, D.A.; Lieberman, J.A. Catching up on schizophrenia: Natural history and neurobiology. Neuron 2000, 28, 325–334. [Google Scholar] [CrossRef] [Green Version]
- Van Os, J.; Kenis, G.; Rutten, B.P. The environment and schizophrenia. Nature 2010, 468, 203–212. [Google Scholar] [CrossRef] [PubMed]
- Weinberger, D.R. Implications of normal brain development for the pathogenesis of schizophrenia. Arch. Gen. Psychiatry 1987, 44, 660–669. [Google Scholar] [CrossRef]
- Bitanihirwe, B.K.; Woo, T.U. Oxidative stress in schizophrenia: An integrated approach. Neurosci. Biobehav. Rev. 2011, 35, 878–893. [Google Scholar] [CrossRef] [Green Version]
- Steeds, H.; Carhart-Harris, R.L.; Stone, J.M. Drug models of schizophrenia. Ther. Adv. Psychopharmacol. 2015, 5, 43–58. [Google Scholar] [CrossRef] [Green Version]
- Javitt, D.C. Glutamate and schizophrenia: Phencyclidine, N-methyl-D-aspartate receptors, and dopamine-glutamate interactions. Int. Rev. Neurobiol. 2007, 78, 69–108. [Google Scholar]
- Pratt, J.; Winchester, C.; Dawson, N.; Morris, B. Advancing schizophrenia drug discovery: Optimizing rodent models to bridge the translational gap. Nat. Rev. Drug Discov. 2012, 11, 560–579. [Google Scholar] [CrossRef]
- Lewis, D.A.; Pierri, J.; Volk, D.; Melchitzky, D.; Woo, T. Altered GABA neurotransmission and prefrontal cortical dysfunction in schizophrenia. Biol. Psychiatry 1999, 46, 616–626. [Google Scholar] [CrossRef]
- Field, J.R.; Walker, A.G.; Conn, P.J. Targeting glutamate synapses in schizophrenia. Trends Mol. Med. 2011, 17, 689–698. [Google Scholar] [CrossRef] [Green Version]
- Abbott, A. Schizophrenia: The drug deadlook. Nature 2010, 468, 158–159. [Google Scholar] [CrossRef] [Green Version]
- Garthwaite, J.; Charles, S.L.; Chess-Williams, R. Endothelium-derived relaxing factor release on activation of NMDA receptors suggests a role as intercellular messenger in the brain. Nature 1988, 336, 385–387. [Google Scholar] [CrossRef]
- Knowles, R.G.; Moncada, S. Nitric oxide synthases in mammals. Biochem. J. 1994, 298, 249–258. [Google Scholar] [CrossRef] [PubMed]
- Arnold, W.P.; Mittal, C.K.; Katsuki, S.; Murad, F. Nitric oxide activates guanylate cyclase and increases guanosine 3′5′-cyclic monophosphate levels in various tissue preparations. Proc. Natl. Acad. Sci. USA 1977, 74, 3203–3207. [Google Scholar] [CrossRef] [Green Version]
- Kleppisch, T. Phosphodiesterases in the central nervous system. Hand. Exp. Pharmacol. 2009, 191, 71–92. [Google Scholar]
- Socco, S.; Bovee, R.H.; Palczewski, M.B.; Hickok, J.R.; Thomas, D.D. Epigenetics: The third pillar of nitric oxide signaling. Pharmacol. Res. 2017, 121, 52–58. [Google Scholar] [CrossRef]
- Oh, S.J.; Fan, X. Current understanding on the role of nitric oxide and therapeutic potential of NO supplementation in schizophrenia. Schizophr. Res. 2020, 222, 23–30. [Google Scholar] [CrossRef]
- Hibbs, J.B., Jr.; Taintor, R.R.; Vavrin, Z.; Rachlin, E.M. Nitric oxide a cytotoxic activated macrophage effector molecule. Biochem. Biophys. Res. Commun. 1988, 157, 87–94. [Google Scholar] [CrossRef]
- Palmer, R.M.; Ferrige, A.G.; Moncada, S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 1987, 327, 524–526. [Google Scholar] [CrossRef]
- Prast, H.; Philippu, A. Nitric oxide as modulator of neuronal function. Prog. Neurobiol. 2001, 64, 51–68. [Google Scholar] [CrossRef]
- Pitsikas, N. The role of nitric oxide in the object recognition memory. Behav. Brain Res. 2015, 285, 200–207. [Google Scholar] [CrossRef] [PubMed]
- Lonart, G.; Wang, J.; Johnson, K.M. Nitric oxide induces neurotransmitter release from the hippocampal slices. Eur. J. Pharmacol. 1992, 220, 271–272. [Google Scholar] [CrossRef]
- West., A.R.; Galloway, M.P.; Grace, A.A. Regulation of striatal dopamine neurotransmission by nitric oxide: Effector pathways and signalling mechanisms. Synapse 2002, 44, 227–245. [Google Scholar] [CrossRef] [PubMed]
- Trabace, L.; Cassano, T.; Tucci, P.; Steardo, L.; Kendrick, K.M.; Cuomo, V. The effects of nitric oxide on striatal serotoninergic transmission involve multiple targets: An in vivo microdialysis study in the awake rat. Brain Res. 2004, 1008, 293–298. [Google Scholar] [CrossRef]
- Calabrese, V.; Mancuso, C.; Calvani, M.; Rizzarelli, E.; Butterfield, D.A.; Stella, A.M. Nitric oxide in the central nervous system: Neuroprotection versus neurotoxicity. Nat. Rev. Neurosci. 2007, 8, 766–775. [Google Scholar] [CrossRef]
- Bernstein, H.G.; Bogerts, B.; Keilhoff, G. The many faces of nitric oxide in schizophrenia. A review. Schizophr. Res. 2005, 78, 69–86. [Google Scholar] [CrossRef]
- Bernstein, H.G.; Keilhoff, G.; Steiner, J.; Dobrowonly, H.; Bogerts, B. Nitric oxide and schizophrenia. Present knowledge and emerging concepts of therapy. CNS Neurol. Disord. Drug Targets 2011, 10, 792–807. [Google Scholar] [CrossRef]
- Reif, A.; Herterich, S.; Strobel, A.; Ehlis, A.C.; Saur, D.; Jacob, C.P.; Wienker, T.; Topner, T.; Fritzen, S.; Walter, U.; et al. A neuronal nitric oxide (NOS-1) haplotype associated with schizophrenia modifies prefrontal cortex function. Mol. Psychiatry 2006, 11, 286–300. [Google Scholar] [CrossRef] [Green Version]
- Akbarian, S.; Bunney, W.E.; Potkin, S.G.; Wigal, S.B.; Hagman, J.O.; Sandman, C.A.; Jones, E.G. Altered distribution of nicotinamide-adenine dinucleotide phosphate-diaphorase cells in frontal lobe of schizophrenics implies disturbances of cortical development. Arch. Gen. Psychiatry 1993, 50, 169–177. [Google Scholar] [CrossRef]
- Lauer, M.; Johannes, S.; Fritzen, S.; Senitz, D.; Riederer, P.; Reif, A. Morphological abnormalities in nitric-oxide-synthase-positive striatal interneurons of schizophrenic patients. Neuropsychobiology 2005, 52, 111–117. [Google Scholar] [CrossRef]
- Bernstein, H.G.; Stanarius, A.; Baumann, B.; Henning, H.; Krell, D.; Danos, P.; Falkai, P.; Bogerts, B. Nitric oxide synthase-containing neurons in the human hypothalamus: Reduced number of immunoreactive cells in the paraventricular nucleus of depressed patients and schizophrenics. Neuroscience 1998, 83, 867–875. [Google Scholar] [CrossRef]
- Xing, G.; Chavko, M.; Zhang, L.X.; Yang, S.; Post, R.M. Decreased calcium-dependent constitutive nitric oxide synthase (eNOS) activity in prefrontal cortex in schizophrenia and depression. Schizophr. Res. 2002, 58, 21–30. [Google Scholar] [CrossRef]
- Suzuki, E.; Nakaki, T.; Nakamura, M.; Miyaoka, H. Plasma nitrite levels in deficit versus non-deficit forms of schizophrenia. J. Psychiatry Neurosci. 2003, 28, 288–292. [Google Scholar]
- Lee, B.H.; Kim, Y.K. Reduced plasma nitric oxide metabolites before and after antipsychotic treatment in patients with schizophrenia compared to controls. Schizophr. Res. 2008, 104, 36–43. [Google Scholar] [CrossRef]
- Nakano, Y.; Yoshimura, R.; Nakano, H.; Ikenouchi-Sugita, A.; Hori, H.; Umene-Nakano, W.; Ueda, N.; Nakamura, J. Association between plasma nitric oxide metabolites levels and negative symptoms of schizophrenia: A pilot study. Hum. Psychopharmacol. 2010, 20, 139–144. [Google Scholar] [CrossRef]
- Das, I.; Khan, N.S.; Puri, B.K.; Hirsch, S.R. Elevated endogenous nitric oxide synthase inhibitor in schizophrenic plasma may reflect abnormalities in brain nitric oxide production. Neurosci. Lett. 1996, 215, 209–211. [Google Scholar] [CrossRef]
- Das, I.; Ramchand, C.N.; Gliddon, A.; Hirsch, S.R. Nitric oxide, free radicals and polyamines may have a role in membrane pathology of schizophrenia. Neuropsychobiology 1998, 37, 65–67. [Google Scholar] [CrossRef]
- Ramirez, J.; Garnica, R.; Boll, M.C.; Montes, S.; Rios, C. Low concentrations of nitrite and nitrate in the cerebrospinal fluid from schizophrenic patients. Schizophr. Res. 2004, 68, 357–361. [Google Scholar] [CrossRef]
- Eastwood, S.L.; Harrison, P.J. Interstitial white matter neurons express less reelin and are abnormally distributed in schizophrenia: Towards an integration of molecular and morphologic aspects of the neurodevelopmental hypothesis. Mol. Psychiatry 2003, 8, 821–831. [Google Scholar] [CrossRef]
- Benes, F.M.; Berretta, S. GABAergic interneurons: Implications for understanding schizophrenia and bipolar disorder. Neuropsychopharmacology 2001, 25, 1–27. [Google Scholar] [CrossRef]
- Connor, C.M.; Guo, Y.; Akbarian, S. Cingulate white matter neurons in schizophrenia and bipolar disorder. Biol. Psychiatry 2009, 66, 486–493. [Google Scholar] [CrossRef] [Green Version]
- Miller, M.R.; Megson, I.L. Recent development in nitric oxide donor drugs. Br. J. Pharmacol. 2007, 151, 305–321. [Google Scholar] [CrossRef] [Green Version]
- Scatena, R.; Bottoni, P.; Pontoglio, A.; Giardina, P. Pharmacological modulation of nitric oxide release: New pharmacological perspectives, potential benefits and risks. Curr. Med. Chem. 2010, 17, 61–73. [Google Scholar] [CrossRef]
- Godinez-Rubi, M.; Rojas-Mayorquin, A.E.; Ortuno-Sahagun, D. Nitric oxide donors as neuroprotective agents after an ischemic stroke-related inflammatory reaction. Oxid. Med. Cell. Longev. 2013, 97357. [Google Scholar] [CrossRef]
- Wiley, J.L.; Golden, K.M.; Bowen, S.E. Effects of modulation of nitric oxide on acoustic startle responding and prepulse inhibition in rats. Eur. J. Pharmacol. 1997, 328, 125–130. [Google Scholar] [CrossRef]
- Bujas-Bobanovic, M.; Bird, D.C.; Robertson, H.A.; Dursun, S.M. Blockade of phencyclidine-induced effects by a nitric oxide donor. Br. J. Pharmacol. 2000, 130, 1005–1012. [Google Scholar] [CrossRef]
- Gourgiotis, I.; Kampouri, N.; Koulouri, V.; Lempesis, I.; Prasinou, M.; Georgiadou, G.; Pitsikas, N. Nitric oxide modulates apomorphine-induced recognition memory deficits in rats. Pharmacol. Biochem. Behav. 2012, 102, 507–514. [Google Scholar] [CrossRef]
- Issy, A.C.; Pedrazzi, J.F.C.; Yoneyama, B.H.; Del Bel, E.A. Critical role of nitric oxide in the modulation of prepulse inhibition in Swiss mice. Psychopharmacology 2014, 231, 663–672. [Google Scholar] [CrossRef]
- Maja-de-Oliveira, J.P.; Lobao-Soares, B.; Ramalho, T.; Gavioli, E.C.; Soares, V.P.; Teixeira, L.; Baker, G.B.; Dusun, M.S.; Hallak, J.C.E. Nitroprusside single-dose prevents the psychosis-like behavior induced by ketamine in rats up to one week. Schizophr. Res. 2015, 162, 211–215. [Google Scholar] [CrossRef]
- Kandratavicius, L.; Balista, P.A.; Wolf, D.C.; Abrao, J.; Evora, P.R.; Rodriguez, A.J.; Chaves, C.; Maia-de-Oliveira, J.P.; Leite, J.P.; Dursun, S.M.; et al. Effects of the nitric oxide-related compounds in the acute ketamine animal model of schizophrenia. BMC Neurosci. 2015, 16, 9. [Google Scholar] [CrossRef] [Green Version]
- Trevlopoulou, A.; Touzlatzi, N.; Pitsikas, N. The nitric oxide donor sodium nitroprusside attenuates recognition memory deficits and social withdrawal produced by the NMDA receptor antagonist ketamine and induces anxiolytic-like behaviour in rats. Psychopharmacology 2016, 233, 1045–1054. [Google Scholar] [CrossRef] [PubMed]
- Hurtubise, J.L.; Marks, D.N.; Davies, D.A.; Catton, J.K.; Baker, G.B.; Howland, J.G. MK-801-induced impairments on the trial-unique, delayed nonmatching-to-location task in rats: Effects of acute sodium nitroprusside. Psychopharmacology 2017, 234, 211–222. [Google Scholar] [CrossRef] [PubMed]
- Diana, M.C.; Peres, F.F.; Justi, V.; Bressan, R.A.; Lacerda, A.L.T.; Crippa, J.A.; Hallak, J.C.E.; Costhek-Abilio, V. Sodium nitroprusside is effective in preventing and/or reversing the development of schizophrenia-related behaviors in an animal model: The SHR strain. CNS Neurosci. Ther. 2018, 24, 624–632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Issy, A.C.; dos Santos-Pereira, M.; Cordeiro-Pedrazzi, J.F.; Cussa-Kubrusly, R.C.; Del-Bel, E.A. The role of striatum and prefrontal cortex in the prevention of amphetamine-induced schizophrenia-like effects mediated by nitric oxide compounds. Prog. Neuropsychopharmacol. Biol. Psychiatry 2018, 86, 353–362. [Google Scholar] [CrossRef]
- Wang, X.; Ding, S.; Lu, Y.; Jiao, Z.; Zhang, L.; Zhang, Y.; Yang, Y.; Zhang, Y.; Li, D.; Lv, L. Effects of sodium nitroprusside in the acute dizolcipine (MK-801) animal model of schizophrenia. Brain Res. Bull. 2019, 147, 140–147. [Google Scholar] [CrossRef]
- Pitsikas, N. The role of nitric oxide synthase inhibitors in schizophrenia. Curr. Med. Chem. 2016, 23, 2692–2705. [Google Scholar] [CrossRef]
- Titulaer, J.; Malmerfelt, A.; Marcus, M.M.; Svensson, T.H. Enhancement of the antipsychotic effect of risperidone by sodium nitroprusside in rats. Eur. Neuropsychopharmacol. 2019, 29, 1282–1287. [Google Scholar] [CrossRef]
- Hallak, J.C.E.; Maia-De-Oliveira, J.P.; Abrao, J.; Evora, P.R.; Zuardi, A.W.; Crippa, J.E.; Belmonte-de Abreu, P.; Baker, G.B.; Dursun, S.M. Rapid improvement of acute schizophrenia symptoms after intravenous sodium nitroprusside. A randomized, double-blind, placebo-controlled trial. JAMA Psychiatry 2013, 70, 668–676. [Google Scholar] [CrossRef] [Green Version]
- Maja-de-Oliveira, J.P.; Abrao, J.; Evora, P.R.; Zuardi, A.W.; Crippa, J.A.; Belmonte-de-Abreu, P.; Baker, G.B.; Dursun, S.M.; Hallak, J.C.E. The effects of sodium nitroprusside treatment on cognitive deficits in schizophrenia: A pilot study. J. Clin. Psychopharmacol. 2015, 35, 83–85. [Google Scholar] [CrossRef]
- Stone, J.M.; Morrison, P.D.; Koychev, I.; Gao, F.; Reilly, T.J.; Kolanko, M.; Mohammadinasab, M.; Kapur, S.; McGuire, P.K. The effect of sodium nitroprusside on psychotic symptoms and spatial working memory in patients with schizophrenia: A randomized, double-blind, placebo-controlled trial. Psychol. Med. 2016, 46, 3443–3450. [Google Scholar] [CrossRef]
- Wang, X.; Zhao, J.; Hu, Y.; Jiao, Z.; Lu, Y.; Ding, M.; Kou, Y.; Li, B.; Meng, F.; Zhao, H.; et al. Sodium nitroprusside treatment for psychotic symptoms and cognitive deficits of schizophrenia. A randomized, double-blind, placebo-controlled trial. Psychiatry Res. 2018, 269, 271–277. [Google Scholar] [CrossRef]
- Brown, H.E.; Freudenreich, O.; Fan, X.; O’ Heard, S.; Goff, D.; Petrides, G.; Harrington, A.L.; Kane, J.M.; Judge, H.; Hoeppner, B.; et al. Efficacy and tolerability of adjunctive intravenous sodium nitroprusside treatment for outpatients with schizophrenia: A randomized clinical trial. JAMA Psychiatry 2019, 76, 691–699. [Google Scholar] [CrossRef]
- Adelino, M.P.M.; Nunes, M.V.; Nunes, M.F.Q.; Costa, E.R., Jr.; Ajub, E.; Mitrovich, M.P.B.; Ushirohira, J.M.; Quarantini, L.C.; Hallak, J.C.E.; Lacerda, A.L.T. Treatment-resistant schizophrenia-A RCT on the effectiveness of repeated-dose sodium nitroprusside. Schizophr. Res. 2021, 231, 70–72. [Google Scholar] [CrossRef]
- Kocygit, Y.; Yoca, G.; Karahan, S.; Ayhan, Y.; Yazici, M.K. L arginine add-on treatment for schizophrenia: A randomized, double-blind, placebo controlled, crossover study. Turk. Psychiatri. Derg. 2018, 29, 147–153. [Google Scholar] [CrossRef] [Green Version]
- Merritt, K.; Catalan, A.; Cowley, S.; Demjaha, A.; Taylor, M.; McGuire, P.; Cooper, R.; Morrison, P. Glyceryl trinitrate in first-episode psychosis unmedicated with antipsychotics: A randomized controlled pilot study. J. Psychopharmacol. 2020, 34, 839–847. [Google Scholar] [CrossRef]
- Guimaraes, T.M.; Guimaraes, M.R.C.; Oliveira, I.A.F.; Leoni, R.F.; Santos, A.C.; Dursun, S.M.; Crippa, J.A.S.; Bressan, R.A.; Machado-de-Sousa, J.P.; Lacerda, A.L.T.; et al. Mononitrate isosorbide as an adjunctive therapy in schizophrenia. J. Clin. Psychopharmacol. 2021, 41, 260–266. [Google Scholar] [CrossRef]
- Pinkham, A.; Loughead, J.; Ruparel, K.; Wu, W.C.; Overton, E.; Gur, R.; Gur, R. Resting quantitative cerebral blood flow in schizophrenia measured by pulsed arterial spin labeling perfusion MRI. Psychiatry Res. 2011, 194, 64–72. [Google Scholar] [CrossRef] [Green Version]
- Keilhoff, G.; Becker, A.; Grecksch, G.; Wolf, G.; Bernstein, H.G. Repeated application of ketamine to rats induces changes in the hippocampal expression of parvalbumin, neuronal nitric oxide synthase and cFOS expression similar to those found in human schizophrenia. Neuroscience 2004, 126, 591–598. [Google Scholar] [CrossRef]
- Xu, T.X.; Sotnikova, T.D.; Liang, C.; Zhang, J.; Jung, J.U.; Spealman, R.D.; Gainetdinov, R.R.; Yao, W.D. Hyperdopaminergic tone erodes prefrontal long-term potential via a D2 receptor operated protein phosphatase gate. J. Neurosci. 2009, 29, 14086–14099. [Google Scholar] [CrossRef] [Green Version]
- Arroyo-Garcia, L.E.; Rodriguez-Moreno, A.; Flores, G. Apomorphine effects on hippocampus. Neural Regen. Res. 2018, 13, 2064–2066. [Google Scholar]
- Bohme, G.A.; Bon, C.; Stutzmann, J.M.; Doble, A.; Blanchard, J.C. Possible involvement of nitric oxide in long-term potentiation. Eur. J. Pharmacol. 1991, 199, 379–381. [Google Scholar] [CrossRef]
- de Oliveira, L.; Spiazzi, C.M.; Bortolin, T.; Canever, L.; Petronilho, F.; Mina, F.G.; Dal Pizzol, F.; Quevedo, J.; Zugno, A.I. Different sub-anesthetic doses of ketamine increase oxidative stress in the brain of rats. Prog. Neuropsychopharmacol. Biol. Psychiatry 2009, 33, 1003–1008. [Google Scholar] [CrossRef] [PubMed]
- Moreira, J.C.F.; Dal Pizzol, F.; Bonatto, F.; Gomez Da Silva, E.; Flores, D.G.; Picada, J.N.; Roesler, R.; Pegas Henriques, J.A. Oxidative damage in brains of mice treated with apomorphine and its oxidized derivative. Brain Res. 2003, 992, 246–251. [Google Scholar] [CrossRef] [PubMed]
- Contestabile, A.; Monti, B.; Contestabile, A.; Ciani, E. Brain nitric oxide and its dual effect in neuroprotection/neurodegeneration: Understanding molecular mechanisms to devise drug approaches. Curr. Med. Chem. 2003, 10, 1241–1253. [Google Scholar] [CrossRef]
Species | Agent | Dose Range | Route | Behavioural Task | Effect | Reference |
---|---|---|---|---|---|---|
Rat | SNP | 0.3, 1, 3 mg/kg | i.p. acute | PPI | No effect | [45] |
Rat | SNP | 2, 6 mg/kg | i.p. acute | Activity cage | Reversed PCP-induced hypermotility, stereotypies, ataxia | [46] |
PCP | 5 mg/kg | i.p. acute | ||||
Rat | SNP | 0.3, 1 mg/kg | i.p. acute | ORT | Reversed apomorphine-induced recognition memory deficits | [47] |
Apomorphine | 1 mg/kg | i.p. acute | ||||
Mouse | SNP | 2.5 mg/kg | i.p. acute | PPI | Reversed amphetamine-induced attentional deficits | [48] |
Amphetamine | 10 mg/kg | i.p. acute | ||||
Mouse | SNP | 4 mg/kg | i.p. acute | OFT | Prevented ketamine-induced hypermotility and stereotypies | [49] |
Ketamine | 25 mg/kg | i.p. acute | ||||
Rat | SNP | 5 mg/kg | i.p. acute | ORT | Impaired STM but counteracted ketamine-induced LTM deficits | [50] |
Ketamine | 30 mg/kg | i.p. acute | OFT | Reversed ketamine-induced hypermotulity | ||
Rat | SNP | 0.3, 1 mg/kg | i.p. acute | ORT | Reversed ketamine-induced recognition memory deficits | [51] |
Ketamine | 3 mg/kg | i.p. acute | ||||
SNP | 1 mg/kg | i.p. acute | SIT | Reversed ketamine-induced social isolation | ||
Ketamine | 8 mg/kg | i.p. subchronic | ||||
Rat | SNP | 2, 5 mg/kg | i.p. acute | TUNLT | Ineffective on MK-801-induced memory deficits. | [52] |
MK-801 | 0.05, 0.1 mg/kg | i.p. acute | Minor effects on task accuracy and perseveration. | |||
SHR Rat | SNP | 0.5, 2.5 mg/kg | i.p. chronic | Activity cage | Attenuated hypermotility in the SHR rat | [53] |
SNP | 2.5 mg/kg | i.p. chronic | SIT | Attenuated social isolation in the SHR rat | ||
SNP | 0.5, 1, 2.5 mg/kg | i.p. chronic | CFCT | Reversed memory deficits in the SHR rat | ||
Mouse | SNP | 1 mg/kg | i.p. acute | PPI | Combination of subthresold doses of SNP and clozapine reversed amphetamine but no MK-801 induced attentional deficits | [54] |
Clozapine | 1 mg/kg | i.p. acute | amphetamine but not MK-801-induced attentional deficits | |||
Amphetamine | 5 mg/kg | i.p. acute | ||||
MK-801 | 0.5 mg/kg | i.p. acute | ||||
SNP | 2.5, 3.5, 4 mg/kg | i.p. acute | No effect | |||
MK-801 | 0.5 mg/kg | i.p. acute | ||||
Rat | SNP | 2.5 mg/kg | i.p. acute | OFT | Attenuated MK-801-induced hypermotility | [55] |
MK-801 | 0.4 mg/kg | i.p. acute | PPI | No effect | ||
Y-maze | No effect | |||||
Rat | SNP | 2.5 mg/kg | i.p. acute | CART | [57] | |
Risperidone | 0..25 mg/kg | i.p. acute | Combination of SNP and risperidone attenuated behavior avoidance behaviour |
Design of Study | Evaluation | Participants | Agent | Dose Range | Route Outcome Measure | Effect | Reference |
---|---|---|---|---|---|---|---|
Double-blind placebo-controlled | Just after infusion | 20 patients (19–40 years old) | SNP | 0.5 μg/min × 4 h | i.v. BPRS-18 PANSS | Effective and safe | [58] |
Double-blind placebo-controlled | Just after infusion | 18 patients | SNP | 0.5 μg/min × 4 h | i.v. Cognitive tests | Improvement of executive functions and safe | [59] |
Double-blind placebo-controlled | Just after infusion/four weeks later | 20 patients (18–60 years old) | SNP | 0.5 μg/min × 4 h | i.v. BPRS-18 PANSS CANTAB | Ineffective but safe | [60] |
Double-blind placebo-controlled | Just after the first and second infusion | 42 patients (18–45 years old) | SNP | 0.5 μg/min × 4 h (twice at one week interval) | i.v. PANSS Cognitive tests | Ineffective but safe | [61] |
Double-blind placebo-controlled | Just after infusion/one week later | 52 patients (18–65 years old) | SNP | 0.5 μg/min × 4 h | i.v. PANSS | Ineffective but safe | [62] |
Double-blind placebo-controlled | Just after infusion 4 follow up evaluations | 20 treatment-resistant patients (18–60 years old) | SNP | 0.5 μg/min × 4 h (four times) at 2 weeks of interval | i.v. PANSS BPRS-18 | Ineffective and safe | [63] |
Normalization of the functionality of the NMDA-nNOS-cGMP pathway |
Alleviation of cerebral hypoperfusion |
Normalization of the functionality of the glutamatergic and dopaminergic neurotransmission |
Potent antioxidant properties |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zoupa, E.; Pitsikas, N. The Nitric Oxide (NO) Donor Sodium Nitroprusside (SNP) and Its Potential for the Schizophrenia Therapy: Lights and Shadows. Molecules 2021, 26, 3196. https://doi.org/10.3390/molecules26113196
Zoupa E, Pitsikas N. The Nitric Oxide (NO) Donor Sodium Nitroprusside (SNP) and Its Potential for the Schizophrenia Therapy: Lights and Shadows. Molecules. 2021; 26(11):3196. https://doi.org/10.3390/molecules26113196
Chicago/Turabian StyleZoupa, Elli, and Nikolaos Pitsikas. 2021. "The Nitric Oxide (NO) Donor Sodium Nitroprusside (SNP) and Its Potential for the Schizophrenia Therapy: Lights and Shadows" Molecules 26, no. 11: 3196. https://doi.org/10.3390/molecules26113196
APA StyleZoupa, E., & Pitsikas, N. (2021). The Nitric Oxide (NO) Donor Sodium Nitroprusside (SNP) and Its Potential for the Schizophrenia Therapy: Lights and Shadows. Molecules, 26(11), 3196. https://doi.org/10.3390/molecules26113196