Template-Free Self-Assembly of Two-Dimensional Polymers into Nano/Microstructured Materials
Abstract
:1. Introduction
2. Polymer Capsules
3. Polymer Films
4. Polymer Tubes and Rings
5. Conclusions and Perspective
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Whitesides, G.M.; Grzybowski, B. Self-Assembly at All Scales. Science 2002, 295, 2418–2421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lehn, J.M. From Supramolecular Chemistry towards Constitutional Dynamic Chemistry. Chem. Soc. Rev. 2007, 36, 151–160. [Google Scholar] [CrossRef]
- Montis, R.; Fusaro, L.; Falqui, A.; Hursthouse, M.B.; Tumanov, N.; Coles, S.J.; Threlfall, T.L.; Horton, P.N.; Sougrat, R.; Lafontaine, A.; et al. Complex structures arising from the self-assembly of a simple organic salt. Nature 2021, 590, 275–278. [Google Scholar] [CrossRef]
- August, D.P.; Dryfe, R.A.W.; Haigh, S.J.; Kent, P.R.C.; Leigh, D.A.; Lemonnier, J.F.; Li, Z.; Muryn, C.A.; Palmer, L.I.; Song, Y.; et al. Self-assembly of a layered two-dimensional molecularly woven fabric. Nature 2020, 588, 429–435. [Google Scholar] [CrossRef] [PubMed]
- Datta, S.; Kato, Y.; Higashiharaguchi, S.; Aratsu, K.; Isobe, A.; Saito, T.; Prabhu, D.D.; Kitamoto, Y.; Hollamby, M.J.; Smith, A.J.; et al. Self-assembled poly-catenanes from supramolecular toroidal building blocks. Nature 2020, 583, 400–405. [Google Scholar] [CrossRef]
- Xu, S.Q.; Zhang, X.; Nie, C.B.; Pang, Z.F.; Xu, X.N.; Zhao, X. The construction of a two-dimensional supramolecular organic framework with parallelogram pores and stepwise fluorescence enhancement. Chem. Commun. 2015, 51, 16417–16420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, L.; Zhou, T.Y.; Tian, J.; Wang, H.; Zhang, D.W.; Zhao, X.; Liu, Y.; Li, Z.T. A two-dimensional single-layer supramolecular organic framework that is driven by viologen radical cation dimerization and further promoted by cucurbit[8]uril. Polym. Chem. 2014, 5, 4715–4721. [Google Scholar] [CrossRef]
- Pfeffermann, M.; Dong, R.; Graf, R.; Zajaczkowski, W.; Gorelik, T.; Pisula, W.; Narita, A.; Mullen, K.; Feng, X. Free-Standing Monolayer Two-Dimensional Supramolecular Organic Framework with Good Internal Order. J. Am. Chem. Soc. 2015, 137, 14525–14532. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.D.; Tian, J.; Hanifi, D.; Zhang, Y.; Sue, A.C.H.; Zhou, T.Y.; Zhang, L.; Zhao, X.; Liu, Y.; Li, Z.T. Toward a Single-Layer Two-Dimensional Honeycomb Supramolecular Organic Framework in Water. J. Am. Chem. Soc. 2013, 135, 17913–17918. [Google Scholar] [CrossRef] [PubMed]
- Ma, N.; Li, F.; Li, S.; Chu, S.; Han, L.; Liu, S.; Yan, T.; Tian, R.; Luo, Q.; Liu, J. A remote optically controlled hydrolase model based on supramolecular assembly and disassembly of its enzyme-like active site. Nanoscale 2019, 11, 3521–3526. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; An, G.; Xu, J.; Li, X.; Wang, T.; Fan, X.; Hou, C.; Luo, Q.; Liu, J.; Han, Y. Self-constructing giant vesicles for mimickingbiomembrane fusion and acting as enzymatic catalysis microreactors. J. Mater. Chem. B 2019, 7, 1226–1229. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Tian, R.; Xu, J.; Wang, L.; Sun, J.; Jiang, X.; Wang, T.; Li, X.; Luo, Q.; Liu, J. Cucurbit[8]uril-based supramolecular nanocapsules with a multienzyme-cascade antioxidative effect. Chem. Commun. 2019, 55, 13820–13823. [Google Scholar] [CrossRef]
- Liu, S.; Huang, Z.; Li, F.; Yan, T.; Fu, S.; Tian, R.; Hou, C.; Luo, Q.; Xu, J.; Liu, J. Supramolecular polymer nanocapsules by enzymatic covalent condensation: Biocompatible and biodegradable drug-delivery systems for chemo-photothermal anticancer therapy. Polym. Chem. 2019, 10, 3566–3570. [Google Scholar] [CrossRef]
- Hartgerink, J.D.; Beniash, E.; Stupp, S.I. Self-Assembly and Mineralization of Peptide-amphiphile Nanofibers. Science 2001, 294, 1684–1688. [Google Scholar] [CrossRef] [Green Version]
- Hill, J.P.; Jin, W.; Kosaka, A.; Fukushima, T.; Ichihara, H.; Shimomura, T.; Ito, K.; Hashizume, T.; Ishii, N.; Aida, T. Self-Assembled Hexa-peri-hexabenzocoronene Graphitic Nanotube. Science 2004, 304, 1481–1483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, Y.; Zhou, L.; Li, J.; Luo, Q.; Huang, X.; Wu, P.; Wang, Y.; Xu, J.; Shen, J.; Liu, J. Giant Nanotubes Loaded with Artificial Peroxidase Centers: Self-Assembly of Supramolecular Amphiphiles as a Tool To Functionalize Nanotubes. Angew. Chem. Int. Ed. 2010, 49, 3920–3924. [Google Scholar] [CrossRef]
- Wang, L.; Zou, H.; Dong, Z.; Zhou, L.; Li, J.; Luo, Q.; Zhu, J.; Xu, J.; Liu, J. Temperature-Driven Switching of the Catalytic Activity of Artificial Glutathione Peroxidase by the Shape Transition between the Nanotubes and Vesicle-like Structures. Langmuir 2014, 30, 4013–4018. [Google Scholar] [CrossRef]
- Fujita, M.; Oguro, D.; Miyazawa, M.; Oka, H.; Yamaguchi, K.; Ogura, K. Self-Assembly of Ten Molecules into Nanometer Sized Organic Host Framework. Nature 1995, 378, 469–471. [Google Scholar] [CrossRef]
- Kusukawa, T.; Fujita, M. A Self-Assembled M6L4-type Coordination Nanocage with 2,2′-Bipyridine Ancillary Ligands. Facile Crystallization and X-ray Analysis of Shape-Selective Enclathration of Neutral Guests in the Cage. J. Am. Chem. Soc. 2002, 124, 13576–13582. [Google Scholar] [CrossRef] [PubMed]
- Rowan, S.J.; Cantrill, S.J.; Cousins, G.R.L.; Sanders, J.K.M.; Stoddart, J.F. Dynamic Covalent Chemistry. Angew. Chem. Int. Ed. 2002, 41, 898–952. [Google Scholar] [CrossRef]
- Meier, W. Polymer Nanocapsules. Chem. Soc. Rev. 2000, 29, 295–303. [Google Scholar] [CrossRef]
- Vriezema, D.M.; Aragones, M.C.; Elemans, J.A.A.W.; Cornelissen, J.J.L.M.; Rowan, A.E.; Nolte, R.J.M. Self-assembled Nanoreactors. Chem. Rev. 2005, 105, 1445–1489. [Google Scholar] [CrossRef] [Green Version]
- De Geest, B.G.; Sanders, N.N.; Sukhorukov, G.B.; Demeester, J.; De Smedt, S.C. Release Mechanisms for Polyelectrolyte Capsules. Chem. Soc. Rev. 2007, 36, 636–649. [Google Scholar] [CrossRef]
- Esser-Kahn, A.P.; Odom, S.A.; Sottos, N.R.; White, S.R.; Moore, J.S. Triggered Release from Polymer Capsules. Macromolecules 2011, 44, 5539–5553. [Google Scholar] [CrossRef]
- Kim, D.; Kim, E.; Kim, J.; Park, K.M.; Baek, K.; Jung, M.; Ko, Y.H.; Sung, W.; Kim, H.; Suh, J.H.; et al. Direct Synthesis of Polymer Nanocapsules with a Noncovalently Tailorable Surface. Angew. Chem. Int. Ed. 2007, 46, 3471–3474. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Kim, E.; Lee, J.; Hong, S.; Sung, W.; Lim, N.; Park, C.G.; Kim, K. Direct Synthesis of Polymer Nanocapsules: Self-Assembly of Polymer Hollow Spheres through Irreversible Covalent Bond Formation. J. Am. Chem. Soc. 2010, 132, 9908–9919. [Google Scholar] [CrossRef] [PubMed]
- Fu, S.; An, G.; Sun, H.; Luo, Q.; Hou, C.; Xu, J.; Dong, Z.; Liu, J. Laterally functionalized pillar[5]arene: A new building block for covalent self-assembly. Chem. Commun. 2017, 53, 9024–9027. [Google Scholar] [CrossRef] [PubMed]
- Fu, S.; Zhang, Y.; Guan, S.; Huang, Q.; Wang, R.; Tian, R.; Zang, M.; Qiao, S.; Zhang, X.; Liu, S.; et al. Reductive-Responsive, Single-Molecular-Layer Polymer Nanocapsules Prepared by Lateral-Functionalized Pillar[5]arenes for Targeting Anticancer Drug Delivery. ACS Appl. Mater. Interfaces 2018, 10, 14281–14286. [Google Scholar] [CrossRef]
- Fu, S.; Li, F.; Zang, M.; Zhang, Z.; Ji, Y.; Yu, X.; Luo, Q.; Guan, S.; Xu, J.; Liu, J. Diselenium-containing ultrathin polymer nanocapsules for highly efficient targeted drug delivery and combined anticancer effect. J. Mater. Chem. B 2019, 7, 4927–4932. [Google Scholar] [CrossRef]
- Singh, S.; Aggarwal, A.; Bhupathiraju, N.V.; Arianna, G.; Tiwari, K.; Drain, C.M. Glycosylated Porphyrins, Phthalocyanines, and Other Porphyrinoids for Diagnostics and Therapeutics. Chem. Rev. 2015, 115, 10261–10306. [Google Scholar] [CrossRef]
- Lovell, J.F.; Liu, T.W.; Chen, J.; Zheng, G. Activatable Photosensitizers for Imaging and Therapy. Chem. Rev. 2010, 110, 2839–2857. [Google Scholar] [CrossRef]
- Fan, W.; Yung, B.; Huang, P.; Chen, X. Nanotechnology for Multimodal Synergistic Cancer Therapy. Chem. Rev. 2017, 117, 13566–13638. [Google Scholar] [CrossRef]
- Monro, S.; Colón, K.L.; Yin, H.; Roque, J.; Konda, P.; Gujar, S.; Thummel, R.P.; Lilge, L.; Cameron, C.G.; McFarland, S.A. Transition Metal Complexes and Photodynamic Therapy from a Tumor-Centered Approach: Challenges, Opportunities, and Highlights from the Development of TLD1433. Chem. Rev. 2019, 119, 797–828. [Google Scholar] [CrossRef] [PubMed]
- Bonnett, R. Photosensitizers of the porphyrin and phthalocyanine series for photodynamic therapy. Chem. Soc. Rev. 1995, 24, 19–33. [Google Scholar] [CrossRef]
- Lukyanets, E.A. Phthalocyanines as Photosensitizers in the Photodynamic Therapy of Cancer. J. Porphyr. Phthalocyanines 1999, 3, 424–432. [Google Scholar] [CrossRef]
- Detty, M.R.; Gibson, S.L.; Wagner, S.J. Current Clinical and Preclinical Photosensitizers for Use in Photodynamic Therapy. J. Med. Chem. 2004, 47, 3897–3915. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Murakami, T.; Ajima, K.; Tsuchida, K.; Sandanayaka, A.S.D.; Ito, O.; Iijima, S.; Yudasaka, M. Fabrication of ZnPc/protein nanohorns for double photodynamic and hyperthermic cancer phototherapy. Proc. Natl. Acad. Sci. USA 2008, 105, 14773–14778. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hota, R.; Baek, K.; Yun, G.; Kim, Y.K.; Jung, H.; Park, K.M.; Yoon, E.; Joo, T.; Kang, J.; Park, C.G.; et al. Self-Assembled, Covalently Linked, Hollow Phthalocyanine Nanospheres. Chem. Sci. 2013, 4, 339–344. [Google Scholar] [CrossRef] [Green Version]
- Pelletier, H.; Kraut, J. Crystal structure of a complex between electron transfer partners, cytochrome c peroxidase and cytochrome c. Science 1992, 258, 1748–1755. [Google Scholar] [CrossRef] [PubMed]
- Shaik, S.; Cohen, S.; Wang, Y.; Chen, H.; Kumar, D.; Thiel, W. P450 Enzymes: Their Structure, Reactivity, and Selectivity—Modeled by QM/MM Calculations. Chem. Rev. 2010, 110, 949–1017. [Google Scholar] [CrossRef]
- Zhu, W.; Ding, Z.D.; Wang, X.; Li, T.; Shen, R.; Li, Y.; Li, J.; Ren, X.; Gu, Z.G. A three-dimensional porphyrin-based porous organic polymer with excellent biomimetic catalytic performance. Polym. Chem. 2017, 8, 4327–4331. [Google Scholar] [CrossRef]
- Fan, X.; Tian, R.; Wang, T.; Liu, S.; Wang, L.; Xu, J.; Liu, J.; Ma, M.; Wu, Z. An ultrathin iron-porphyrin based nanocapsule with high peroxidase-like activity for highly sensitive glucose detection. Nanoscale 2018, 10, 22155–22160. [Google Scholar] [CrossRef] [PubMed]
- Jennings, M.C.; Minbiole, K.P.C.; Wuest, W.M. Quaternary Ammonium Compounds: An Antimicrobial Mainstay and Platform for Innovation to Address Bacterial Resistance. ACS Infect. Dis. 2015, 1, 288–303. [Google Scholar] [CrossRef]
- Lienkamp, K.; Madkour, A.E.; Musante, A.; Nelson, C.F.; Nüsslein, K.; Tew, G.N. Antimicrobial polymers prepared by ROMP with unprecedented selectivity: A molecular construction kit approach. J. Am. Chem. Soc. 2008, 130, 9836–9843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, K.K.; He, J.H. Fabrication and Study of Antibacterial/Antireflective Dual-functional Thin Films from Quaternary Ammonium Salt Modified Hollow Silica Nanospheres. Acta Chim. Sin. 2018, 76, 807–812. [Google Scholar] [CrossRef]
- Zeng, M.; Xu, J.; Luo, Q.; Hou, C.; Qiao, S.; Fu, S.; Fan, X.; Liu, J. Constructing antibacterial polymer nanocapsules based on pyridine quaternary ammonium salt. Mat. Sci. Eng. C 2020, 108, 110383. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Maiti, B.; Chini, M.K.; De, P.; Satapathi, S. Multimodal Fluorescent Polymer Sensor for Highly Sensitive Detection of Nitroaromatics. Sci. Rep. 2019, 9, 7269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dalapati, S.; Jin, E.; Addicoat, M.; Heine, T.; Jiang, D. Highly Emissive Covalent Organic Frameworks. J. Am. Chem. Soc. 2016, 138, 5797–5800. [Google Scholar] [CrossRef]
- Jiang, S.; Liu, S.; Meng, L.; Qi, Q.; Wang, L.; Xu, B.; Liu, J.; Tian, W. Covalent organic hollow nanospheres constructed by using AIE-active units for nitrophenol explosives detection. Sci. China Chem. 2020, 63, 497–503. [Google Scholar] [CrossRef]
- Sakamoto, J.; Heijst, J.V.; Lukin, O.; Schlüter, A.D. Two-dimensional polymers: Just a dream of synthetic chemists. Angew. Chem. Int. Ed. 2009, 48, 1030–1069. [Google Scholar] [CrossRef]
- Zhou, T.Y.; Lin, F.; Li, Z.T.; Zhao, X. Single-step solution-phase synthesis of free-standing two-dimensional polymers and their evolution into hollow spheres. Macromolecules 2013, 46, 7745–7752. [Google Scholar] [CrossRef]
- Baek, K.; Yun, G.; Kim, Y.; Kim, D.; Hota, R.; Hwang, I.; Xu, D.; Ko, Y.H.; Gu, G.H.; Suh, J.H.; et al. Free-Standing, Single-Monomer-Thick Two-Dimensional Polymers through Covalent Self-Assembly in Solution. J. Am. Chem. Soc. 2013, 135, 6523–6528. [Google Scholar] [CrossRef]
- Liu, S.; Jiang, S.; Xu, J.; Huang, Z.; Li, F.; Fan, X.; Luo, Q.; Tian, W.; Liu, J.; Xu, B. Constructing Artificial Light-Harvesting Systems by Covalent Alignment of Aggregation-Induced Emission Molecules. Macromol. Rapid Commun. 2019, 40, 1800892. [Google Scholar] [CrossRef] [PubMed]
- Tian, R.; Fan, X.; Liu, S.; Li, F.; Yang, F.; Li, Y.; Luo, Q.; Hou, C.; Xu, J.; Liu, J. Morphological Transformation between Orthogonal Dynamic Covalent Self-Assembly of Imine-Boroxine Hybrid Polymer Nanocapsules and Thin Films via Linker Exchange. Macromol. Rapid Commun. 2020, 41, 1900586. [Google Scholar] [CrossRef] [PubMed]
- Gole, B.; Stepanenko, V.; Rager, S.; Grüne, M.; Medina, D.D.; Bein, T.; Würthner, F.; Beuerle, F. Microtubular Self-Assembly of Covalent Organic Frameworks. Angew. Chem. Int. Ed. 2018, 57, 846–850. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.; Baek, K.; Kim, M.; Yun, G.; Ko, Y.H.; Lee, N.S.; Hwang, I.; Kim, J.; Natarajan, R.; Park, C.G.; et al. Hollow Nanotubular Toroidal Polymer Microrings. Nat. Chem. 2014, 6, 97–103. [Google Scholar] [CrossRef]
- Baek, K.; Hwang, I.; Roy, I.; Shetty, D.; Kim, K. Self-Assembly of Nanostructured Materials through Irreversible Covalent Bond Formation. Acc. Chem. Res. 2015, 48, 2221–2229. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, S.; Xu, J.; Li, X.; Yan, T.; Yu, S.; Sun, H.; Liu, J. Template-Free Self-Assembly of Two-Dimensional Polymers into Nano/Microstructured Materials. Molecules 2021, 26, 3310. https://doi.org/10.3390/molecules26113310
Liu S, Xu J, Li X, Yan T, Yu S, Sun H, Liu J. Template-Free Self-Assembly of Two-Dimensional Polymers into Nano/Microstructured Materials. Molecules. 2021; 26(11):3310. https://doi.org/10.3390/molecules26113310
Chicago/Turabian StyleLiu, Shengda, Jiayun Xu, Xiumei Li, Tengfei Yan, Shuangjiang Yu, Hongcheng Sun, and Junqiu Liu. 2021. "Template-Free Self-Assembly of Two-Dimensional Polymers into Nano/Microstructured Materials" Molecules 26, no. 11: 3310. https://doi.org/10.3390/molecules26113310
APA StyleLiu, S., Xu, J., Li, X., Yan, T., Yu, S., Sun, H., & Liu, J. (2021). Template-Free Self-Assembly of Two-Dimensional Polymers into Nano/Microstructured Materials. Molecules, 26(11), 3310. https://doi.org/10.3390/molecules26113310