Methodology to Quantify and Screen the Demineralization of Teeth by Immersing Them in Acidic Drinks (Orange Juice, Coca-Cola™, and Grape Juice): Evaluation by ICP OES
Abstract
:1. Introduction
2. Results
2.1. pH Monitoring
2.2. Accuracy of the ICP OES
2.3. Concentration Measures: Before and after the Exposure Time of the Erosive Challenge
3. Discussion
4. Materials and Methods
4.1. Teeth Selection
4.2. Purchase of Drinks
4.3. Method on the Erosive Challenge In Vitro
- (1)
- Demineralization by immersing the teeth in acidic drinks (orange juice, Coca-Cola™ and grape juice) and ultrapure water for 1 min, at 25 °C, without stirring; and then rinse in ultrapure water for 5 s;
- (2)
- Remineralization by immersion in artificial saliva for 40 min, at 25 °C, without stirring; and then rinse in ultrapure water for 5 s, at 25 °C;
- (3)
- Demineralization by immersion of teeth in acidic drinks (orange juice, Coca-Cola™, grape juice) and ultrapure water for 5 min, at 25 °C, without stirring; and then rinse in ultrapure water for 5 s, at 25 °C;
- (4)
- Remineralization by immersion in artificial saliva for 40 min, at 25 °C, without stirring; and then rinse in ultrapure water for 5 s;
- (5)
- Demineralization by immersing the teeth in acidic drinks (orange juice, Coca-Cola™, grape juice) and ultrapure water for 60 min, at 25 °C, without stirring.
- (6)
- All the procedures described above were also done in ultrapure water used as a control group.
4.4. Monitoring of the pH
4.5. Microwave-Assisted Acid Digestion
4.6. Elemental Analysis Using ICP OES Technique
4.7. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Mesquita-Guimarães, K.S.F.; Scatena, C.; Borssato, M.C.; Rodrigues-Junior, A.L.; Serra, M.C. Effect of Foods and Drinks on Primary Tooth Enamel after Erosive Challenge with Hydrochloric Acid. Braz. Oral Res. 2015, 29, 1–7. [Google Scholar] [CrossRef]
- Jameel, R.A.; Khan, S.S.; Rahim, Z.H.A.; Bakri, M.M.; Siddiqui, S. Analysis of Dental Erosion Induced by Different Beverages and Validity of Equipment for Identifying Early Dental Erosion, in vitro Study. J. Pak. Med. Assoc. 2016, 66, 843–848. [Google Scholar]
- Matumoto, M.S.S.; Terada, R.S.S.; Higashi, D.T.; Fujimaki, M.; Suga, S.S.; Guedes-Pinto, A.C. In vitro Effect of Energy Drinks on Human Enamel Surface. Rev. Odontol. UNESP 2018, 47, 57–62. [Google Scholar] [CrossRef] [Green Version]
- Amoras, D.R.; Corona, S.A.M.; Rodrigues Junior, A.L.; Serra, M.C. Effect of Beverages on Bovine Dental Enamel Subjected to Erosive Challenge with Hydrochloric Acid. Braz. Dent. J. 2012, 23, 367–372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lussi, A.; Megert, B.; Shellis, R.P.; Wang, X. Analysis of the Erosive Effect of Different Dietary Substances and Medications. Br. J. Nutr. 2012, 107, 252–262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parry, J.; Shaw, L.; Arnaud, M.J.; Smith, A.J. Investigation of Mineral Waters and Soft Drinks in Relation to Dental Erosion. J. Oral Rehabil. 2001, 28, 766–772. [Google Scholar] [CrossRef] [PubMed]
- Larsen, M.J. Prevention by Means of Fluoride of Enamel Erosion as Caused by Soft Drinks and Orange Juice. Caries Res. 2001, 35, 229–234. [Google Scholar] [CrossRef]
- Jensdottir, T.; Arnadottir, I.B.; Thorsdottir, I.; Bardow, A.; Gudmundsson, K.; Theodors, A.; Holbrook, W.P. Relationship between Dental Erosion, Soft Drink Consumption, and Gastroesophageal Reflux among Icelanders. Clin. Oral Investig. 2004, 8, 91–96. [Google Scholar] [CrossRef]
- Fujii, M.; Kitasako, Y.; Sadr, A.; Tagami, J. Roughness and pH Changes of Enamel Surface Induced by Soft Drinks in vitro Applications of Stylus Profilometry, Focus Variation 3D Scanning Microscopy and Micro pH Sensor. Dent. Mater. J. 2011, 30, 404–410. [Google Scholar] [CrossRef] [Green Version]
- Johansson, A.K.; Lingstrom, P.; Birkhed, D. Comparison of Factors Potentially Related to the Occurrence of Dental Erosion in High- and Low-erosion Groups. Eur. J. Oral Sci. 2002, 110, 204–211. [Google Scholar] [CrossRef]
- Jager, D.H.J.; Vieira, A.M.; Ruben, J.L.; Huysmans, M.C.D.N.J.M. Estimated Erosive Potential Depends on Exposure Time. J. Dent. 2012, 40, 1103–1108. [Google Scholar] [CrossRef] [Green Version]
- Barbour, M.E.; Lussi, A.; Shellis, R.P. Screening and Prediction of Erosive Potential. Caries Res. 2011, 45, 24–32. [Google Scholar] [CrossRef] [PubMed]
- Souza, B.M.; Vertuan, M.; Gonçalves, I.V.B.; Magalhães, A.C. Effect of Different Citrus Sweets on the Development of Enamel Erosion in vitro. J. Appl. Oral Sci. 2020, 28, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Zimmer, S.; Kirchner, G.; Bizhang, M.; Benedix, M. Influence of Various Acidic Beverages on Tooth Erosion. Evaluation by a New Method. PLoS ONE 2015, 10, 1–8. [Google Scholar]
- Beltrame, A.P.C.A.; Noschang, R.A.T.; Lacerda, D.P.; Souza, L.C.; Almeida, I.C.S. Are Grape Juices More Erosive Than Orange Juices? Eur. Arch. Pediatr. Dent. 2017, 18, 263–270. [Google Scholar] [CrossRef] [PubMed]
- Sharma, V.; Rastogi, S.; Bathi, K.K.; Srinivasan, A.; Roychoudhury, A.; Nikolajeff, F.; Kumar, S. Mapping the Inorganic and Proteomic Differences among Different Types of Human Teeth: A Preliminary Compositional Insight. Biomolecules 2020, 10, 1540. [Google Scholar] [CrossRef]
- Fernández-Escudero, A.C.; Legaz, I.; Prieto-Bonete, G.; López-Nicolás, M.; Maurandi-López, A.; Pérez-Cárceles, M.D. Aging and Trace Elements in Human Coronal Tooth Dentine. Sci. Rep. 2020, 10, 9964. [Google Scholar] [CrossRef]
- Brown, C.J.; Chenery, S.R.N.; Smith, B.; Mason, C.; Tomkins, A.; Roberts, G.J.; Sserunjogi, L.; Tiberindwa, J.V. Environmental Influences on the Trace Element Content of Teeth-implications for Disease and Nutritional Status. Arch. Oral Biol. 2004, 49, 705–717. [Google Scholar] [CrossRef] [PubMed]
- Webb, E.; Amarasiriwardena, D.; Tauch, S.; Green, E.F.; Jones, J.; Goodman, A.H. Inductively Coupled Plasma-mass (ICP-MS) and Atomic Emission Spectrometry (ICP-AES): Versatile Analytical Techniques to Identify the Archived Elemental Information in Human Teeth. Microchem. J. 2005, 81, 201–208. [Google Scholar] [CrossRef]
- Riyat, M.; Sharma, D.C. Analysis of 35 Inorganic Elements in Teeth in Relation to Caries Formation. Biol. Trace Elem. Res. 2009, 129, 126–129. [Google Scholar] [CrossRef]
- Teruel, J.D.; Alcolea, A.; Hernández, A.; Ruiz, A.J.O. Comparison of Chemical Composition of Enamel and Dentine in Human, Bovine, Porcine and Ovine Teeth. Arch. Oral Biol. 2015, 60, 768–775. [Google Scholar] [CrossRef] [PubMed]
- Feagin, F.; Koulourides, T.; Pigman, W. The Characterization of Enamel Surface Demineralization, Remineralization, and Associated Hardness Changes in Human and Bovine Material. Arch. Oral Biol. 1969, 14, 1407–1417. [Google Scholar] [CrossRef]
- Grobler, S.R.; Senekal, P.J.C.; Laubscher, J.A. In vitro Demineralization of Enamel by Orange Juice, Apple Juice, Pepsi Cola and Diet Pepsi Cola. Clin. Prev. Dent. 1990, 12, 5–9. [Google Scholar]
- Schlueter, N.; Hara, A.; Shellis, R.P.; Ganss, C. Methods for the Measurement and Characterization of Erosion in Enamel and Dentine. Caries Res. 2011, 45, 13–23. [Google Scholar] [CrossRef] [PubMed]
- Thompson, M.; Sthephen, L.; Ellison, R.; Wood, R. Harmonized Guidelines for Single-Laboratory Validation of Methods of Analysis (IUPAC Technical Report). Pure App. Chem. 2002, 75, 835–855. [Google Scholar] [CrossRef]
- Abbruzzini, T.F.; Silva, C.A.; Andrade, D.A.; Carneiro, W.J.O. Influence of Digestion Methods on the Recovery of Iron, Zinc, Nickel, Chromium, Cadmium and Lead Contents in 11 Organic Residues. Rev. Bras. Ciênc. Solo 2014, 38, 166–176. [Google Scholar] [CrossRef] [Green Version]
- Imam, H.; Ahmed, D.; Eldakrouri, A. Elemental Content of Enamel and Dentin after Bleaching of Teeth (a Comparative Study between Laser-induced Breakdown Spectroscopy and X-ray Photoelectron Spectroscopy). J. Appl. Phys. 2013, 113, 234701. [Google Scholar] [CrossRef]
- Bisson, L.F.; Walker, G.A. The Microbial Dynamics of Wine Fermentation. Adv. Fermented Foods Beverages 2015, 435–476. [Google Scholar] [CrossRef]
- Jensdottir, T.; Holbrook, P.; Nauntofte, B.; Buchwald, C.; Bardow, A. Immediate Erosive Potential of Cola Drinks and Orange Juices. J. Dent. Res. 2006, 85, 226–230. [Google Scholar] [CrossRef]
- Schmidt-Nielsen, B. The Solubility of tooth substance in relation to the composition of saliva. Acta Odontol. Scand. 1946, 7, 1–88. [Google Scholar]
- Hoppenbrouwers, P.M.M.; Driessens, F.C.M.; Borggreven, J.M.P.M. The vulnerability of unexposed human dental roots to demineralization. J. Dent. Res. 1986, 65, 955–958. [Google Scholar] [CrossRef]
- Soyer, Y.; Koca, N.; Karadeniz, F. Organic Acid Profile of Turkish White Grapes and Grape Juices. J. Food Compos. Anal. 2003, 16, 629–636. [Google Scholar] [CrossRef]
- Carvalho, D.U.; Cruz, M.A.; Colombo, R.C.; Watanabe, L.S.; Tazima, Z.H.; Neves, C.S.V.J. Determination of Organic Acids and Carbohydrates in ‘Salustiana’ Orange Fruit from Different Rootstocks. Braz. J. Food Technol. 2020, 23, 1–11. [Google Scholar] [CrossRef]
- Lutovac, M.; Popova, O.V.; Macanovic, G.; Kristina, R.; Lutovac, B.; Ketin, S.; Biocanin, R. Testing the Effect of Aggressive Beverage on the Damage of Enamel Structure. Maced. J. Med. Sci. 2017, 5, 987–993. [Google Scholar] [CrossRef] [Green Version]
- Yuan, M.; Zhang, Q.; Gao, X.J. Influence of Coca-Cola on Early Erosion and Surface Microhardness of Human Enamel: An in situ Study. Chin. J. Stomatol. 2016, 51, 357–361. [Google Scholar]
- Mitic, A.D.; Gasic, J.Z.; Barac, R.G.; Radenkovic, G.S.; Sunaric, S.M.; Popovic, J.Z.; Nikolic, M.M. Ultrastructural Changes in the Cemento-enamel Junction Caused by Acidic Beverages: An in vitro Study. Microsc. Res. Tech. 2020, 83, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Zijlstra, N.; Mars, M.; de Wijk, R.A.; Westertep-Plantenga, M.S.; de Graaf, C. The Effect of Viscosity on ad libitum Food Intake. Int. J. Obes. 2008, 32, 676–683. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buczkowska-Radlińska, J.; Łagocka, R.; Kaczmarek, W.; Górski, M.; Nowicka, A. Prevalence of Dental Erosion in Adolescent Competitive Swimmers Exposed to Gas-chlorinated Swimming Pool Water. Clin. Oral Investig. 2013, 17, 579–583. [Google Scholar] [CrossRef] [Green Version]
- Falla-Sotelo, F.O.; Rizzutto, M.A.; Tabacniks, M.H.; Added, N.; Barbosa, M.D.L.; Markarian, R.A.; Quinelato, A.; Mori, M.; Youssef, M. Analysis and Discussion of Trace Elements in Teeth of Different Animal Species. Braz. J. Phys. 2005, 35, 761–762. [Google Scholar] [CrossRef]
- Bertassoni, L.E.; Habelitz, S.; Kinney, J.H.; Marshall, S.J.; Marshall, G.W., Jr. Biomechanical Perspective on the Remineralization of Dentin. Caries Res. 2009, 43, 70–77. [Google Scholar] [CrossRef] [PubMed]
- Mathew, S.; Luke, A.M.; Walia, T.; Masri, A.G.; Jamal, H.; Pawar, A.M. Effect of Fruit Juices and Other Beverages on Loss of Tooth Structure. Pesq. Bras. Odontoped. Clin. Integr. 2018, 18, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Puy, C.L. The Rôle of Saliva in Maintaining Oral Health and as an Aid to Diagnosis. Med. Oral Patol. Oral Cir. Bucal 2006, 11, E449–E455. [Google Scholar]
- Buzalaf, M.A.R.; Hannas, A.R.; Kato, M.T. Saliva and Dental Erosion. J. Appl. Oral Sci. 2012, 20, 493–502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hannas, A.R.; Kato, M.T.; Cardoso, C.A.B.; Magalhães, A.C.; Pereira, J.C.; Tjardehane, L.; Buzalaf, M.A.R. Preventive Effect of Toothpastes with MMP Inhibitors on Human Dentine Erosion and Abrasion in vitro. J. Appl. Oral Sci. 2016, 24, 61–66. [Google Scholar] [CrossRef] [PubMed]
- Alencar, C.R.B.; Mendonça, F.L.; Guerrini, L.B.; Jordão, M.C.; Oliveira, G.C.; Honório, H.M.; Magalhães, A.C.; Rios, D. Effect of Different Salivary Exposure Times on the Rehardening of Acid-softened Enamel. Braz. Oral Res. 2016, 30, e104. [Google Scholar] [CrossRef]
- Long, G.L.; Winefordner, J.D. Limit of Detection: A Closer Look at the IUPAC Definition. Anal. Chem. 1983, 55, 712a–724a. [Google Scholar]
- Tschinkel, P.F.S.; Melo, E.S.P.; Pereira, H.S.; Silva, K.R.N.; Arakaki, D.G.; Lima, N.V.; Fernandes, M.R.; Leite, L.C.S.; Melo, E.S.P.; Melnikov, P.; et al. The Hazardous Level of Heavy Metals in Different Medicinal Plants and Their Decoctions in Water: A Public Health Problem in Brazil. Biomed. Res. Int. 2020, 2020, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Schober, P.; Boer, C.; Schwarte, L.A. Correlation Coefficients: Appropriate Use and Interpretation. Anesth. Analg. 2018, 126, 1763–1768. [Google Scholar] [CrossRef]
Drink | Time (min) | pH | Temperature (°C) |
---|---|---|---|
Ultrapure water | 0 | 6.0 | 26.1 |
1 | 6.0 | 25.0 | |
5 | 6.0 | 26.0 | |
30 | 6.0 | 25.0 | |
60 | 6.0 | 26.8 | |
Grape juice | 0 | 3.57 | 25.9 |
1 | 3.70 | 26.9 | |
5 | 3.73 | 27.2 | |
30 | 3.57 | 26.8 | |
60 | 3.81 | 26.9 | |
Orange juice | 0 | 4.50 | 22.0 |
1 | 4.46 | 24.6 | |
5 | 4.47 | 24.4 | |
30 | 4.45 | 25.0 | |
60 | 4.47 | 26.4 | |
Coca-Cola™ | 0 | 2.57 | 26.5 |
1 | 3.12 | 26.4 | |
5 | 3.14 | 26.3 | |
30 | 3.35 | 26.6 | |
60 | 3.49 | 26.5 |
Elements | LOD (mg/L) | LOQ (mg/L) | (R2) | Recovery (%) |
---|---|---|---|---|
Al | 0.0633 | 0.2110 | 0.9989 | 99 |
As | 0.0056 | 0.0185 | 0.9994 | 98 |
Ba | 0.0008 | 0.0026 | 0.9986 | 101 |
Ca | 0.0041 | 0.0138 | 0.9981 | 100 |
Cd | 0.0057 | 0.0192 | 0.9994 | 99 |
Co | 0.0023 | 0.0076 | 0.9994 | 100 |
Cr | 0.0115 | 0.0384 | 0.9994 | 102 |
Cu | 0.0062 | 0.0207 | 0.9990 | 98 |
Fe | 0.0036 | 0.0120 | 0.9994 | 97 |
K | 0.0349 | 0.1163 | 0.9963 | 95 |
Mg | 0.0015 | 0.0049 | 0.9987 | 94 |
Mn | 0.0004 | 0.0014 | 0.9993 | 98 |
Mo | 0.0016 | 0.0054 | 0.9994 | 100 |
Na | 0.0029 | 0.0098 | 0.9960 | 99 |
Ni | 0.0017 | 0.0058 | 0.9994 | 97 |
P | 0.0811 | 0.2705 | 0.9894 | 99 |
Pb | 0.0115 | 0.0385 | 0.9994 | 98 |
Se | 0.0079 | 0.0263 | 0.9994 | 101 |
V | 0.0019 | 0.0063 | 0.9993 | 99 |
Zn | 0.0008 | 0.0026 | 0.9994 | 94 |
Drinks | Exposure Time (min) | Elements (mg/L) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Al | As | Ba | Ca | Cd | Co | Cr | Cu | Fe | K | ||
Ultrapure Water (Control) | 0 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
1 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | 0.14 ± 0.02 | |
5 | <LOD | <LOD | <LOD | 0.157 ± 0.004 | <LOD | <LOD | <LOD | <LOD | <LOD | 0.28 ± 0.02 | |
60 | <LOD | <LOD | <LOD | 0.80 ± 0.008 | <LOD | <LOD | <LOD | <LOD | <LOD | 0.671 ± 0.006 | |
Grape Juice | 0 | 2.79 ± 0.04 | 0.148 ± 0.004 | 0.929 ± 0.009 | <LOD | 0.020 ± 0.003 | <LOD | 0.172 ± 0.001 | 0.908 ± 0.009 | 7.34 ± 0.05 | 28.22 ± 0.65 |
1 | 2.99 ± 0.07 | 0.226 ± 0.003 | 1.05 ± 0.02 | 322.1 ± 9.1 | 0.016 ± 0.003 | <LOD | 0.155 ± 0.006 | 0.78 ± 0.01 | 6.00 ± 0.07 | 3852.9 ± 61.7 | |
5 | 2.85 ± 0.03 | 0.139 ± 0.002 | 1.062 ± 0.008 | 372.6 ± 6.2 | 0.020 ± 0.006 | <LOD | 0.168 ± 0.004 | 0.769 ± 0.006 | 5.80 ± 0.02 | 3664.02 ± 115.94 | |
60 | 2.48 ± 0.03 | 0.146 ± 0.001 | 1.31 ± 0.04 | 513.79 ± 5.07 | 0.023 ± 0.001 | <LOD | 0.171 ± 0.003 | 0.742 ± 0.006 | 5.51 ± 0.02 | 3643.8 ± 105.4 | |
Orange Juice | 0 | 0.37 ± 0.03 | 0.103 ± 0.003 | 0.327 ± 0.007 | 125.4 ± 2.7 | <LOD | <LOD | 0.055 ± 0.003 | 0.371 ± 0.005 | 0.78 ± 0.01 | 4083.01 ± 63.45 |
1 | 0.46 ± 0.03 | 0.130 ± 0.004 | 0.168 ± 0.002 | 156.5 ± 1.8 | 0.009 ± 0.003 | <LOD | 0.0683 ± 0.0005 | 0.380 ± 0.004 | 1.049 ± 0.008 | 4878.6 ± 75.0 | |
5 | 0.37 ± 0.03 | 0.122 ± 0.002 | 0.213 ± 0.005 | 204.57 ± 3.03 | 0.005 ± 0.002 | <LOD | 0.072 ± 0.003 | 0.373 ± 0.008 | 1.11 ± 0.01 | 4957.4 ± 97. 6 | |
60 | 0.37 ± 0.02 | 0.129 ± 0.001 | 0.402 ± 0.006 | 413.5 ± 1.9 | 0.0120 ± 0.0004 | <LOD | 0.0816 ± 0003 | 0.380 ± 0.005 | 1.131 ± 0.006 | 4920.8 ± 47.1 | |
Coca-Cola™ | 0 | 0.21 ± 0.02 | 0.077 ± 0.004 | <LD | 17.7 ± 0.3 | <LOD | <LOD | <LOD | <LOD | 0.020 ± 0.001 | 1572.8 ± 31.2 |
1 | 0.25 ± 0.02 | 0.117 ± 0.002 | 0.094 ± 0.001 | 55.7 ± 0.6 | <LOD | <LOD | <LOD | <LOD | 0.0514 ± 0.0003 | 1734.01 ± 60.54 | |
5 | 0.26 ± 0.03 | 0.125 ± 0.001 | 0.127 ± 0.003 | 84.1 ± 0.9 | <LOD | <LOD | <LOD | <LOD | 0.104 ± 0.003 | 2161.3 ± 34.8 | |
60 | 0.19 ± 0.02 | 0.107 ± 0.003 | 0.139 ± 0.006 | 119.1 ± 0.8 | <LOD | <LOD | <LOD | <LOD | 0.049 ± 0.005 | 2175.4 ± 81.9 | |
† p-value | <0.0001 | <0.0001 | <0.0001 | <0.01 | ND | <0.001 | <0.0001 | <0.0001 | <0.0001 | ||
Drinks | Exposure Time (min) | Elements (mg/L) | |||||||||
Mg | Mn | Mo | Na | Ni | P | Pb | Se | V | Zn | ||
Ultrapure Water (Control) | 0 | <LOD | <LOD | <LOD | 0.627 ± 0.002 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
1 | 0.0343 ± 0.0006 | <LOD | <LOD | 4.72 ± 0.03 | <LOD | 0.538 ± 0.05 | <LOD | <LOD | <LOD | <LOD | |
5 | 0.256 ± 0.002 | <LOD | <LOD | 10.92 ± 0.04 | <LOD | 1.756 ± 008 | <LOD | <LOD | <LOD | <LOD | |
60 | 0.829 ± 0.004 | <LOD | <LOD | 27.0 ± 0.4 | <LOD | 4.70 ± 0.07 | <LOD | <LOD | <LOD | <LOD | |
Grape Juice | 0 | <LOD | 2.75 ± 0.02 | <LOD | 1147.5 ± 27.6 | 0.012 ± 0.001 | 476.8 ± 10.8 | 0.074 ± 0.008 | 0.136 ± 0.005 | 0.308 ± 0.002 | 1.038 ± 0.004 |
1 | 112.0 ± 2.9 | 3.15 ± 0.04 | <LOD | 72.6 ± 0.5 | 0.011 ± 0.001 | 635.8 ± 14.4 | 0.070 ± 0.006 | 0.206 ± 0.003 | 0.318 ± 0.004 | 1.15 ± 0.01 | |
5 | 110.3 ± 1.0 | 3.196 ± 0.007 | <LOD | 81.6 ± 0.9 | 0.0118 ± 0.0007 | 744.7 ± 15. 6 | 0.075 ± 0.003 | 0.124 ± 0.002 | 0.318 ± 0.002 | 1.192 ± 0.003 | |
60 | 117.9 ± 0.4 | 3.828 ± 0.018 | <LOD | 123.4 ± 1.6 | 0.0121 ± 0.0005 | 1166.3 ± 23.6 | 0.080 ± 0.002 | 0.131 ± 0.002 | 0.351 ± 0.001 | 1.359 ± 0.007 | |
Orange Juice | 0 | 123.7 ± 1.3 | 0.624 ± 0.009 | <LOD | 127.0 ± 2.3 | <LOD | 817.15 ± 22.09 | <LOD | 0.091 ± 0.003 | 0.345 ± 0.004 | 0.311 ± 0.005 |
1 | 123.9 ± 1.2 | 0.787 ± 0.006 | <LOD | 954.1 ± 26.2 | <LOD | 987.4 ± 25.6 | 0.035 ± 0.007 | 0.128 ± 0.003 | 0.345 ± 0.004 | 0.278 ± 0.003 | |
5 | 124.9 ± 0.2 | 0.860 ± 0.011 | <LOD | 47.09 ± 0.08 | <LOD | 1131.8 ± 12.6 | 0.027 ± 0.005 | 0.114 ± 0.003 | 0.352 ± 0.005 | 0.334 ± 0.001 | |
60 | 131.3 ± 0.8 | 1.098 ± 0.006 | <LOD | 77.10 ± 0.08 | <LOD | 1553.4 ± 22.7 | 0.044 ± 0.003 | 0.118 ± 0.002 | 0.381 ± 0.003 | 0.537 ± 0.003 | |
Coca-Cola™ | 0 | 163.3 ± 2.4 | <LOD | <LOD | 131.0 ± 1.1 | <LOD | 1201.7 ± 28.3 | <LOD | 0.067 ± 0.004 | 0.0597 ± 0.0003 | <LOD |
1 | 6.23 ± 0.01 | 0.0505 ± 0.0005 | <LOD | 126.3 ± 0.5 | <LOD | 1382.8 ± 13.0 | <LOD | 0.111 ± 0.004 | <LOD | <LOD | |
5 | 8.8 ± 0.03 | 0.089 ± 0.002 | <LOD | 148.8 ± 1.2 | <LOD | 1593.0 ± 15.6 | <LOD | 0.110 ± 0.002 | <LOD | <LOD | |
60 | 11.03 ± 0.06 | 0.107 ± 0.003 | <LOD | 147.5 ± 0.7 | <LOD | 1616.65 ± 2.08 | <LOD | 0.099 ± 0.002 | 0.008 ± 0.001 | <LOD | |
† p-value | <0.0001 | <0.0001 | ND | <0.0001 | ND | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
Elements | Drinks | Regression Equation | Coefficient of Determination R2 | Pearson’s Correlation Coefficient (r) | Interpretation (Correlation) |
---|---|---|---|---|---|
Al | Grape juice | y = −0.0068x + 2.8887 | 0.8346 | −0.91 | Very strong negative |
Orange juice | y = −0.0005x + 0.401 | 0.1258 | −0.35 | Weak negative | |
Coca-Cola™ | y = −0.0008x + 0.2388 | 0.4886 | −0.70 | Strong negative | |
Ultrapure water | <LOD | ||||
As | Grape juice | y = −0.0005x + 0.1724 | 0.1088 | −0.33 | Weak negative |
Orange juice | y = 0.0002x + 0.1176 | 0.2183 | 0.47 | Moderate positive | |
Coca-Cola™ | y = 0.00005x + 0.1055 | 0.0042 | 0.07 | Negligible positive | |
Ultrapure water | <LOD | ||||
Ba | Grape juice | y = 0.0051x + 1.0034 | 0.8822 | 0.94 | Very strong positive |
Orange juice | y = 0.0028x + 0.2317 | 0.5729 | 0.76 | Strong positive | |
Coca-Cola™ | y = 0.0012x + 0.0696 | 0.3270 | 0.57 | Moderate positive | |
Ultrapure water | <LOD | ||||
Ca | Grape juice | y = 5.1525x + 217.12 | 0.4762 | 0.69 | Moderate positive |
Orange juice | y = 4.3912x + 152.55 | 0.9674 | 0.98 | Very strong positive | |
Coca-Cola™ | y = 1.2052x + 49.287 | 0.6645 | 0.82 | Strong positive | |
Ultrapure water | y = 0.0131x + 0.0243 | 0.9855 | 0.99 | Very strong positive | |
Cd | Grape juice | y = 0.00008x + 0.0186 | 0.5435 | 0.74 | Strong positive |
Orange juice | y = 00001x + 0.0044 | 0.5230 | 0.72 | Strong positive | |
Coca-Cola™ | <LOD | ||||
Ultrapure water | <LOD | ||||
Co | Grape juice | <LOD | |||
Orange juice | <LOD | ||||
Coca-Cola™ | <LOD | ||||
Ultrapure water | <LOD | ||||
Cr | Grape juice | y = 0.0001x + 0.1651 | 0.1287 | 0.36 | Weak positive |
Orange juice | y = 0.0003x + 0.0643 | 0.5997 | 0.77 | Strong positive | |
Coca-Cola™ | < LOD | ||||
Ultrapure water | < LOD | ||||
Cu | Grape juice | y = −0.0014x + 0.823 | 0.3122 | −0.56 | Moderate negative |
Orange juice | y = 0.0001x + 0.3742 | 0.3332 | 0.58 | Moderate positive | |
Coca-Cola™ | <LOD | ||||
Ultrapure water | <LOD | ||||
Fe | Grape juice | y = −0.0162x + 6.431 | 0.3381 | −0.58 | Moderate negative |
Orange juice | y = 0.0029x + 0.9691 | 0.2727 | 0.52 | Moderate positive | |
Coca-Cola™ | <LOD | ||||
Ultrapure water | <LOD | ||||
K | Grape juice | y = 22.146x + 2431.8 | 0.1214 | 0.35 | Weak positive |
Orange juice | y = 5.5403x + 4618.5 | 0.1477 | 0.38 | Weak positive | |
Coca-Cola™ | y = 6.6793x + 1800.7 | 0.4067 | 0.64 | Moderate positive | |
Ultrapure water | y = 0.0094x + 0.1195 | 0.8873 | 0.94 | Very strong positive | |
Mg | Grape juice | y = 0.8371x + 71.224 | 0.1838 | 0.43 | Moderate positive |
Orange juice | y = 0.9937x + 123.93 | 0.9937 | 1.00 | Very strong positive | |
Coca-Cola™ | y = −0.9507x + 63.016 | 0.1279 | −0.36 | Weak negative | |
Ultrapure water | y = 0.0128x + 0.0679 | 0.9496 | 0.97 | Very strong positive | |
Mn | Grape juice | y = 0.014x + 2.9995 | 0.8349 | 0.91 | Very strong positive |
Orange juice | y = 0.0061x + 0.7425 | 0.8013 | 0.90 | Very strong positive | |
Coca-Cola™ | y = 0.0011x + 0.043 | 0.4782 | 0.69 | Moderate positive | |
Ultrapure water | <LOD | ||||
Mo | Grape juice | <LOD | |||
Orange juice | <LOD | ||||
Coca-Cola™ | <LOD | ||||
Ultrapure water | <LOD | ||||
Ni | Grape juice | y = 0.00001x + 0.0114 | 0.2227 | 0.47 | Moderate positive |
Orange juice | <LOD | ||||
Coca-Cola™ | <LOD | ||||
Ultrapure water | <LOD | ||||
P | Grape juice | y = 9.636x + 596.9 | 0.9031 | 0.95 | Very strong positive |
Orange juice | y = 10.157x + 954.86 | 0.8805 | 0.94 | Very strong positive | |
Coca-Cola™ | y = 4.2341x + 1378.7 | 0.3977 | 0.63 | Moderate positive | |
Ultrapure water | y = 0.0693x + 0.6046 | 0.9218 | 0.96 | Very strong positive | |
Pb | Grape juice | y = 0.0001x + 0.0725 | 0.7458 | 0.86 | Strong positive |
Orange juice | y = 0.0004x + 0.0198 | 0.4089 | 0.64 | Moderate positive | |
Coca-Cola™ | <LOD | ||||
Ultrapure water | <LOD | ||||
Na | Grape juice | y = −6.1605x + 457.94 | 0.1151 | −0.34 | Weak negative |
Orange juice | y = −5.5473x + 392.88 | 0.1366 | −0.37 | Weak negative | |
Coca-Cola™ | y = 0.2305x + 134.61 | 0.3435 | 0.59 | Moderate positive | |
Ultrapure water | y = 0.3804x + 4.511 | 0.9117 | 0.95 | Very strong positive | |
Se | Grape juice | y = −0.0005x + 0.157 | 0.1216 | −0.35 | Weak negative |
Orange juice | y = 0.0001x + 0.1106 | 0.0607 | 0.25 | Weak positive | |
Coca-Cola™ | y = 0.00009x + 0.0953 | 0.0156 | 0.12 | Weak positive | |
Ultrapure water | <LOD | ||||
V | Grape juice | y = 0.0006x + 0.3131 | 0.9609 | 0.98 | Very strong positive |
Orange juice | y = 0.0006x + 0.3461 | 0.9850 | 0.99 | Very strong positive | |
Coca-Cola™ | y = −0.0002x + 0.0211 | 0.0635 | −0.25 | Weak negative | |
Ultrapure water | <LOD | ||||
Zn | Grape juice | y = 0.0042x + 1.1151 | 0.8165 | 0.90 | Very strong positive |
Orange juice | y = 0.004x + 0.2997 | 0.9757 | 0.99 | Very strong positive | |
Coca-Cola™ | <LOD | ||||
Ultrapure water | <LOD |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Melo, E.S.P.; Melo, E.; Arakaki, D.; Michels, F.; Nascimento, V.A. Methodology to Quantify and Screen the Demineralization of Teeth by Immersing Them in Acidic Drinks (Orange Juice, Coca-Cola™, and Grape Juice): Evaluation by ICP OES. Molecules 2021, 26, 3337. https://doi.org/10.3390/molecules26113337
Melo ESP, Melo E, Arakaki D, Michels F, Nascimento VA. Methodology to Quantify and Screen the Demineralization of Teeth by Immersing Them in Acidic Drinks (Orange Juice, Coca-Cola™, and Grape Juice): Evaluation by ICP OES. Molecules. 2021; 26(11):3337. https://doi.org/10.3390/molecules26113337
Chicago/Turabian StyleMelo, Eliane S. P., Elaine Melo, Daniela Arakaki, Flavio Michels, and Valter A. Nascimento. 2021. "Methodology to Quantify and Screen the Demineralization of Teeth by Immersing Them in Acidic Drinks (Orange Juice, Coca-Cola™, and Grape Juice): Evaluation by ICP OES" Molecules 26, no. 11: 3337. https://doi.org/10.3390/molecules26113337
APA StyleMelo, E. S. P., Melo, E., Arakaki, D., Michels, F., & Nascimento, V. A. (2021). Methodology to Quantify and Screen the Demineralization of Teeth by Immersing Them in Acidic Drinks (Orange Juice, Coca-Cola™, and Grape Juice): Evaluation by ICP OES. Molecules, 26(11), 3337. https://doi.org/10.3390/molecules26113337