An Investigation into the Potential of Targeting Escherichia coli rne mRNA with Locked Nucleic Acid (LNA) Gapmers as an Antibacterial Strategy
Abstract
:1. Introduction
2. Results
2.1. Targeting E. coil rne with LNA Gapmers
2.2. The LNA Gapmers Bind to the Translation Initiation Region of E. coli rne mRNA
2.3. The LNA Gapmers Inhibit Translation in an In Vitro Cell-Free Assay
2.4. The LNA Gapmers Stimulate RNase H-Mediated Cleavage of the Translation Initiation Region of E. coli rne mRNA In Vitro
3. Discussion
4. Materials and Methods
4.1. LNA Gapmer Design and Synthesis
4.2. Design and Synthesis of a Minimal E. coli rne mRNA
4.3. Electrophoretic Mobility Shift Assays (EMSAs)
4.4. Cell-Free Reporter Assay
4.4.1. Design and Synthesis of the E. coli rne-Firefly Luciferase (luc) Reporter Plasmid
4.4.2. In Vitro Transcription-Translation Real-Time Reporter Assay
4.5. RNase H Cleavage Assay
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Lewis, K. Platforms for antibiotic discovery. Nat. Rev. Drug Discov. 2013, 12, 371–387. [Google Scholar] [CrossRef]
- Ventola, C.L. The antibiotic resistance crisis: Part 1: Causes and threats. Pharm. Ther. 2015, 40, 277–283. [Google Scholar]
- Eidem, T.M.; Roux, C.M.; Dunman, P.M. RNA decay: A novel therapeutic target in bacteria. Wiley Interdiscip. Rev. RNA 2012, 3, 443–454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lawal, A.; Jejelowo, O.; Chopra, A.K.; Rosenzweig, J.A. Ribonucleases and bacterial virulence. Microb. Biotechnol. 2010, 4, 558–571. [Google Scholar] [CrossRef] [PubMed]
- Apirion, D.; Lassar, A. A conditional lethal mutant of Escherichia coli which affects the processing of ribosomal RNA. J. Biol. Chem. 1978, 253, 1738–1742. [Google Scholar] [CrossRef]
- Ono, M.; Kuwano, M. A conditional lethal mutation in an Escherichia coli strain with a longer chemical lifetime of messenger RNA. J. Mol. Biol. 1979, 129, 343–357. [Google Scholar] [CrossRef]
- McDowall, K.J.; Hernandez, R.G.; Lin-Chao, S.; Cohen, S.N. The ams-1 and rne-3071 temperature-sensitive mutations in the ams gene are in close proximity to each other and cause substitutions within a domain that resembles a product of the Escherichia coli mre locus. J. Bacteriol. 1993, 175, 4245–4249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hammarlöf, D.L.; Liljas, L.; Hughes, D. Temperature-sensitive mutants of RNase E in Salmonella enterica. J. Bacteriol. 2011, 193, 6639–6650. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Jain, C.; Schesser, K. RNase E Regulates the Yersinia type 3 secretion system. J. Bacteriol. 2008, 190, 3774–3778. [Google Scholar] [CrossRef] [Green Version]
- Lee, E.-J.; Groisman, E.A. An antisense RNA that governs the expression kinetics of a multifunctional virulence gene. Mol. Microbiol. 2010, 76, 1020–1033. [Google Scholar] [CrossRef] [Green Version]
- Aït-Bara, S.; Carpousis, A. RNA degradosomes in bacteria and chloroplasts: Classification, distribution and evolution of RNase E homologs. Mol. Microbiol. 2015, 97, 1021–1135. [Google Scholar] [CrossRef] [Green Version]
- Kime, L.; Vincent, H.A.; Gendoo, D.M.A.; Jourdan, S.S.; Fishwick, C.W.G.; Callaghan, A.J.; McDowall, K.J. The first small-molecule inhibitors of members of the ribonuclease E family. Sci. Rep. 2015, 5, 08028. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mardle, C.E.; Goddard, L.R.; Spelman, B.C.; Atkins, H.S.; Butt, L.E.; Cox, P.A.; Gowers, D.M.; Vincent, H.A.; Callaghan, A.J. Identification and analysis of novel small molecule inhibitors of RNase E: Implications for antibacterial targeting and regulation of RNase E. Biochem. Biophys. Rep. 2020, 23, 100773. [Google Scholar] [CrossRef]
- Rasmussen, L.C.V.; Sperling-Petersen, H.U.; Mortensen, K.K. Hitting bacteria at the heart of the central dogma: Sequence-specific inhibition. Microb. Cell Factories 2007, 6, 24–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bai, H.; Xue, X.; Hou, Z.; Zhou, Y.; Meng, J.; Luo, X. Antisense antibiotics: A brief review of novel target discovery and delivery. Curr. Drug Discov. Technol. 2010, 7, 76–85. [Google Scholar] [CrossRef] [PubMed]
- Sully, E.K.; Geller, B.L. Antisense antimicrobial therapeutics. Curr. Opin. Microbiol. 2016, 33, 47–55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hegarty, J.P.; Stewart, D.B. Advances in therapeutic bacterial antisense biotechnology. Appl. Microbiol. Biotechnol. 2018, 102, 1055–1065. [Google Scholar] [CrossRef]
- Khvorova, A.; Watts, J.K. The chemical evolution of oligonucleotide therapies of clinical utility. Nat. Biotechnol. 2017, 35, 238–248. [Google Scholar] [CrossRef]
- Diwa, A.; Bricker, A.L.; Jain, C.; Belasco, J.G. An evolutionarily conserved RNA stem-loop functions as a sensor that directs feedback regulation of RNase E gene expression. Genome Res. 2000, 14, 1249–1260. [Google Scholar]
- Kurreck, J.; Wyszko, E.; Gillen, C.; Erdmann, V.A. Design of antisense oligonucleotides stabilized by locked nucleic acids. Nucleic Acids Res. 2002, 30, 1911–1918. [Google Scholar] [CrossRef] [Green Version]
- Zamecnik, P.C.; Stephenson, M.L. Inhibition of Rous sarcoma virus replication and cell transformation by a specific oligodeoxynucleotide. Proc. Natl. Acad. Sci. USA 1978, 75, 280–284. [Google Scholar] [CrossRef] [Green Version]
- Stephenson, M.L.; Zamecnik, P.C. Inhibition of Rous sarcoma viral RNA translation by a specific oligodeoxyribonucleotide. Proc. Natl. Acad. Sci. USA 1978, 75, 285–288. [Google Scholar] [CrossRef] [Green Version]
- Roberts, T.C.; Langer, R.; Wood, M.J.A. Advances in oligonucleotide drug delivery. Nat. Rev. Drug Discov. 2020, 19, 673–694. [Google Scholar] [CrossRef] [PubMed]
- Damase, T.R.; Sukhovershin, R.; Boada, C.; Taraballi, F.; Pettigrew, R.I.; Cooke, J.P. The limitless future of RNA therapeutics. Front. Bioeng. Biotechnol. 2021, 9, 628137. [Google Scholar] [CrossRef]
- Hammond, S.M.; Aartsma-Rus, A.; Alves, S.; Borgos, S.E.; Buijsen, R.A.M.; Collin, R.W.J.; Covello, G.; Denti, M.A.; Desviat, L.R.; Echevarría, L.; et al. Delivery of oligonucleotide-based therapeutics: Challenges and opportunities. EMBO Mol. Med. 2021, 13, e13243. [Google Scholar] [CrossRef]
- Lima, W.F.; Monia, B.P.; Ecker, D.J.; Freier, S.M. Implication of RNA structure on antisense oligonucleotide hybridization kinetics. Biochemistry 1992, 31, 12055–12061. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, L.; Hagedorn, P.H.; Lindholm, M.W.; Lindow, M. A kinetic model explains why shorter and less affine enzyme-recruiting oligonucleotides can be more potent. Mol. Ther. Nucleic Acids 2014, 3, e149. [Google Scholar] [CrossRef] [PubMed]
- Bauer, A.W.; Kirby, W.M.; Sherris, J.C.; Turck, M. Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol. 1966, 45, 493–496. [Google Scholar] [CrossRef]
- Good, L.; Awasthi, S.K.; Dryselius, R.; Larsson, O.; Nielsen, P.E. Bactericidal antisense effects of peptide-PNA conjugates. Nat. Biotechnol. 2001, 19, 360–364. [Google Scholar] [CrossRef]
- Nekhotiaeva, N.; Awasthi, S.K.; Nielsen, P.E.; Good, L. Inhibition of Staphylococcus aureus gene expression and growth using antisense peptide nucleic acids. Mol. Ther. 2004, 10, 652–659. [Google Scholar] [CrossRef] [PubMed]
- Kulyté, A.; Nekhotiaeva, N.; Awasthi, S.K.; Good, L. Inhibition of Mycobacterium smegmatis gene expression and growth using antisense peptide nucleic acids. J. Mol. Microbiol. Biotechnol. 2005, 9, 101–109. [Google Scholar] [CrossRef]
- Meng, J.; Da, F.; Ma, X.; Wang, N.; Wang, Y.; Zhang, H.; Li, M.; Zhou, Y.; Xue, X.; Hou, Z.; et al. Antisense growth inhibition of methicillin-resistant Staphylococcus aureus by locked nucleic acid conjugated with cell-penetrating peptide as a novel FtsZ inhibitor. Antimicrob. Agents Chemother. 2014, 59, 914–922. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kurupati, P.; Tan, K.S.W.; Kumarasinghe, G.; Poh, C.-L. Inhibition of gene expression and growth by antisense peptide nucleic acids in a multiresistant β-lactamase-producing Klebsiella pneumoniae strain. Antimicrob. Agents Chemother. 2006, 51, 805–811. [Google Scholar] [CrossRef] [Green Version]
- Hegarty, J.P.; Krzeminski, J.; Sharma, A.K.; Guzman-Villanueva, D.; Weissig, V.; Stewart, D.B., Sr. Bolaamphiphile-based nanocomplex delivery of phosphorothioate gapmer antisense oligonucleotides as a treatment for Clostridium difficile. Int. J. Nanomed. 2016, 11, 3607–3619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katoh, K.; Standley, D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waterhouse, A.M.; Procter, J.B.; Martin, D.M.A.; Clamp, M.; Barton, G.J. Jalview Version 2-a multiple sequence alignment editor and analysis workbench. Bioinformatics 2009, 25, 1189–1191. [Google Scholar] [CrossRef] [Green Version]
- Stothard, P. The Sequence Manipulation Suite: JavaScript programs for analyzing and formatting protein and DNA sequences. Biotechniques 2000, 28, 1102–1110. [Google Scholar] [CrossRef] [Green Version]
- Stephenson, F.H. Calculations for Molecular Biology and Biotechnology; Elsevier Science: Amsterdam, The Netherlands, 2016. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goddard, L.R.; Mardle, C.E.; Gneid, H.; Ball, C.G.; Gowers, D.M.; Atkins, H.S.; Butt, L.E.; Watts, J.K.; Vincent, H.A.; Callaghan, A.J. An Investigation into the Potential of Targeting Escherichia coli rne mRNA with Locked Nucleic Acid (LNA) Gapmers as an Antibacterial Strategy. Molecules 2021, 26, 3414. https://doi.org/10.3390/molecules26113414
Goddard LR, Mardle CE, Gneid H, Ball CG, Gowers DM, Atkins HS, Butt LE, Watts JK, Vincent HA, Callaghan AJ. An Investigation into the Potential of Targeting Escherichia coli rne mRNA with Locked Nucleic Acid (LNA) Gapmers as an Antibacterial Strategy. Molecules. 2021; 26(11):3414. https://doi.org/10.3390/molecules26113414
Chicago/Turabian StyleGoddard, Layla R., Charlotte E. Mardle, Hassan Gneid, Ciara G. Ball, Darren M. Gowers, Helen S. Atkins, Louise E. Butt, Jonathan K. Watts, Helen A. Vincent, and Anastasia J. Callaghan. 2021. "An Investigation into the Potential of Targeting Escherichia coli rne mRNA with Locked Nucleic Acid (LNA) Gapmers as an Antibacterial Strategy" Molecules 26, no. 11: 3414. https://doi.org/10.3390/molecules26113414
APA StyleGoddard, L. R., Mardle, C. E., Gneid, H., Ball, C. G., Gowers, D. M., Atkins, H. S., Butt, L. E., Watts, J. K., Vincent, H. A., & Callaghan, A. J. (2021). An Investigation into the Potential of Targeting Escherichia coli rne mRNA with Locked Nucleic Acid (LNA) Gapmers as an Antibacterial Strategy. Molecules, 26(11), 3414. https://doi.org/10.3390/molecules26113414