Field-Grown and In Vitro Propagated Round-Leaved Sundew (Drosera rotundifolia L.) Show Differences in Metabolic Profiles and Biological Activities
Abstract
:1. Introduction
2. Results and Discussion
2.1. Growth of the Laboratory Propagated Sundew Tissue
2.2. Antiviral Activity
2.3. Antioxidant Activity
2.4. Stability under Different Drying Methods
2.5. Metabolite Profiles
3. Materials and Methods
3.1. Sundew Material, Growth, and Extraction
3.2. The Effects of the Drying of the Plant Material on the Properties of the Extract
3.3. Antioxidant Activity
3.3.1. FRAP (Ferric Reducing Antioxidant Power)
3.3.2. ORAC (Oxygen Radical Absorbance Capacity)
3.3.3. H2O2 Scavenging
3.4. Antiviral Properties
3.5. Stability Analysis by HPLC-DAD
3.6. Metabolic Profiling by UPLC-DAD-MS/MS
3.7. Statistical Methods
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Matušíková, I.; Salaj, J.; Moravčíková, J.; Mlynarova, L.; Nap, J.P.; Libantova, J. Tentacles of in vitro-grown round-leaf sundew (Drosera rotundifolia L.) show induction of chitinase activity upon mimicking the presence of prey. Planta 2005, 222, 1020–1027. [Google Scholar] [CrossRef]
- Baranyai, B.; Joosten, H. Biology, ecology, use, conservation and cultivation of round-leaved sundew (Drosera rotundifolia L.): A review. Mires Peat 2016, 18, 1–28. [Google Scholar] [CrossRef]
- Baranyai, B.; Bäcker, C.; Reich, C.; Lindequist, U. The production of 7-methyljuglone, plumbagin and quercetin in wild and cultivated Drosera rotundifolia and Drosera intermedia. Mires Peat 2016, 18, 1–8. [Google Scholar] [CrossRef]
- Egan, P.A.; van der Kooy, F. Phytochemistry of the carnivorous sundew genus Drosera (Droseraceae)–future perspectives and ethnopharmacological relevance. Chem. Biodivers 2013, 10, 1774–1790. [Google Scholar] [CrossRef]
- Paper, D.H.; Karall, E.; Kremser, M.; Krenn, L. Comparison of the anti-inflammatory effects of Drosera rotundifolia and Drosera madagascariensis in the HET-CAM assay. Phytother. Res. 2005, 19, 323–326. [Google Scholar] [CrossRef]
- Kačániová, M.; Ďurechová, D.; Vuković, N.; Kántor, A.; Petrová, J.; Hleba, L.; Vatľák, A. Antimicrobial activity of Drosera rotundifolia L. J. Anim. Sci. Biotechnol. 2015, 47, 366–369. [Google Scholar] [CrossRef] [Green Version]
- Durechová, D.; Kacániová, M.; Terentjeva, M.; Petrová, J.; Hleba, L.; Kata, I. Antibacterial activity of Drosera rotundifolia L. against gram-positive and gram-negative bacteria. J. Microbiol. Biotechnol. Food Sci. 2016, 5, 20. [Google Scholar] [CrossRef] [Green Version]
- Poikulainen, E.; Tienaho, J.; Sarjala, T.; Santala, V. A panel of bioluminescent whole-cell bacterial biosensors for the screening for new antibacterial substances from natural extracts. J. Microbiol. Methods 2020, 178, 106083. [Google Scholar] [CrossRef]
- Lieberherr, C.; Zhang, G.; Grafen, A.; Singethan, K.; Kendl, S.; Vogt, V.; Maier, J.; Bringmann, G.; Schneider-Schaulies, J. The plant-derived naphthoquinone Droserone inhibits in vitro measles virus infection. Planta Med. 2017, 83, 232–238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lalani, S.; Poh, C.L. Flavonoids as antiviral agents for Enterovirus A71 (EV-A71). Viruses 2020, 12, 184. [Google Scholar] [CrossRef] [Green Version]
- Ghate, N.B.; Chaudhuri, D.; Das, A.; Panja, S.; Mandal, N. An antioxidant extract of the insectivorous plant Drosera burmannii Vahl. alleviates iron-induced oxidative stress and hepatic injury in mice. PLoS ONE 2015, 10, e0128221. [Google Scholar] [CrossRef]
- Banasiuk, R.; Kawiak, A.; Królicka, A. In vitro cultures of carnivorous plants from the Drosera and Dionaea genus for the production of biologically active secondary metabolites. BioTechnologia 2012, 93, 87–96. [Google Scholar] [CrossRef] [Green Version]
- Hämet-Ahti, L.; Suominen, J.; Ulvinen, T.; Uotila, P. (Eds.) Retkeilykasvio (Field Flora of Finland); Finnish Museums of Natural History; Botanical Museum: Helsinki, Finland, 1998. [Google Scholar]
- Galambosi, B.; Galambosi, Z.; Repcák, M. Growth, yield and secondary metabolite production of Drosera species cultivated in peat beds in Finland. Suo 2000, 51, 47–57. [Google Scholar]
- Jadczak, P.; Kulpa, D.; Zbrojewska, A. In Vitro Micropropagation of Drosera rotundifolia. World Sci. News 2017, 66, 75–85. [Google Scholar]
- Kämäräinen, T.; Uusitalo, J.; Jalonen, J.; Laine, K.; Hohtola, A. Regional and habitat differences in 7-methyljuglone content of Finnish Drosera rotundifolia. Phytochemistry 2003, 63, 309–314. [Google Scholar] [CrossRef]
- Ruokolainen, V.; Domanska, A.; Laajala, M.; Pelliccia, M.; Butcher, S.J.; Marjomäki, V. Extracellular albumin and endosomal ions prime enterovirus particles for uncoating that can be prevented by fatty acid saturation. J. Virol. 2019, 93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hyöty, H. Viruses in type 1 diabetes. Pediatr. Diabetes 2016, 17, 56–64. [Google Scholar] [CrossRef]
- Linnakoski, R.; Reshamwala, D.; Veteli, P.; Cortina-Escribano, M.; Vanhanen, H.; Marjomäki, V. Antiviral agents from fungi: Diversity, mechanisms and potential applications. Front. Microbiol. 2018, 9, 2325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, C.J.; Liu, C.H.; Wang, J.Y.; Lin, C.C.; Li, Y.F.; Richardson, C.D.; Lin, L.T. Small molecules targeting coxsackievirus A16 capsid inactivate viral particles and prevent viral binding. Emerg. Microbes Infect. 2018, 7, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Tuominen, A. Tannins and Other Polyphenols in Geranium sylvaticum: Identification, Intraplant Distribution and Biological Activity. Ph.D. Thesis, University of Turku, Turku, Finland, 2017. [Google Scholar]
- Zehl, M.; Braunberger, C.; Conrad, J.; Crnogorac, M.; Krasteva, S.; Vogler, B.; Beifuss, U.; Krenn, L. Identification and quantification of flavonoids and ellagic acid derivatives in therapeutically important Drosera species by LC–DAD, LC–NMR, NMR, and LC–MS. Anal. Bioanal. Chem. 2011, 400, 2565–2576. [Google Scholar] [CrossRef]
- Braunberger, C.; Zehl, M.; Conrad, J.; Fischer, S.; Adhami, H.R.; Beifuss, U.; Krenn, L. LC–NMR, NMR, and LC–MS identification and LC–DAD quantification of flavonoids and ellagic acid derivatives in Drosera peltata. J. Chromatogr. B 2013, 932, 111–116. [Google Scholar] [CrossRef]
- Jia, X.; Luo, H.; Xu, M.; Zhai, M.; Guo, Z.; Qiao, Y.; Wang, L. Dynamic changes in phenolics and antioxidant capacity during pecan (Carya illinoinensis) kernel ripening and its phenolics profiles. Molecules 2018, 23, 435. [Google Scholar] [CrossRef] [Green Version]
- Marczak, Ł.; Kawiak, A.; Łojkowska, E.; Stobiecki, M. Secondary metabolites in in vitro cultured plants of the genus Drosera. Phytochem. Anal. 2005, 16, 143–149. [Google Scholar] [CrossRef] [PubMed]
- Salminen, J.P.; Karonen, M. Chemical ecology of tannins and other phenolics: We need a change in approach. Funct. Ecol. 2011, 25, 325–338. [Google Scholar] [CrossRef]
- Landete, J.M. Ellagitannins, ellagic acid and their derived metabolites: A review about source, metabolism, functions and health. Food Res. Int. 2011, 44, 1150–1160. [Google Scholar] [CrossRef]
- Yang, B.; Liu, P. Composition and biological activities of hydrolyzable tannins of fruits of Phyllanthus emblica. J. Agric. Food Chem. 2014, 62, 529–541. [Google Scholar] [CrossRef]
- Heleno, S.A.; Martins, A.; Queiroz, M.J.R.; Ferreira, I.C. Bioactivity of phenolic acids: Metabolites versus parent compounds: A review. Food Chem. 2015, 173, 501–513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karak, P. Biological activities of flavonoids: An overview. Int. J. Pharm. Sci. Res. 2019, 10, 1567–1574. [Google Scholar] [CrossRef]
- Mbaveng, A.T.; Kuete, V. Review of the chemistry and pharmacology of 7-methyljugulone. Afr. Health Sci. 2014, 14, 201–205. [Google Scholar] [CrossRef] [Green Version]
- Lourenço, S.C.; Moldão-Martins, M.; Alves, V.D. Antioxidants of natural plant origins: From sources to food industry applications. Molecules 2019, 24, 4132. [Google Scholar] [CrossRef] [Green Version]
- Du, N.; Li, X.H.; Bao, W.G.; Wang, B.; Xu, G.; Wang, F. Resveratrol-loaded nanoparticles inhibit enterovirus 71 replication through the oxidative stress-mediated ERS/autophagy pathway. Int. J. Mol. Med. 2019, 44, 737–749. [Google Scholar] [CrossRef]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Benzie, I.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [Green Version]
- Vaario, L.-M.; Asamizu, S.; Sarjala, T.; Matsushita, N.; Onaka, H.; Xia, Y.; Kurokochi, H.; Morinaga, S.-I.; Huang, J.; Zhang, S.; et al. Bioactive properties of Streptomyces may affect the dominance of Tricholoma matsutake in shiro. Symbiosis 2020, 81, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Huang, D.; Ou, B.; Hampsch-Woodill, M.; Flanagan, J.A.; Prior, R.L. High-throughput assay of oxygen radical absorbance capacity (ORAC) using a multichannel liquid handling system coupled with a microplate fluorescence reader in 96-well format. J. Argic. Food Chem. 2002, 50, 4437–4444. [Google Scholar] [CrossRef]
- Prior, R.L.; Hoang, H.; Gu, L.; Wu, X.; Bacchiocca, M.; Howard, L.; Hampsch-Woodill, M.; Huang, D.; Ou, B.; Jacob, R. Assays for hydrophilic and lipophilic antioxidant capacity (oxygen radical absorbance capacity (ORAC(FL)) of plasma and other biological and food samples. J. Argic. Food Chem. 2003, 51, 3273–3279. [Google Scholar] [CrossRef] [PubMed]
- Hazra, B.; Biswas, S.; Mandal, N. Antioxidant and free radical scavenging activity of Spondias pinnata. BMC Complement. Altern. Med. 2008, 8, 63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, Z.-Y.; Woollard, A.C.; Wolff, S.P. Hydrogen peroxide production during experimental protein glycation. FEBS Lett. 1990, 268, 69–71. [Google Scholar] [CrossRef] [Green Version]
- Myllynen, M.; Kazmertsuk, A.; Marjomäki, V. A novel open and infectious form of echovirus 1. J. Virol 2016, 90, 6759–6770. [Google Scholar] [CrossRef] [Green Version]
- Schmidtke, M.; Schnittler, U.; Jahn, B.; Dahse, H.M.; Stelzner, A. A rapid assay for evaluation of antiviral activity against coxsackie virus B3, influenza virus A, and herpes simplex virus type 1. J. Virol. Methods 2001, 95, 133–143. [Google Scholar] [CrossRef]
- Engström, M.T.; Pälijärvi, M.; Fryganas, C.; Grabber, J.H.; Mueller-Harvey, I.; Salminen, J.P. Rapid qualitative and quantitative analyses of proanthocyanidin oligomers and polymers by UPLC-MS/MS. J. Agric. Food Chem. 2014, 62, 3390–3399. [Google Scholar] [CrossRef] [PubMed]
- Engström, M.T.; Pälijärvi, M.; Salminen, J.P. Rapid fingerprint analysis of plant extracts for ellagitannins, gallic acid, and quinic acid derivatives and quercetin-, kaempferol-and myricetin-based flavonol glycosides by UPLC-QqQ-MS/MS. J. Agric. Food Chem. 2015, 63, 4068–4079. [Google Scholar] [CrossRef] [PubMed]
# | RTTIC | RTUV | Compound | UV λmax (nm) * | Exact Mass Detected | Exact Mass Calculated | Characteristic MS/MS Values | Peak Area ** |
---|---|---|---|---|---|---|---|---|
1 | 0.59 | - | Quinic acid | - | 192.06188 | 192.06339 | 111, 129, 173 | *** |
2 | 1.29 | 1.25 | Monogalloyl glucose (β-) | 216, 278 | 332.07366 | 332.07435 | 125, 151, 169, 211, 271 | 601 ± 190 |
3 | 2.49 | 2.46 | Digalloyl glycose | 226, 273 | 484.08492 | 484.08531 | 125, 151, 169, 211, 271, 331 | 205 ± 79 |
4 | 2.57 | 2.55 | Coumaric acid glycoside | 296 | 326.10021 | 326.10017 | 163 | 164 ± 36 |
5 | 3.01 | 2.98 | Methyljuglone diglycoside | 232, 298 | 514.16805 | 514.16865 | 188, 351 | 98 ± 26 |
6 | 3.32 | 3.29 | Dihydromyricetin | 232, 269, 298 | 320.05257 | 320.05322 | 71, 97, 109, 139, 153, 165, 183 | 125 ± 38 |
7 | 3.39 | 3.34 | Ellagic acid glycoside | 253, 361 | 464.05901 | 464.05910 | 172, 216, 244, 284, 301 | 661 ± 155 |
8 | 3.66 | 3.63 | Myricetin-glycoside | 208, 225, 257, 357 | 480.08949 | 480.09040 | 179, 271, 316 | 1154 ± 294 |
9 | 3.72 | 3.67 | Hexahydroxyflavone-galloyl-glycoside | 200, 226, 265, 298, 359 | 632.10042 | 632.10136 | 109, 137, 151, 179, 317, 479 | 664 ± 155 |
10 | 3.83 | 3.80 | Tetrahydroxyflavone | 264 | 286.04711 | 286.04774 | 121, 137,165 | 118 ± 32 |
11 | 3.86 | 3.84 | Unknown | 235, 272, 278 | 348.08403 | 348.08452 | 329 | 27 ± 5 |
12 | 3.93 | 3.90 | Ellagic acid | 200, 254, 368 | 302.00557 | 302.00627 | 257, 271, 299 | 4390 ± 1041 |
13 | 4.04 | 4.01 | Hyperoside | 215, 255, 356 | 464.09474 | 464.09548 | 255, 271, 300, 301 | 8357 ± 2151 |
14 | 4.11 | 4.08 | Galloylhyperoside | 226, 264, 257 | 616.10542 | 616.10644 | 151, 301, 463 | 19,141 ± 4914 |
15 | 4.28 | 4.25 | Methyljuglone glycoside | 228, 309, 327, 342 | 352.11540 | 352.11582 | 189 | 1601 ± 353 |
16 | 4.33 | 4.31 | Dimethylellagic acid glycoside | 246, 370 | 492.08986 | 492.09040 | 270, 298, 313, 328, 476 | 1271 ± 333 |
17 | 4.42 | 4.39 | Kaempferol-galloyl-glycoside | 265, 346 | 600.11073 | 600.11153 | 125, 151, 169, 285, 313 | 349 ± 80 |
18 | 4.68 | 4.64 | Quercetin glycoside | 254, 357 | 464.0949 | 464.09548 | 107, 151, 179, 255, 271, 300, 301 | 359 ± 74 |
19 | 4.79 | 4.76 | Methylellagic acid | 250, 373 | 316.02181 | 316.02192 | 300 | 152 ± 41 |
20 | 4.92 | 4.89 | Hydroxybenzoylhyperin | 256, 358 | 584.11659 | 584.11661 | 107, 151, 179, 255, 271, 301, 463 | 194 ± 46 |
21 | 5.17 | 5.14 | Methyljuglone | 216, 226, 317, 333, 349,428 | 190.06185 | 190.06300 | 115, 130, 145, 161, 171, 174, 188 | - |
22 | 5.25 | 5.22 | Quercetin glycoside gallate | 257, 290, 298, 348 | 616.10603 | 616.10644 | 189, 299, 507 | 464 ± 95 |
23 | 5.37 | 5.34 | Quercetin | 255, 371 | 302.04225 | 302.04266 | 107, 151, 179 | 480 ± 120 |
24 | 5.70 | 5.67 | Dimethylellagic acid | 247, 377 | 330.03716 | 330.03757 | 299, 314 | 981 ± 249 |
# | RTTIC | RTUV | Compound | UV λmax (nm) * | Exact Mass Detected | Exact Mass Calculated | Characteristic MS/MS Values | Peak Area ** |
---|---|---|---|---|---|---|---|---|
1 | 0.59 | - | Quinic acid | - | 192.06188 | 192.06339 | - | *** |
2 | 1.28 | 1.24 | Monogalloyl glucose (β-) | 213, 275 | 332.07436 | 332.07435 | 125, 151, 169, 211, 271 | 281 ± 9 |
3 | 2.57 | 2.55 | Coumaric acid glycoside | 295 | 326.10030 | 326.10017 | 163 | 250 ± 7 |
4 | 3.04 | 3.01 | Methyljuglone diglycoside Coumaric acid glycoside isomer | 275, 317 | 514.16817 326.09993 | 514.16865 326.10017 | 188, 351 117, 145, 163, 187 | 146 ± 13 |
5 | 3.24 | 3.21 | Two co-eluting unknowns | 238, 271 | 482.10536 370.12584 | 482.10605 370.12639 | 57, 125, 151, 179, 193, 283, 463 59, 71, 85, 101, 143, 159, 171, 189, 207 | 113 ± 2 |
6 | 3.41 | 3.35 | Ellagic acid glycoside | 253, 361 | 464.05901 | 464.05910 | 132, 145, 172, 216, 244, 284, 301 | 189 ± 17 |
7 | 3.66 | 3.63 | Myricetin-glycoside | 255, 305, 311, 349, 356 | 480.08949 | 480.09040 | 124, 151, 179, 271, 287, 316 | 166 ± 5 |
8 | 3.95 | 3.92 | Ellagic acid | 254, 369 | 302.00594 | 302.00627 | 257, 271, 299 | 1305 ± 90 |
9 | 4.04 | 4.01 | Hyperoside | 253, 357 | 464.09459 | 464.09548 | 107, 151, 179, 255, 271, 300, 301 | 557 ± 27 |
10 | 4.09 | 4.06 4.08 | Galloylhyperoside Hyperoside | 255, 349 256, 358 | 616.1058 5464.09480 | 616.10644 464.09548 | 107, 151, 179, 255, 271, 300, 301 | 158 ± 32 |
11 | 4.28 | 4.25 | Methyljuglone glycoside | 228, 309, 327, 342 | 352.11537 | 352.11582 | 189 | 179 ± 132 |
12 | 4.35 | 4.32 | Dimethylellagic acid glycoside | 246, 370 | 492.08943 | 492.09040 | 270, 298, 313, 328, 476 | 1435 ± 184 |
13 | 4.92 | - | Hydroxybenzoylhyperin | - | 584.11775 | 584.11661 | 151, 179, 215, 243, 271, 287, 301, 316 | - |
14 | 5.17 | 5.14 | Methyljuglone | 251, 349, 428 | 190.06183 | 190.06300 | 115, 130, 145, 161, 171, 174, 188 | - |
15 | 5.24 | 5.22 | Syringetin glycoside | 251, 290 | 508.12154 | 508.12170 | 125, 151, 179, 217, 275, 285, 303, 345, 447, 465 | 37 ± 3 |
16 | 5.55 | 5.52 | Spinatoside | 257 | 522.10103 | 522.10096 | 185, 229, 257, 285, 300, 313, 328, 343, 491, 506 | - |
17 | 5.70 | 5.67 | Dimethylellagic acid | 247, 374 | 330.03703 | 330.03757 | 299, 314 | 379 ± 38 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tienaho, J.; Reshamwala, D.; Karonen, M.; Silvan, N.; Korpela, L.; Marjomäki, V.; Sarjala, T. Field-Grown and In Vitro Propagated Round-Leaved Sundew (Drosera rotundifolia L.) Show Differences in Metabolic Profiles and Biological Activities. Molecules 2021, 26, 3581. https://doi.org/10.3390/molecules26123581
Tienaho J, Reshamwala D, Karonen M, Silvan N, Korpela L, Marjomäki V, Sarjala T. Field-Grown and In Vitro Propagated Round-Leaved Sundew (Drosera rotundifolia L.) Show Differences in Metabolic Profiles and Biological Activities. Molecules. 2021; 26(12):3581. https://doi.org/10.3390/molecules26123581
Chicago/Turabian StyleTienaho, Jenni, Dhanik Reshamwala, Maarit Karonen, Niko Silvan, Leila Korpela, Varpu Marjomäki, and Tytti Sarjala. 2021. "Field-Grown and In Vitro Propagated Round-Leaved Sundew (Drosera rotundifolia L.) Show Differences in Metabolic Profiles and Biological Activities" Molecules 26, no. 12: 3581. https://doi.org/10.3390/molecules26123581
APA StyleTienaho, J., Reshamwala, D., Karonen, M., Silvan, N., Korpela, L., Marjomäki, V., & Sarjala, T. (2021). Field-Grown and In Vitro Propagated Round-Leaved Sundew (Drosera rotundifolia L.) Show Differences in Metabolic Profiles and Biological Activities. Molecules, 26(12), 3581. https://doi.org/10.3390/molecules26123581