New Insights on Volatile Components of Vanilla planifolia Cultivated in Taiwan
Abstract
:1. Introduction
2. Results
2.1. Analysis of the Volatile Components of Taiwan-Cultivated Vanilla Pods Using HS-SPME
2.2. Comparison of Volatile Components under Different Conditions during the Processing of Taiwan-Cultivated Vanilla
2.2.1. Different Harvest Maturity
2.2.2. Different Conditions during the Curing Process
2.2.3. Microorganism Treatments during the Curing Process
2.3. Comparison of Volatile Components of Taiwan-Cultivated Vanilla from Different Regions
3. Materials and Methods
3.1. Plant Materials
3.2. Different Vanilla Processing Conditions
3.2.1. Comparison of Volatile Components under Different Conditions during the Processing of Taiwan-Cultivated Vanilla
- (a)
- Killing temperature and time: fresh vanilla pods were tested under the following four conditions: vanilla pods immersion in hot water at 65 °C three times for 1 min each, 65 °C for 3 min, 70 °C three times for 30 s each, and 80 °C three times for 10 s each.
- (b)
- Sweating temperature: the vanilla pods were subjected to sweating at 40 °C and 45 °C in the fermentation machine after killing. The pods were treated at 40 or 45 °C for 8 h, then moved to room temperature for 16 h and temperature-changed for 10 days.
3.2.2. Comparison of Volatile Components of Taiwan-Cultivated Vanilla from Different Regions
3.3. HS-SPME Operating Conditions and GC / GC-MS Instrument Analysis
3.3.1. Analysis of Vanilla Pods Using HS-SPME
3.3.2. Gas Chromatography (GC-FID)
3.3.3. Gas Chromatography-Mass Spectrometry (GC-MS)
3.3.4. Relative Percentage Calculation
3.4. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Gallage, N.J.; Moller, B.L. Vanillin-bioconversion and bioengineering of the most popular plant flavor and its de novo biosynthesis in the vanilla orchid. Mol. Plant 2015, 8, 40–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bythrow, J.D. Vanilla as a Medicinal Plant. Semin. Integr. Med. 2005, 3, 129–131. [Google Scholar] [CrossRef]
- Anuradha, K.; Shyamala, B.N.; Naidu, M.M. Vanilla—Its science of cultivation, curing, chemistry, and nutraceutical properties. Crit. Rev. Food Sci. Nutr. 2013, 53, 1250–1276. [Google Scholar] [CrossRef]
- Korthou, H.; Verpoorte, R. Vanilla. In Flavours and Fragrances; Springer: Berlin/Heidelberg, Germany, 2007; pp. 203–217. [Google Scholar]
- Ramachandra Rao, S.; Ravishankar, G.A. Vanilla flavour: Production by conventional and biotechnological routes. J. Sci. Food Agric. 2000, 80, 289–304. [Google Scholar] [CrossRef]
- Alexander, C.; Venkatramanan, A. Analytic Approximations for Multi-Asset Option Pricing. Math. Financ. 2012, 22, 667–689. [Google Scholar] [CrossRef]
- Anuradha, K.; Naidu, M.M.; Manohar, R.S.; Indiramma, A.R. Effect of vanilla extract on radical scavenging activity in biscuits. Flavour Fragr. J. 2010, 25, 488–492. [Google Scholar] [CrossRef]
- Aguirre-Alonso, R.O.; Morales-Guillermo, M.; Salgado-Cervantes, M.A.; Robles-Olvera, V.J.; García-Alvarado, M.A.; Rodríguez-Jimenes, G.C. Effect of process variables of spray drying employing heat pump and nitrogen on aromatic compound yield in powders obtained from vanilla (Vanilla planifolia Andrews) ethanolic extract. Dry. Technol. 2019, 37, 1806–1820. [Google Scholar] [CrossRef]
- Wilde, A.S.; Frandsen, H.L.; Fromberg, A.; Smedsgaard, J.; Greule, M. Isotopic characterization of vanillin ex glucose by GC-IRMS-New challenge for natural vanilla flavour authentication? Food Control. 2019, 106, 106735. [Google Scholar] [CrossRef]
- Brunschwig, C.; Rochard, S.; Pierrat, A.; Rouger, A.; Senger-Emonnot, P.; George, G.; Raharivelomanana, P. Volatile composition and sensory properties of Vanilla x tahitensis bring new insights for vanilla quality control. J. Sci. Food Agric. 2016, 96, 848–858. [Google Scholar] [CrossRef] [PubMed]
- Gillette, M.; Hoffman, P. Vanilla extract. Encycl. Food Sci. Technol. 1992, 4, 2641–2657. [Google Scholar]
- Takahashi, M.; Inai, Y.; Miyazawa, N.; Kurobayashi, Y.; Fujita, A. Identification of the key odorants in Tahitian cured vanilla beans (Vanilla tahitensis) by GC-MS and an aroma extract dilution analysis. Biosci. Biotechnol. Biochem. 2013, 77, 601–605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brunschwig, C.; Senger-Emonnot, P.; Aubanel, M.L.; Pierrat, A.; George, G.; Rochard, S.; Raharivelomanana, P. Odor-active compounds of Tahitian vanilla flavor. Food Res. Int. 2012, 46, 148–157. [Google Scholar] [CrossRef]
- Hassan, S.; Araceli, P.-S.; Denis, B.; los Ángeles, V.-V.M.d.; Mayra, N.-G.; Delfino, R.-L. Identification of volatile compounds in cured Mexican vanilla (Vanilla planifoliaG. Jackson) beans using headspace solid-phase microextraction with gas chromatography-mass spectrometry. Fruits 2016, 71, 407–418. [Google Scholar] [CrossRef]
- Liang, H.; Lu, J.; Dai, Y.; Li, X.; Guo, S.; Li, Q. Analysis of the Volatile Components in the Fruits of Vanilla planifoli Andrews by HS-SPME Combined with GC-MS. Med. Plant 2014, 5, 23–26. [Google Scholar]
- Xu, M.; Jin, Z.; Gu, Z.; Rao, J.; Chen, B. Changes in odor characteristics of pulse protein isolates from germinated chickpea, lentil, and yellow pea: Role of lipoxygenase and free radicals. Food Chem. 2020, 314, 126184. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Silva, A.; Odoux, E.; Brat, P.; Ribeyre, F.; Rodriguez-Jimenes, G.; Robles-Olvera, V.; García-Alvarado, M.A.; Günata, Z. GC–MS and GC–olfactometry analysis of aroma compounds in a representative organic aroma extract from cured vanilla (Vanilla planifolia G. Jackson) beans. Food Chem. 2006, 99, 728–735. [Google Scholar] [CrossRef]
- Mariezcurrena, M.D.; Zavaleta, H.A.; Waliszewski, K.N.; Snchez, V. The effect of killing conditions on the structural changes in vanilla (Vanilla planifolia, Andrews) pods during the curing process. Int. J. Food Sci. Technol. 2008, 43, 1452–1457. [Google Scholar] [CrossRef]
- Pardio, V.T.; Flores, A.; Lopez, K.M.; Martinez, D.I.; Marquez, O.; Waliszewski, K.N. Effect of endogenous and exogenous enzymatic treatment of green vanilla beans on extraction of vanillin and main aromatic compounds. J. Food Sci. Technol. 2018, 55, 2059–2067. [Google Scholar] [CrossRef] [PubMed]
- Roling, W.F.; Kerler, J.; Braster, M.; Apriyantono, A.; Stam, H.; van Verseveld, H.W. Microorganisms with a taste for vanilla: Microbial ecology of traditional Indonesian vanilla curing. Appl. Environ. Microbiol. 2001, 67, 1995–2003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.; Gu, F.; Li, J.; He, S.; Xu, F.; Fang, Y. Involvement of Colonizing Bacillus Isolates in Glucovanillin Hydrolysis during the Curing of Vanilla planifolia Andrews. Appl. Environ. Microbiol. 2015, 81, 4947–4954. [Google Scholar] [CrossRef]
- Gu, F.; Chen, Y.; Fang, Y.; Wu, G.; Tan, L. Contribution of Bacillus Isolates to the Flavor Profiles of Vanilla Beans Assessed through Aroma Analysis and Chemometrics. Molecules 2015, 20, 18422–18436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Komes, D.; Ulrich, D.; Lovric, T. Characterization of odor-active compounds in Croatian Rhine Riesling wine, subregion Zagorje. Eur. Food Res. Technol. 2005, 222, 1–7. [Google Scholar] [CrossRef]
- Schifferdecker, A.J.; Dashko, S.; Ishchuk, O.P.; Piskur, J. The wine and beer yeast Dekkera bruxellensis. Yeast 2014, 31, 323–332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niu, Y.; Zhang, X.; Xiao, Z.; Song, S.; Eric, K.; Jia, C.; Yu, H.; Zhu, J. Characterization of odor-active compounds of various cherry wines by gas chromatography-mass spectrometry, gas chromatography-olfactometry and their correlation with sensory attributes. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2011, 879, 2287–2293. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, M.; Inai, Y.; Miyazawa, N.; Kurobayashi, Y.; Fujita, A. Key odorants in cured Madagascar vanilla beans (Vanilla planiforia) of differing bean quality. Biosci. Biotechnol. Biochem. 2013, 77, 606–611. [Google Scholar] [CrossRef] [PubMed]
- Januszewska, R.; Giret, E.; Clement, F.; Van Leuven, I.; Goncalves, C.; Vladislavleva, E.; Pradal, P.; Nabo, R.; Landuyt, A.; D'Heer, G.; et al. Impact of vanilla origins on sensory characteristics of chocolate. Food Res. Int. 2020, 137, 109313. [Google Scholar] [CrossRef] [PubMed]
- Kovats, E. Gas chromatographic characterization of organic compounds. I. Retention indexes of aliphatic halides, alcohols, aldehydes, and ketones. Helv. Chim. Acta 1958, 41, 1915. [Google Scholar] [CrossRef]
Compounds A | RI B | Relative Percentage C (%) |
---|---|---|
Alcohols | ||
benzyl alcohol | 999 | 0.77 ± 0.14 |
2-ethyl-1-hexanol | 1007 | <0.01 |
phenethyl alcohol | 1080 | 0.29 ± 0.04 |
anise alcohol | 1250 | 0.39 ± 0.02 |
cinnamic alcohol | 1268 | 0.06 ± 0.00 |
Aldehydes | ||
furfural | 799 | 0.56 ± 0.12 |
benzaldehyde | 928 | 0.25 ± 0.05 |
salicylaldehyde | 1006 | 0.22 ± 0.07 |
nonanal | 1074 | 0.12 ± 0.02 |
safranal | 1172 | 0.08 ± 0.02 |
anisaldehyde | 1212 | 0.16 ± 0.01 |
p-hydroxybenzaldehyde | 1335 | 1.32 ± 0.15 |
vanillin | 1373 | 75.80 ± 9.64 |
methylvanillin | 1428 | 0.20 ± 0.06 |
Esters | ||
benzyl acetate | 1125 | 0.13 ± 0.01 |
methyl salicylate | 1166 | 0.31 ± 0.09 |
phenethyl acetate | 1221 | 0.06 ± 0.00 |
Ketones | ||
acetophenone | 1030 | <0.01 |
acetovanillone | 1446 | 0.12 ± 0.00 |
Monoterpene | ||
limonene | 1016 | 0.14 ± 0.03 |
Phenols | ||
p-cresol | 1043 | 0.69 ± 0.12 |
guaiacol | 1056 | 1.78 ± 0.30 |
p-creosol | 1161 | 0.46 ± 0.06 |
p-vinylguaiacol | 1280 | 0.14 ± 0.01 |
Sesquiterpenes | ||
α-copaene | 1380 | 0.17 ± 0.03 |
α-bergamotene | 1441 | 0.49 ± 0.04 |
α-amorphene | 1474 | 0.08 ± 0.00 |
α-muurolene | 1498 | 0.12 ± 0.05 |
δ-cadinene | 1517 | 0.07 ± 0.01 |
Others | ||
3,5-octadien-2-one | 1035 | 0.08 ± 0.04 |
tetramethylpyrazine | 1061 | 0.06 ± 0.02 |
unknown | 13.36 | |
total | 85.17 |
RI A | Compounds B | Relative Percentage C (%) | ||
---|---|---|---|---|
Different Maturity (Weeks) | ||||
34 D | 38 E | 42 F | ||
799 | furfural | 0.20 ± 0.10a | 0.41 ± 0.20a | 0.28 ± 0.10a |
928 | benzaldehyde | 0.13 ± 0.03a | 0.31 ± 0.20a | 0.22 ± 0.11a |
959 | phenol | 0.46 ± 0.10a | 1.21 ± 0.87a | 0.71 ± 0.37a |
999 | benzyl alcohol | 0.83 ± 0.12a | 0.74 ± 0.37a | 1.16 ± 0.18a |
1005 | 3-octen-2-one | -G | - | 0.62 ± 0.50 |
1017 | 2-hydroxybenzaldehyde | 0.08 ± 0.07a | 0.09 ± 0.04a | 0.17 ± 0.15a |
1043 | p-cresol | 0.19 ± 0.04a | 0.41 ± 0.22a | 0.29 ± 0.07a |
1049 | 1-octanol | - | - | 0.06 ± 0.02 |
1056 | guaiacol | 1.42 ± 0.38a | 2.03 ± 0.97a | 2.43 ± 0.58a |
1074 | nonanal | 1.27 ± 0.24a | 0.29 ± 0.18b | 0.91 ± 0.21a |
1080 | phenylethyl alcohol | - | 0.22 ± 0.07 | 0.23 ± 0.04 |
1125 | benzyl acetate | 0.09 ± 0.01a | 0.12 ± 0.02a | 0.12 ± 0.03a |
1161 | p-creosol | 0.24 ± 0.05a | 0.38 ± 0.13a | 0.37 ± 0.08a |
1166 | methyl salicylate | 0.19 ± 0.05a | 0.18 ± 0.08a | 0.16 ± 0.05a |
1180 | safranal | 0.13 ± 0.05a | 0.06 ± 0.03a | 0.08 ± 0.03a |
1212 | anisaldehyde | 0.07 ± 0.01a | 0.08 ± 0.02a | 0.08 ± 0.02a |
1221 | phenethyl acetate | 0.03 ± 0.01a | 0.05 ± 0.02a | 0.04 ± 0.02a |
1250 | anise alcohol | 0.23 ± 0.02a | 0.24 ± 0.04a | 0.29 ± 0.02a |
1268 | cinnamyl alcohol | 0.04 ± 0.01a | 0.03 ± 0.00a | 0.05 ± 0.01a |
1280 | p-vinylguaiacol | 0.07 ± 0.00a | 0.09 ± 0.02a | 0.09 ± 0.02a |
1335 | p-hydroxybenzaldehyde | 0.62 ± 0.08a | 0.63 ± 0.03a | 0.71 ± 0.08a |
1373 | vanillin | 86.74 ± 3.01a | 73.41 ± 2.32b | 80.44 ± 4.60b |
total | 93.06 | 80.96 | 89.50 |
RI A | Compounds B | Relative Percentage C (%) | |||||
---|---|---|---|---|---|---|---|
K1 E | K2 F | K3 G | K4 H | S1 I | S2 J | ||
799 | furfural | 0.45 ± 0.04a | 0.51 ± 0.02a | 0.63 ± 0.10a | 0.50 ± 0.08a | 0.54 ± 0.05a | 0.51 ± 0.16a |
928 | benzaldehyde | 0.38 ± 0.16a | 0.29 ± 0.03a | 0.30 ± 0.04a | 0.31 ± 0.04a | 0.22 ± 0.04a | 0.20 ± 0.08a |
959 | phenol | - D | <0.01 | - | - | <0.01 | <0.01 |
999 | benzyl alcohol | 1.15 ± 0.17a | 1.26 ± 0.13a | 1.42 ± 0.22a | 1.63 ± 0.21a | 0.96 ± 0.12b | 0.97 ± 0.20b |
1007 | 2-ethyl-1-hexanol | 0.23 ± 0.01 | 0.29 ± 0.02 | <0.01 | <0.01 | <0.01 | <0.01 |
1016 | limonene | - | - | - | 0.07 ± 0.01 | <0.01 | 0.04 ± 0.01 |
1030 | acetophenone | - | - | 0.04 ± 0.00 | 0.07 ± 0.04 | - | - |
1043 | p-cresol | 0.91 ± 0.06a | 1.10 ± 0.07a | 1.08 ± 0.12a | 0.80 ± 0.09b | 0.72 ± 0.02b | 0.67 ± 0.07b |
1049 | 1-octanol | <0.01 | <0.01 | <0.01 | - | <0.01 | <0.01 |
1056 | guaiacol | 2.83 ± 0.12c | 2.94 ± 0.17bc | 4.31 ± 0.69b | 6.89 ± 1.02a | 1.80 ± 0.02cd | 1.28 ± 0.09d |
1061 | tetramethylpyrazine | <0.01 | <0.01 | - | <0.01 | 0.08 ± 0.01 | 0.07 ± 0.01 |
1074 | nonanal | 0.09 ± 0.01b | 0.10 ± 0.01ab | - | 0.13 ± 0.02a | 0.10 ± 0.01ab | 0.08 ± 0.01b |
1080 | phenylethyl alcohol | 0.29 ± 0.02bc | 0.32 ± 0.03ab | 0.32 ± 0.02ab | 0.38 ± 0.03a | 0.33 ± 0.02ab | 0.25 ± 0.02c |
1125 | benzyl acetate | 0.17 ± 0.02b | 0.18 ± 0.02b | 0.24 ± 0.01a | 0.24 ± 0.03a | 0.16 ± 0.02b | 0.15 ± 0.02b |
1161 | p-creosol | 0.63 ± 0.07bc | 0.72 ± 0.05bc | 0.92 ± 0.10b | 1.53 ± 0.26a | 0.42 ± 0.00cd | 0.26 ± 0.03d |
1166 | methyl salicylate | 0.13 ± 0.01b | 0.14 ± 0.01b | 0.16 ± 0.01b | <0.01 | 0.26 ± 0.01a | 0.29 ± 0.05a |
1172 | safranal | 0.06 ± 0.01b | 0.06 ± 0.01b | 0.08 ± 0.01ab | 0.10 ± 0.02a | 0.07 ± 0.01ab | 0.06 ± 0.01b |
1194 | β-cyclocitral | 0.10 ± 0.03a | 0.09 ± 0.03a | <0.01 | <0.01 | <0.01 | 0.07 ± 0.01a |
1212 | anisaldehyde | 0.12 ± 0.02a | 0.11 ± 0.02a | 0.13 ± 0.03a | 0.13 ± 0.01a | 0.14 ± 0.02a | 0.12 ± 0.01a |
1221 | phenethyl acetate | 0.07 ± 0.02ab | 0.07 ± 0.01ab | 0.10 ± 0.03a | 0.11 ± 0.01a | 0.07 ± 0.01ab | 0.05 ± 0.01b |
1232 | cinnamaldehyde | 0.05 ± 0.02a | 0.05 ± 0.01a | 0.07 ± 0.03a | - | - | - |
1250 | anise alcohol | 0.32 ± 0.03a | 0.28 ± 0.02a | 0.30 ± 0.07a | 0.29 ± 0.01a | 0.37 ± 0.04a | 0.38 ± 0.05a |
1268 | cinnamyl alcohol | 0.04 ± 0.01a | 0.04 ± 0.01a | 0.05 ± 0.01a | 0.08 ± 0.03a | 0.04 ± 0.01a | - |
1280 | p-vinylguaiacol | 0.13 ± 0.02a | 0.15 ± 0.02a | 0.16 ± 0.05a | 0.17 ± 0.02a | 0.16 ± 0.03a | 0.15 ± 0.01a |
1290 | piperonal | 0.04 ± 0.01a | 0.04 ± 0.02a | 0.07 ± 0.02a | 0.06 ± 0.01a | <0.01 | - |
1335 | p-hydroxybenzaldehyde | 0.79 ± 0.04a | 0.51 ± 0.06ab | 0.29 ± 0.24b | 0.44 ± 0.19b | 0.92 ± 0.02a | 1.05 ± 0.08a |
1373 | vanillin | 79.25 ± 4.40a | 78.27 ± 6.82a | 72.24 ± 13.94a | 63.14 ± 13.61a | 79.70 ± 3.37a | 82.39 ± 13.36a |
1380 | α-copaene | 0.22 ± 0.03a | 0.21 ± 0.02a | 0.27 ± 0.07a | 0.29 ± 0.04a | 0.25 ± 0.01a | 0.19 ± 0.07a |
1418 | α-santalene | - | - | - | 0.14 ± 0.09a | 0.13 ± 0.01a | 0.22 ± 0.07a |
1428 | methylvanillin | 0.19 ± 0.03a | 0.19 ± 0.04a | 0.22 ± 0.06a | 0.29 ± 0.05a | - | <0.01 |
1465 | β-ionone | 0.08 ± 0.04a | 0.09 ± 0.02a | 0.10 ± 0.04a | 0.12 ± 0.02a | <0.01 | 0.16 ± 0.07a |
1474 | α-amorphene | 0.08 ± 0.02b | 0.06 ± 0.01b | 0.08 ± 0.01b | 0.12 ± 0.02a | 0.09 ± 0.01b | 0.09 ± 0.00b |
1498 | α-muurolene | 0.14 ± 0.04b | 0.11 ± 0.03b | 0.11 ± 0.04b | 0.22 ± 0.01a | 0.16 ± 0.02ab | - |
1517 | δ-cadinene | - | - | 0.04 ± 0.01b | 0.09 ± 0.01a | 0.06 ± 0.01b | 0.05 ± 0.01b |
unknown | 7.73 | 10.48 | 13.79 | 7.08 | 10.48 | 8.68 | |
total | 89.00 | 88.40 | 84.11 | 78.83 | 87.83 | 89.93 |
RI A | Compounds B | Relative Percentage C (%) | ||||
---|---|---|---|---|---|---|
Control | Microorganism Treatment | |||||
Ctrl E | Y1 F | Y2 G | Y3 H | B I | ||
799 | furfural | 0.41 ± 0.19a | 0.75 ± 0.18a | 0.66 ± 0.06a | 0.44 ± 0.10a | 0.56 ± 0.13a |
928 | benzaldehyde | 0.31 ± 0.17ab | 0.46 ± 0.11a | 0.34 ± 0.04ab | 0.23 ± 0.09ab | 0.15 ± 0.03b |
975 | 2-pentylfuran | - D | 0.72 ± 0.20a | 0.51 ± 0.04ab | - | 0.10 ± 0.02b |
999 | benzyl alcohol | 0.74 ± 0.38bc | 1.86 ± 0.25a | 1.94 ± 0.07ab | 1.41 ± 0.47ab | 0.36 ± 0.04c |
1007 | 2-ethyl-1-hexanol | - | - | - | - | 0.46 ± 0.09 |
1016 | limonene | 0.11 ± 0.01b | 0.27 ± 0.03a | 0.16 ± 0.06b | 0.09 ± 0.03b | 0.10 ± 0.00b |
1030 | acetophenone | - | <0.01 | <0.01 | <0.01 | <0.01 |
1035 | 3,5-octadien-2-one | 0.08 ± 0.04b | 0.13 ± 0.03ab | 0.12 ± 0.02ab | 0.08 ± 0.03b | 0.18 ± 0.03a |
1043 | p-cresol | 0.41 ± 0.22b | 1.06 ± 0.31a | 0.74 ± 0.02ab | 0.60 ± 0.12ab | 0.63 ± 0.05ab |
1049 | 1-octanol | - | - | 0.13 ± 0.01 | 0.09 ± 0.03 | - |
1056 | guaiacol | 2.01 ± 0.91a | 2.08 ± 0.39a | 2.00 ± 0.08a | 1.68 ± 0.43a | 0.80 ± 0.07a |
1061 | tetramethylpyrazine | 0.05 ± 0.02a | - | 0.06 ± 0.00a | 0.04 ± 0.01a | - |
1074 | nonanal | 0.20 ± 0.18b | 0.16 ± 0.02b | 0.13 ± 0.00b | 0.12 ± 0.03b | 0.54 ± 0.07a |
1080 | phenethyl alcohol | 0.22 ± 0.07c | 0.35 ± 0.04ab | 0.33 ± 0.01bc | 0.24 ± 0.05bc | 0.41 ± 0.04a |
1125 | benzyl acetate | 0.12 ± 0.03b | 0.29 ± 0.05a | 0.25 ± 0.02ab | 0.17 ± 0.02b | 0.25 ± 0.03ab |
1161 | p-creosol | 0.38 ± 0.13bc | 0.68 ± 0.08a | 0.62 ± 0.02a | 0.47 ± 0.10ab | 0.24 ± 0.01c |
1166 | methyl salicylate | 0.17 ± 0.07b | 0.37 ± 0.06a | 0.23 ± 0.00b | 0.16 ± 0.04b | 0.15 ± 0.00b |
1172 | safranal | 0.05 ± 0.02b | - | 0.09 ± 0.00a | 0.07 ± 0.02ab | 0.09 ± 0.01a |
1177 | decanal | 0.06 ± 0.04 | 0.11 ± 0.02 | - | - | - |
1212 | anisaldehyde | 0.08 ± 0.03a | 0.09 ± 0.01a | 0.08 ± 0.01a | 0.07 ± 0.00a | 0.11 ± 0.03a |
1221 | phenethyl acetate | 0.05 ± 0.03a | 0.05 ± 0.01a | 0.05 ± 0.00a | 0.04 ± 0.00a | - |
1250 | anise alcohol | 0.25 ± 0.07a | 0.25 ± 0.03a | 0.24 ± 0.00a | 0.26 ± 0.04a | 0.26 ± 0.06a |
1268 | cinnamic alcohol | 0.04 ± 0.03a | 0.09 ± 0.03a | 0.05 ± 0.00a | 0.04 ± 0.00a | - |
1280 | p-vinylguaiacol | 0.10 ± 0.03b | 0.51 ± 0.17a | 0.12 ± 0.00b | 0.12 ± 0.01b | 0.30 ± 0.04ab |
1290 | piperonal | - | - | - | - | 0.15 ± 0.03 |
1335 | p-hydroxybenzaldehyde | 0.05 ± 0.03b | - | 0.50 ± 0.05a | 0.35 ± 0.26ab | 0.58 ± 0.11a |
1373 | vanillin | 73.85 ± 11.51a | 66.13 ± 12.39a | 71.14 ± 3.06a | 78.10 ± 24.03a | 83.69 ± 14.12a |
1380 | α-copaene | 0.15 ± 0.05c | 0.43 ± 0.08a | 0.39 ± 0.03ab | 0.27 ± 0.04bc | 0.21 ± 0.04c |
1418 | α-santalene | - | 0.10 ± 0.02 | - | - | - |
1428 | methylvanillin | 0.13 ± 0.10a | 0.15 ± 0.07a | 0.28 ± 0.05a | 0.21 ± 0.03a | - |
1441 | α-bergamotene | 0.09 ± 0.03 | 0.10 ± 0.00 | - | - | - |
1446 | acetovanillone | 0.08 ± 0.03b | 0.13 ± 0.04b | 0.10 ± 0.00b | 0.09 ± 0.01b | 0.52 ± 0.04a |
1474 | α-amorphene | 0.08 ± 0.06b | 0.20 ± 0.02a | 0.15 ± 0.06ab | 0.10 ± 0.02b | - |
1498 | α-muurolene | 0.12 ± 0.02a | 0.16 ± 0.10a | 0.14 ± 0.03a | 0.12 ± 0.03a | - |
1517 | δ-cadinene | 0.05 ± 0.02 | 0.08 ± 0.03 | - | - | - |
unknown | 3.78 | 7.55 | 5.59 | 3.85 | 1.01 | |
total | 83.23 | 85.76 | 87.35 | 89.48 | 91.84 |
RI A | Compounds B | Relative Percentage C (%) | ||||||
---|---|---|---|---|---|---|---|---|
A E | B F | C G | D H | E I | F J | G K | ||
799 | furfural | 0.31 ± 0.01ab | 0.18 ± 0.05ab | 0.12 ± 0.03b | 0.15 ± 0.05ab | 0.25 ± 0.01ab | 0.13 ± 0.01b | 0.37 ± 0.20a |
928 | benzaldehyde | 0.33 ± 0.01a | 0.08 ± 0.01d | 0.19 ± 0.02c | 0.17 ± 0.04c | 0.20 ± 0.01bc | 0.20 ± 0.06bc | 0.28 ± 0.00ab |
975 | 2-pentylfuran | 0.24 ± 0.02ab | 0.10 ± 0.01b | 0.16 ± 0.03ab | 0.15 ± 0.03ab | 0.16 ± 0.01ab | 0.14 ± 0.04ab | 0.31 ± 0.14a |
999 | benzyl alcohol | 0.85 ± 0.04ab | 0.33 ± 0.04b | 0.39 ± 0.23b | 0.39 ± 0.15b | 0.49 ± 0.02ab | 0.40 ± 0.09b | 1.00 ± 0.37a |
1006 | salicylaldehyde | 0.41 ± 0.04a | - D | 0.32 ± 0.02b | - | - | 0.16 ± 0.04c | 0.24 ± 0.00d |
1014 | limonene | 0.12 ± 0.04a | 0.09 ± 0.02a | 0.10 ± 0.01a | 0.12 ± 0.01a | 0.11 ± 0.00a | 0.13 ± 0.04a | 0.07 ± 0.05a |
1030 | acetophenone | <0.01 | 0.05 ± 0.00a | 0.06 ± 0.01a | 0.05 ± 0.01a | 0.05 ± 0.00a | 0.04 ± 0.01a | 0.04 ± 0.01a |
1035 | 3,5-octadien-2-one | 0.10 ± 0.03a | 0.07 ± 0.01a | 0.07 ± 0.01a | 0.08 ± 0.02a | 0.10 ± 0.01a | 0.08 ± 0.02a | 0.08 ± 0.01a |
1043 | p-cresol | 0.72 ± 0.02a | 0.25 ± 0.03b | 0.22 ± 0.02ab | 0.60 ± 0.07b | 0.28 ± 0.02b | 0.24 ± 0.03b | 0.74 ± 0.35a |
1056 | guaiacol | 5.25 ± 0.20a | 2.41 ± 0.14b | 2.22 ± 0.55b | 2.87 ± 0.11b | 2.16 ± 0.07bc | 2.78 ± 0.16b | 2.55 ± 0.74b |
1074 | nonanal | 0.32 ± 0.06a | 0.10 ± 0.00d | 0.22 ± 0.00abc | 0.27 ± 0.05bc | 0.18 ± 0.01bcd | 0.14 ± 0.03cd | 0.13 ± 0.07cd |
1080 | phenethyl alcohol | 0.61 ± 0.03a | 0.24 ± 0.03b | 0.28 ± 0.01b | 0.21 ± 0.03b | 0.24 ± 0.01b | 0.25 ± 0.03b | 0.28 ± 0.04b |
1125 | benzyl acetate | 0.10 ± 0.02ab | 0.06 ± 0.01b | 0.08 ± 0.01b | 0.10 ± 0.03ab | 0.07 ± 0.00b | 0.07 ± 0.01b | 0.15 ± 0.04a |
1161 | p-creosol | 0.95 ± 0.04a | 0.37 ± 0.03bc | 0.32 ± 0.02c | 0.47 ± 0.05bc | 0.32 ± 0.02c | 0.39 ± 0.03bc | 0.54 ± 0.16b |
1166 | methyl salicylate | 0.54 ± 0.01a | 0.12 ± 0.01b | 0.14 ± 0.01b | 0.14 ± 0.01b | 0.12 ± 0.01b | 0.13 ± 0.01b | 0.13 ± 0.00b |
1172 | safranal | 0.10 ± 0.01b | 0.07 ± 0.02bc | 0.07 ± 0.01bc | 0.14 ± 0.02a | 0.06 ± 0.00c | 0.06 ± 0.01c | 0.06 ± 0.01cd |
1212 | anisaldehyde | 0.16 ± 0.01ab | 0.12 ± 0.01c | 0.19 ± 0.00a | 0.11 ± 0.02c | 0.12 ± 0.01c | 0.13 ± 0.01bc | 0.12 ± 0.02c |
1221 | phenethyl acetate | 0.07 ± 0.01a | 0.04 ± 0.01a | 0.05 ± 0.00a | 0.06 ± 0.01a | 0.05 ± 0.02a | 0.04 ± 0.00a | 0.06 ± 0.02a |
1250 | anise alcohol | 0.24 ± 0.01a | 0.15 ± 0.01a | 0.20 ± 0.11a | 0.22 ± 0.06a | 0.18 ± 0.01a | 0.19 ± 0.02a | 0.28 ± 0.10a |
1268 | cinnamic alcohol | 0.28 ± 0.10a | 0.05 ± 0.02b | 0.04 ± 0.01b | 0.05 ± 0.01b | <0.01 | - | <0.01 |
1280 | p-vinylguaiacol | 0.21 ± 0.01a | 0.17 ± 0.01abc | 0.15 ± 0.00abcd | 0.18 ± 0.05ab | 0.07 ± 0.00d | 0.09 ± 0.04cd | 0.10 ± 0.04bcd |
1290 | piperonal | 0.06 ± 0.01ab | 0.04 ± 0.01b | 0.06 ± 0.01ab | 0.09 ± 0.03a | 0.05 ± 0.00ab | 0.05 ± 0.02ab | 0.03 ± 0.02b |
1335 | p-hydroxybenzaldehyde | 0.39 ± 0.04b | 0.44 ± 0.07b | 0.84 ± 0.07a | 0.85 ± 0.09a | 0.67 ± 0.08ab | 0.76 ± 0.16a | 0.74 ± 0.14a |
1373 | vanillin | 67.95 ± 11.71a | 83.11 ± 5.37a | 78.43 ± 11.65a | 77.04 ± 4.81a | 82.36 ± 1.49a | 83.32 ± 16.80a | 78.69 ± 9.03a |
1380 | α-copaene | 0.17 ± 0.02b | 0.15 ± 0.01b | 0.21 ± 0.03ab | 0.22 ± 0.01ab | 0.25 ± 0.02a | 0.17 ± 0.04b | 0.22 ± 0.04ab |
1418 | α-santalene | 0.32 ± 0.01a | 0.23 ± 0.02ab | 0.29 ± 0.01ab | 0.34 ± 0.07a | 0.26 ± 0.03ab | 0.25 ± 0.03ab | 0.20 ± 0.06a |
1428 | methylvanillin | 0.20 ± 0.00a | <0.01 | 0.21 ± 0.02a | <0.01 | <0.01 | 0.21 ± 0.02a | <0.01 |
1446 | acetovanillone | - | 0.09 ± 0.01b | <0.01 | 0.23 ± 0.13a | 0.09 ± 0.00b | 0.09 ± 0.01b | 0.09 ± 0.02b |
1474 | α-amorphene | <0.01 | - | 0.08 ± 0.01a | 0.14 ± 0.07a | 0.09 ± 0.02a | - | - |
1498 | α-muurolene | 0.23 ± 0.01ab | - | 0.17 ± 0.01b | 0.30 ± 0.08a | 0.16 ± 0.02b | <0.01 | - |
1517 | δ-cadinene | 0.09 ± 0.01 | - | - | 0.14 ± 0.09 | - | - | - |
unknown | 3.88 | 6.76 | 10.09 | 11.54 | 8.71 | 6.29 | 9.48 | |
total | 85.21 | 91.39 | 88.22 | 86.18 | 90.01 | 92.17 | 89.03 |
Sample Conditions | Sample Name |
---|---|
Normal process | control |
Different harvest maturity | pollinated at 34 weeks prior to harvest |
pollinated at 38 weeks prior to harvest | |
pollinated at 42 weeks prior to harvest | |
Different curing conditions | sweating at 40 °C |
sweating at 45 °C | |
immersion in hot water at 65 °C three times for 1 min each | |
immersion in hot water at 65 °C for 3 min | |
immersion in hot water at 70 °C three times for 30 s each | |
immersion in hot water at 80 °C three times for 10 s each | |
Microorganism treatment | Dekkera bruxellensis |
Saccharomycopsis crataegensis | |
Candida cacaoi | |
Bacillus subtilis | |
Different region in Taiwan | Nantou Mingjian |
Taitung Station | |
Taoyuan Station | |
Yunlin Sihu | |
Hsinchu Xinpu | |
Taoyuan Xinwu | |
Taoyuan Longtan |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yeh, C.-H.; Chen, K.-Y.; Chou, C.-Y.; Liao, H.-Y.; Chen, H.-C. New Insights on Volatile Components of Vanilla planifolia Cultivated in Taiwan. Molecules 2021, 26, 3608. https://doi.org/10.3390/molecules26123608
Yeh C-H, Chen K-Y, Chou C-Y, Liao H-Y, Chen H-C. New Insights on Volatile Components of Vanilla planifolia Cultivated in Taiwan. Molecules. 2021; 26(12):3608. https://doi.org/10.3390/molecules26123608
Chicago/Turabian StyleYeh, Chih-Hsin, Kai-Yi Chen, Chia-Yi Chou, Hsin-Yi Liao, and Hsin-Chun Chen. 2021. "New Insights on Volatile Components of Vanilla planifolia Cultivated in Taiwan" Molecules 26, no. 12: 3608. https://doi.org/10.3390/molecules26123608
APA StyleYeh, C. -H., Chen, K. -Y., Chou, C. -Y., Liao, H. -Y., & Chen, H. -C. (2021). New Insights on Volatile Components of Vanilla planifolia Cultivated in Taiwan. Molecules, 26(12), 3608. https://doi.org/10.3390/molecules26123608