Functional Properties of Banana Starch (Musa spp.) and Its Utilization in Cosmetics
Abstract
:1. Introduction
2. Results and Discussion
2.1. Extraction of Banana Starch
2.2. Amylose Content
2.3. Moisture Content
2.4. Morphology
2.5. FT-IR Spectroscopy
2.6. X-Ray Diffractometer (XRD)
2.7. Thermal Properties
2.8. Water and Oil Absorption Capacities
2.9. Swelling Power and Solubility
2.10. Flow Properties
2.11. Cosmetic Formulation
3. Materials and Methods
3.1. Extraction of Banana Starch
3.2. Amylose Content
3.3. Moisture Content
3.4. Morphology
3.5. FT-IR Spectroscopy
3.6. X-Ray Diffractometer (XRD)
3.7. Differential Scanning Calorimetry (DSC)
3.8. Gelation
3.9. Water and Oil Absorption Capacities
3.10. Swelling Power and Solubility
3.11. Flowability
3.11.1. Bulk and Tapped Densities
3.11.2. Compressibility Index and Hausner Ratio
3.12. Preparation of Cosmetic Formulations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Torre-Gutiérrez, L.D.; Chel-Guerrero, L.A.; Betancur-Ancona, D. Functional properties of square banana (Musa balbisiana) starch. J. Food Chem. 2008, 106, 1138–1144. [Google Scholar] [CrossRef]
- Moorthy, S.N. Tropical source of starch. In Starch in Food: Structure, Function, and Application, 1st ed.; Eliasson, A.C., Ed.; Woodhead Publishing Limited: Cambridge, UK; CRC Press LLC: New York, NY, USA, 2004; pp. 321–359. [Google Scholar] [CrossRef]
- Fahrasmane, L.; Parfait, B.; Aurore, G. Bananas, a source of compounds with health properties. Acta Hortic. 2014, 1040, 75–82. [Google Scholar] [CrossRef]
- Crane, J.H.; Balerdi, C.F. The banana in Florida; Institute of Food and Agricultural Sciences, University of Florida: Gainesville, FL, USA, 1998; Volume 10, pp. 1–8. [Google Scholar]
- Carmona-Garcia, R.; Sanchez-Rivera, M.M.; Méndez-Montealvo, G.; Garza-Montoya, B.; Bello-Pérez, L.A. Effect of the cross-linked reagent type on some morphological, physicochemical and functional characteristics of banana starch (Musa paradisiaca). J. Carb. Pol. 2009, 76, 117–122. [Google Scholar] [CrossRef]
- Cordenunsi, B.R.; Lajolo, F.M. Starch breakdown during banana ripening: Sucrose synthase and sucrose phosphate synthase. J. Agric. Food Chem. 1995, 43, 347–351. [Google Scholar] [CrossRef]
- Valmayor, R.V. Banana Cultivar Names and Synonyms in Southeast Asia, 1st ed.; International Network for the Improvement of Banana and Plantain—Asia and the Pacific Office: Los Baños, Laguna, Philippines, 2000; pp. 8–12. [Google Scholar]
- Zhang, P.; Whistler, R.L.; Bemiller, J.N.; Hamaker, B.R. Banana starch: Production, physicochemical properties, and digestibility—A review. J. Carb. Pol. 2005, 59, 443–458. [Google Scholar] [CrossRef]
- Mazza, G.; Biliaderis, C.G.; Przybylski, R.; Oomah, B.D. Compositional and morphological characteristics of cow cockle (Saponaria vaccaria) seed, a potential alternative crop. J. Agric. Food Chem. 1992, 40, 1520–1523. [Google Scholar] [CrossRef]
- Shevkani, K.; Singh, N.; Bajaj, R.; Kaur, A. Wheat starch production, structure, functionality and applications—A review. Int. J. Food Sci. Technol. 2016, 52, 38–58. [Google Scholar] [CrossRef]
- Cornejo-Ramírez, Y.I.; Martínez-Cruz, O.; Toro-Sánchez, C.L.; Wong-Corral, F.J.; Borboa-Flores, J.; Cinco-Moroyoqui, F.J. The structural characteristics of starches and their functional properties. CyTA J. Food 2018, 16, 1003–1017. [Google Scholar] [CrossRef]
- Lehmann, A.; Volkert, B.; Fischer, S.; Schrader, A.; Nerenz, H. Starch based thickening agents for personal care and surfactant systems. Colloids and Surfaces A: Physicochem. Eng. Aspects. 2008, 331, 150–154. [Google Scholar] [CrossRef]
- Yazid, N.S.M.; Abdullah, N.; Muhammad, N.; Matias-Peralta, H.M. Application of starch and starch-based products in food industry. J. Sci. Technol. 2018, 10, 144–174. [Google Scholar] [CrossRef] [Green Version]
- Rincón, A.M.; Pérez, R.M.N.; Reyes, A.; Romero, A.; Orfila, L.; Padilla, F.C. ‘Guapo’ (Myrosma cannifolia) starch: A natural product with potential use in cosmetic formulations. Int. J. Cosmet. Sci. 2005, 27, 107–114. [Google Scholar] [CrossRef]
- Boonme, P.; Aporn, M.; Khwankaew, S.; Pichayakorn, W.; Prapruti, P.; Boromthanarat, S. Feasibility study of sago starch for perfumed and cooling body powders. Cosm. Toil. 2009, 124, 30–37. [Google Scholar]
- Thanyapanich, N.; Jimtaisong, A.; Rawdkuen, S. Extraction and Characterization of Banana (Musa acuminata) Starch for Cosmetic Application. In Proceedings of the Cosmetic & Beauty International Conference 2019, Chiang Rai, Thailand, 7–9 October 2019. [Google Scholar]
- Bello-Pérez, L.A.; Agama-Acevedo, E.; Sánchez-Hernández, L.; Paredes-López, O. Isolation and partial characterization of banana starches. J. Agric. Food Chem. 1999, 47, 854–857. [Google Scholar] [CrossRef]
- Chávez-Salazar, A.; Bello-Pérez, L.A.; Agama-Acevedo, E.; Castellanos-Galeano, F.J.; Álvarez-Barreto, C.I.; Pacheco-Vargas, G. Isolation and partial characterization of starch from banana cultivars grown in Colombia. Int. J. Biol. Macromol. 2017, 98, 240–246. [Google Scholar] [CrossRef]
- Falade, K.O.; Oyeyinka, S.A. Color, chemical and functional properties of plantain cultivars and cooking banana flour as affected by drying method and maturity. J. Food Process. Preserv. 2014, 39, 816–828. [Google Scholar] [CrossRef]
- Abdullah, A.H.D.; Chalimah, S.; Primadona, I.; Hanantyo, M.H.G. Physical and Chemical Properties of Corn, Cassava, and Potato Starches. In Proceedings of the 2nd International Symposium on Green Technology, Jakarta, Indonesia, 26–27 September 2018. [Google Scholar]
- Alcázar-Alay, S.C.; Meireles, M.A. Physicochemical properties, modifications and applications of starches from different botanical sources. Food Sci. Technol. 2015, 35, 215–236. [Google Scholar] [CrossRef] [Green Version]
- Barros Mesquita, C.D.; Leonel, M.; Franco, C.M.; Leonel, S.; Garcia, E.L.; Santos, T.P. Characterization of banana starches obtained from cultivars grown in Brazil. Int. J. Biol. Macromol. 2016, 89, 632–639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Utrilla-Coello, R.G.; Rodríguez-Huezo, M.E.; Carrillo-Navas, H.; Hernámdez-Jaimes, C.; Vernon-Carter, E.J.; Alvarez-Ramirez, J. In vitro digestibility, physicochemical, thermal and rheological properties of banana starches. J. Carb. Pol. 2014, 101, 154–162. [Google Scholar] [CrossRef]
- Crouter, A.; Briens, L. The effect of moisture on the flowability of pharmaceutical excipients. AAPS PharmSciTech 2013, 15, 65–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Juarez-Enriquez, E.; Olivas, G.I.; Zamudio-Flores, P.B.; Ortega-Rivas, E.; Perez-Vega, S.; Sepulveda, D.R. Effect of water content on the flowability of hygroscopic powders. J. Food Eng. 2017, 205, 12–17. [Google Scholar] [CrossRef]
- Bello-Pérez, L.A.; de Francisco, A.; Agama-Acevedo, E.; Gutierrez-Meraz, F.; García-Suarez, F.J.L. Morphological and molecular studies of banana starch. Food Sci. Technol. Int. 2005, 11, 367–372. [Google Scholar] [CrossRef]
- Izidoro, D.R.; Junior, B.D.; Haminiuk, W.I.; Sierakoeski, M.R.; Freitas, R.J.S.; Scheer, A.P. Granules morphology and rheological behavior of green banana (Musa cavendishii) and corn (Zea mays) starch gels. Ciênc. Agrotec. 2007, 31, 1443–1448. [Google Scholar] [CrossRef]
- Kayisu, K.; Hood, L.F.; Vansoest, P.J. Characterization of starch and fiber of banana fruit. J. Food Sci. 1981, 46, 1885–1890. [Google Scholar] [CrossRef]
- Lii, C.Y.; Chang, S.M.; Young, Y.L. Investigation of the physical and chemical properties of banana starches. J. Food Sci. 1982, 47, 1493–1497. [Google Scholar] [CrossRef]
- Reddy, C.K.; Haripriya, S.; Vidya, P.V. Morphology, physico-chemical and functional characteristics of starches from different banana cultivars. J. Food Sci. Technol. 2015, 52, 7289–7296. [Google Scholar] [CrossRef]
- Singh, N.; Singh, J.; Kaur, L.; Sodhi, N.S.; Gill, B.S. Morphological, thermal and rheological properties of starches from different botanical sources. J. Food Chem. 2003, 81, 219–231. [Google Scholar] [CrossRef]
- Oates, C.G. Towards an understanding of starch granule structure and hydrolysis. Trends Food Sci. Technol. 1997, 8, 375–382. [Google Scholar] [CrossRef]
- Yoo, S.H.; Jane, J.L. Structural and physical characteristics of waxy and other wheat starches. J. Carb. Pol. 2002, 49, 297–305. [Google Scholar] [CrossRef]
- Cheetham, N.W.H.; Tao, L. Variation in crystalline type with amylose content in maize starch granules: An X-ray powder diffraction study. J. Carb. Pol. 1998, 36, 277–284. [Google Scholar] [CrossRef]
- Jiranuntakul, W.; Puttanlek, C.; Rungsardthong, V.; Puncha-Arnon, S.; Uttapap, D. Microstructural and physicochemical properties of heat-moisture treated waxy and normal starches. J. Food Eng. 2011, 104, 246–258. [Google Scholar] [CrossRef]
- Zhang, Z.; Tian, X.; Wang, P.; Jiang, H.; Li, W. Compositional, morphological, and physicochemical properties of starches from red adzuki bean, chickpea, faba bean, and baiyue bean grown in China. Food Sci. Nutr. 2019, 7, 2485–2494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarko, A.; Wu, H.C.H. The crystal structures of A-, B- and C-polymorphs of amylose and starch. Starke 1978, 30, 73–78. [Google Scholar] [CrossRef]
- Ao, Z.; Jane, J.L. Characterization and modeling of the A- and B-granule starches of wheat, triticale, and barley. J. Carb. Pol. 2007, 67, 46–55. [Google Scholar] [CrossRef]
- Brites, C.M.; Santos, C.A.L.; Bagulho, A.S.; Beirão-da-Costa, M.L. Effect of wheat puroindoline alleles on functional properties of starch. Eur. Food Res. Technol. 2008, 226, 1205–1212. [Google Scholar] [CrossRef] [Green Version]
- Stevnebø, A.; Sahlström, S.; Svihus, B. Starch structure and degree of starch hydrolysis of small and large starch granules from barley varieties with varying amylose content. Anim. Feed Sci. Technol. 2006, 130, 23–38. [Google Scholar] [CrossRef]
- Shi, M.; Wang, K.; Yu, S.; Gilbert, R.G.; Gao, Q. Structural characterizations and in vitro digestibility of acid-treated wrinkled and smooth pea starch (Pisum sativum L.). Starke 2016, 68, 762–770. [Google Scholar] [CrossRef]
- Geera, B.P.; Nelson, J.E.; Souza, E.; Huber, K.C. Composition and properties of A- and B-type starch granules of wild-type, partial waxy, and waxy soft wheat. Cereal Chem. 2006, 83, 551–557. [Google Scholar] [CrossRef] [Green Version]
- Sasaki, T.; Yasui, T.; Matsuki, J. Effect of amylose content on gelatinization, retrogradation, and pasting properties of starches from waxy and nonwaxy wheat and their F1 seeds. Cereal Chem. 2000, 77, 58–63. [Google Scholar] [CrossRef]
- Mar, N.N.; Umemoto, T.; Abdulah, S.N.A.; Maziah, M. Chain length distribution of amylopectin and physicochemical properties of starch in Myanmar rice cultivars. Int. J. Food Prop. 2015, 18, 1719–1730. [Google Scholar] [CrossRef]
- Jane, J.; Chen, Y.Y.; Lee, L.F.; Mcpherson, A.E.; Wong, K.S.; Radosavljevic, M.; Kasemsuwan, T. Effects of amylopectin branch chain length and amylose content on the gelatinization and pasting properties of starch. Cereal Chem. 1999, 76, 629–637. [Google Scholar] [CrossRef]
- Ritika, B.Y.; Khatkar, B.S.; Yadav, B.S. Physicochemical, morphological, thermal and pasting properties of starches isolated from rice cultivars grown in India. Int. J. Food Prop. 2010, 13, 1339–1354. [Google Scholar] [CrossRef]
- Agnes, A.C.; Felix, E.C.; Ugochukwu, N.T. Morphology, rheology and functional properties of starch from cassava, sweet potato and cocoyam. Asian J. Conserv. Biol. 2017, 3, 1–13. [Google Scholar] [CrossRef]
- Akinwale, T.E.; Niniola, D.M.; Abass, A.B.; Shittu, T.A.; Adebowale, A.A.; Awoyale, W.; Awonorin, S.O.; Adewuyi, S.; Eromosele, C.O. Screening of some cassava starches for their potential applications in custard and salad cream productions. J. Food Meas. Charact. 2017, 11, 299–309. [Google Scholar] [CrossRef]
- Chisenga, S.M.; Workneh, T.S.; Bultosa, G.; Laing, M. Characterization of physicochemical properties of starches from improved cassava varieties grown in Zambia. AIMS Agric. Food 2019, 4, 939–966. [Google Scholar] [CrossRef]
- Demiate, I.M.; Kotovicz, V. Cassava starch in the Brazilian food industry. Ciênc. Tecnol. Aliment. 2011, 31, 388–397. [Google Scholar] [CrossRef] [Green Version]
- Nuwamanya, E.; Baguma, Y.; Emmambux, N.; Taylor, J.; Patrick, R. Physicochemical and functional characteristics of cassava starch in Ugandan varieties and their progenies. J. Plant Breed. Crop Sci. 2010, 2, 1–11. [Google Scholar]
- Rodríguez-Torres, D.; Murillo-Arango, W.; Vaquiro-Herrera, H.A.; Solanilla-Duque, J.F. Thermal and physicochemical properties of starches from three Colombian rice varieties. Agron. Colomb. 2017, 35, 116–124. [Google Scholar] [CrossRef]
- Tang, H.; Mitsunaga, T.; Kawamura, Y. Relationship between functionality and structure in barley starches. J. Carb. Pol. 2004, 57, 145–152. [Google Scholar] [CrossRef]
- Song, Y.; Jane, J. Characterization of barley starches of waxy, normal, and high amylose varieties. J. Carb. Pol. 2000, 41, 365–377. [Google Scholar] [CrossRef]
- Nor Nadiha, M.Z.; Fazilah, A.; Bhat, R.; Karim, A.A. Comparative susceptibilities of sago, potato and corn starches to alkali treatment. J. Food Chem. 2010, 121, 1053–1059. [Google Scholar] [CrossRef]
- Mtunguja, M.K.; Thitisaksakul, M.; Muzanila, Y.C.; Wansuksri, R.; Piyachomkwan, K.; Laswai, H.S.; Chen, G.; Shoemaker, C.F.; Sinha, N.; Beckles, D.M. Assessing variation in physicochemical, structural, and functional properties of root starches from novel Tanzanian cassava (Manihot esculenta Crantz.) landraces. Starke 2016, 68, 514–527. [Google Scholar] [CrossRef] [Green Version]
- Sánchez, T.; Dufour, D.; Moreno, I.X.; Ceballos, H. Comparison of pasting and gel stabilities of waxy and normal starches from potato, maize, and rice with those of a novel waxy cassava starch under thermal, chemical, and mechanical stress. J. Agric. Food Chem. 2010, 58, 5093–5099. [Google Scholar] [CrossRef] [PubMed]
- Craik, D.J. The flow properties of starch powders and mixtures. J. Pharm. Pharmacol. 1958, 10, 73–79. [Google Scholar] [CrossRef]
- Ortega-Rivas, E. Unit Operations of Particulate Solids: Theory and Practice, 1st ed.; Taylor & Francis Group: Abingdon-on-Thames, UK; CRC Press: Boca Raton, FL, USA, 2012. [Google Scholar]
- Ostrowska-Ligęza, E.; Lenart, A. Influence of water activity on the compressibility and mechanical properties of cocoa products. LWT Food Sci. Technol. 2015, 60, 1054–1060. [Google Scholar] [CrossRef]
- Shenoy, P.; Xanthakis, E.; Innings, F.; Jonsson, C.; Fitzpatrick, J.; Ahrné, L. Dry mixing of food powders: Effect of water content and composition on mixture quality of binary mixtures. J. Food Eng. 2015, 149, 229–236. [Google Scholar] [CrossRef]
- Amberg, N.; Fogarassy, C. Green consumer behavior in the cosmetics market. Resources 2019, 8, 137. [Google Scholar] [CrossRef] [Green Version]
- Gubitosa, J.; Rizzi, V.; Fini, P.; Pinalysa, C. Hair care cosmetics: From traditional shampoo to solid clay and herbal shampoo, a review. Cosmetics 2019, 6, 13. [Google Scholar] [CrossRef] [Green Version]
- Moon, M.C.; Park, J.D.; Choi, B.S.; Park, S.Y.; Kim, D.W. Risk Assessment of Baby Powder Exposure through Inhalation. Toxicol. Res. 2011, 27, 137–141. [Google Scholar] [CrossRef] [Green Version]
- O’Brien, K.M.; Tworoger, S.S.; Harris, H.R.; Anderson, G.L.; Weinberg, C.R.; Trabert, B.; Kaunitz, A.M.; D’Aloisio, A.A.; Sandler, D.P.; Wentzensen, N. Association of powder use in the genital area with risk of ovarian cancer. JAMA 2020, 323, 49–59. [Google Scholar] [CrossRef] [PubMed]
- Pasapane, J.; Solarek, D.; Wilson, N. Specialty starches for personal care. Cosm. Toil. 1999, 114, 79–82. [Google Scholar]
- Melo Neto, B.A.; Bonomo, R.C.F.; Franco, M.; de Almeida, P.F.; Pontes, K.V. Starch extraction from the peach palm (Bactris gasepaes Kunth.) fruit: A model approach for yield increase. Eng. Agricola. 2017, 37, 148–159. [Google Scholar] [CrossRef] [Green Version]
- Kaufman, R.C.; Wilson, J.D.; Bean, S.R.; Herald, T.J.; Shi, Y.C. Development of a 96-well plate iodine binding assay for amylose content determination. J. Carb. Pol. 2015, 115, 444–447. [Google Scholar] [CrossRef]
- Pozo, C.; Rodríguez-Llamazares, S.; Bouza, R.; Barral, L.; Castaño, J.; Müller, N.; Restrepo, I. Study of the structural order of native starch granules using combined FTIR and XRD analysis. J. Polym. Res. 2018, 25. [Google Scholar] [CrossRef]
- Ferreira, C.D.; Ziegler, V.; Halal, S.L.M.; Vanier, N.L.; Zavareze, E.R.; Oliveira, M. Characteristics of starch isolated from black beans (Phaseolus vulgaris L.) stored for 12 months at different moisture content and temperatures. Starke. 2016, 69. [Google Scholar] [CrossRef]
- Lawal, O.S.; Adebowale, K.O. Physicochemical characteristics and thermal properties of chemically modified jack bean (Canavalia ensiformis) starch. J. Carb. Pol. 2005, 60, 331–341. [Google Scholar] [CrossRef]
- Olayemi, O.J.; Oyi, A.R.; Allagh, T.S. Comparative evaluation of maize, rice and wheat starch powders as pharmaceutical excipients. Niger. J. Pharm. Sci. 2008, 7, 131–138. [Google Scholar]
- Shah, R.B.; Tawakkul, M.A.; Khan, A. Comparative evaluation of flow for pharmaceutical powders and granules. AAPS PharmSciTech 2008, 9, 250–258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Starch | To (°C) | Tp (°C) | Te (°C) | ΔH (J/g) |
---|---|---|---|---|
HK | 74.52 ± 0.17 | 77.97 ± 0.21 | 80.37 ± 0.50 | 3.05 ± 0.83 |
NW | 73.64 ± 0.32 | 76.98 ± 0.21 | 80.69 ± 0.23 | 7.76 ± 0.74 |
Flow Character | HR | CI (%) |
---|---|---|
Excellent/very free flow | 1.00–1.11 | 10 |
Good/free flow | 1.12–1.18 | 11–15 |
Fair | 1.19–1.25 | 16–20 |
Passable | 1.26–1.34 | 21–25 |
Poor/cohesive | 1.35–1.45 | 26–31 |
Very poor/very cohesive | 1.46–1.59 | 32–37 |
Very very poor/approx. non-flow | >1.60 | >38 |
Base Body Powder | HK Body Powder | NW Body Powder | |
---|---|---|---|
Density | 0.88 ± 0.02 | 0.84 ± 0.03 | 0.86 ± 0.01 |
Hausner ratio | 1.84 ± 0.05 | 1.78 ± 0.06 | 1.86 ± 0.03 |
Compressibility index | 45.85 ± 1.50 | 43.67 ± 1.95 | 45.62 ± 0.59 |
Amylose Content (%) | Amount of 5 mg/mL Amylose Solution (µL) | Amount of 5 mg/mL Amylopectin Solution (µL) |
---|---|---|
0 | 0 | 100 |
5 | 5 | 95 |
10 | 10 | 90 |
15 | 15 | 85 |
20 | 20 | 80 |
25 | 25 | 75 |
30 | 30 | 70 |
50 | 50 | 50 |
75 | 75 | 25 |
100 | 100 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thanyapanich, N.; Jimtaisong, A.; Rawdkuen, S. Functional Properties of Banana Starch (Musa spp.) and Its Utilization in Cosmetics. Molecules 2021, 26, 3637. https://doi.org/10.3390/molecules26123637
Thanyapanich N, Jimtaisong A, Rawdkuen S. Functional Properties of Banana Starch (Musa spp.) and Its Utilization in Cosmetics. Molecules. 2021; 26(12):3637. https://doi.org/10.3390/molecules26123637
Chicago/Turabian StyleThanyapanich, Norramon, Ampa Jimtaisong, and Saroat Rawdkuen. 2021. "Functional Properties of Banana Starch (Musa spp.) and Its Utilization in Cosmetics" Molecules 26, no. 12: 3637. https://doi.org/10.3390/molecules26123637
APA StyleThanyapanich, N., Jimtaisong, A., & Rawdkuen, S. (2021). Functional Properties of Banana Starch (Musa spp.) and Its Utilization in Cosmetics. Molecules, 26(12), 3637. https://doi.org/10.3390/molecules26123637