The Additive Influence of Propane-1,2-Diol on SDS Micellar Structure and Properties
Abstract
:1. Introduction
2. Results
2.1. Determination of c.m.c.
Determination of Thermodynamic Parameters of SDS in Water–Propane-1,2-Diol
2.2. Aggregation Size and Stability
2.3. H NMR Studies
3. Discussion
4. Materials and Methods
4.1. Chemicals
4.2. Conductivity Measurements
4.3. Size and Stability
4.4. H NMR Studies
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Schramm, L.L.; Stasiuk, E.N.; Marangoni, D.G. Surfactants and their applications. Annu. Reports Prog. Chem. Sect. C 2003, 99, 3–48. [Google Scholar] [CrossRef]
- Sar, P.; Ghosh, A.; Scarso, A.; Saha, B. Surfactant for better tomorrow: Applied aspect of surfactant aggregates from laboratory to industry. Res. Chem. Intermed. 2019, 45, 6021–6041. [Google Scholar] [CrossRef]
- Rodríguez, A.; Graciani, M.d.; Moya, M.L. Effects of addition of polar organic solvents on micellization. Langmuir 2008, 24, 12785–12792. [Google Scholar] [CrossRef]
- Moyá, M.L.; Rodríguez, A.; Graciani, M.d.; Fernández, G. Role of the solvophobic effect on micellization. J. Colloid Interface Sci. 2007, 316, 787–795. [Google Scholar] [CrossRef]
- Das, S.; Naskar, B.; Ghosh, S. Influence of temperature and organic solvents (isopropanol and 1,4-dioxane) on the micellization of cationic gemini surfactant (14-4-14). Soft Matter 2014, 10, 2863–2875. [Google Scholar] [CrossRef]
- Adane, D.F. Surface and thermodynamic studies of micellization of surfactants in binary mixtures of 1,2-ethanediol and 1,2,3-propanetriol with water. Int. J. Phys. Sci. 2015, 10, 276–288. [Google Scholar] [CrossRef] [Green Version]
- Wijaya, E.C.; Separovic, F.; Drummond, C.J.; Greaves, T.L. Micelle formation of a non-ionic surfactant in non-aqueous molecular solvents and protic ionic liquids (PILs). Phys. Chem. Chem. Phys. 2016, 18, 24377–24386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greaves, T.L.; Weerawardena, A.; Drummond, C.J. Nanostructure and amphiphile self-assembly in polar molecular solvents: Amides and the ‘solvophobic effect’. Phys. Chem. Chem. Phys. 2011, 13, 9180–9186. [Google Scholar] [CrossRef] [PubMed]
- Sultana, S.; Mohammad Majibur, M.; Md Ruhul, A.; Shahed, R.; Md Anamul, H.; Dileep, K.; Alfakeer, M. Effect of temperature and solvent compositions on the aggregation and thermodynamic properties of the polyvinyl alcohol + tetradecyltrimethylammonium bromide mixture in aqua-organic mixed media. Mol. Phys. 2021, 119, e1892848. [Google Scholar] [CrossRef]
- Poša, M.; Pilipović, A. Effects of additives (methanol and NaCl) from aqueous surfactant solutions on the micellisation of sodium deoxycholate and sodium cholate binary mixture in the temperature interval T = (278.15–318.15) K: The molar excess Gibbs energy and the molar Gibbs energy of the micelle formation. J. Chem. Thermodyn. 2020, 150. [Google Scholar] [CrossRef]
- Chen, J.; Wang, Y.; Wei, X.; Xu, W.; Xu, P.; Ni, R.; Meng, J. First Investigation of the Micelles Forming in a Novel Deep Eutectic Solvents-Based Aqueous Micellar Two-Phase System: Partitioning of Cationic/Neutral/Anionic Pigments. ACS Sustain. Chem. Eng. 2019, 7, 6078–6092. [Google Scholar] [CrossRef]
- West, A. Intermolecular Forces and Solvation. In Interface Science and Technology; Elsevier: Amsterdam, The Netherlands, 2018; Volume 21, pp. 49–130. [Google Scholar]
- Ogunlusi, G.O.; Bamgboye, O.V.; Alo, O.O.; Owoyomi, O. Micellisation and thermodynamic properties of sodium dodecyl sulphate in water-1,2-alkanediol co-solvents: Chain length effect. Phys. Chem. Liq. 2015, 53, 376–389. [Google Scholar] [CrossRef]
- Evenbratt, H.; Faergemann, J. Effect of pentane-1, 5-diol and propane-1,2-diol on percutaneous absorption of terbinafine. Acta Derm. Venereol. 2009, 89, 126–129. [Google Scholar] [CrossRef] [PubMed]
- Younes, M.; Aggett, P.; Aguilar, F.; Crebelli, R.; Dusemund, B.; Filipič, M.; Frutos, M.J.; Galtier, P.; Gott, D.; Gundert-Remy, U. Re-evaluation of propane-1,2-diol (E 1520) as a food additive. EFSA J. 2018, 16, 1–40. [Google Scholar] [CrossRef]
- Shakeel, F.; Haq, N.; Siddiqui, N.A.; Alanazi, F.K.; Alsarra, I.A. Solubility and thermodynamic behavior of vanillin in propane-1,2-diol + water cosolvent mixtures at different temperatures. Food Chem. 2015, 188, 57–61. [Google Scholar] [CrossRef] [PubMed]
- Goddard, G.C.; Benson, E.D. Conductivity of aqueous solutions of some parafin chain salts. Can. J. Chem. 1957, 35, 986–991. [Google Scholar] [CrossRef]
- Domínguez, A.; Fernández, A.; Gonzalez, N.; Iglesias, E.; Montenegro, L. Determination of critical micelle concentration of some surfactants by three techniques. J. Chem. Educ. 1997, 74, 1227–1231. [Google Scholar] [CrossRef]
- Motin, M.A.; Mia, M.A.H.; Islam, A.K.M.N. Thermodynamic properties of Sodium Dodecyl Sulfate aqueous solutions with Methanol, Ethanol, n-Propanol and iso-Propanol at different temperatures. J. Saudi Chem. Soc. 2015, 19, 172–180. [Google Scholar] [CrossRef] [Green Version]
- Valente, A.J.M.; Burrows, H.D.; Cruz, S.M.A.; Pereira, R.F.P.; Ribeiro, A.C.F.; Lobo, V.M.M. Aggregation and micellization of sodium dodecyl sulfate in the presence of Ce(III) at different temperatures: A conductometric study. J. Colloid Interface Sci. 2008, 323, 141–145. [Google Scholar] [CrossRef] [Green Version]
- Niraula, T.P.; Chatterjee, S.K.; Bhattarai, A. Micellization of sodium dodecyl sulphate in presence and absence of alkali metal halides at different temperatures in water and methanol-water mixtures. J. Mol. Liq. 2018, 250, 287–294. [Google Scholar] [CrossRef]
- Lin, C.E.; Chen, M.J.; Huang, H.C.; Chen, H.W. Capillary electrophoresis study on the micellization and critical micelle concentration of sodium dodecyl sulfate: Influence of solubilized solutes. J. Chromatogr. A 2001, 924, 83–91. [Google Scholar] [CrossRef]
- Sachin, K.M.; Karpe, S.A.; Singh, M.; Bhattarai, A. Self-assembly of sodium dodecylsulfate and dodecyltrimethylammonium bromide mixed surfactants with dyes in aqueous mixtures. R. Soc. Open Sci. 2019, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sristy, S.I.H.; Mahbub, S.; Alam, M.M.; Wabaidur, S.M.; Rana, S.; Hoque, M.A.; Rub, M.A. Interaction of tetradecyltrimethylammonium bromide with sodium dodecyl sulfate in aqueous/urea medium at several temperatures and compositions. J. Mol. Liq. 2019, 284, 12–22. [Google Scholar] [CrossRef]
- Pal, A.; Chaudhary, S. Ionic liquids effect on critical micelle concentration of SDS: Conductivity, fluorescence and NMR studies. Fluid Phase Equilib. 2014, 372, 100–104. [Google Scholar] [CrossRef]
- Gracie, K.; Turner, D.; Palepu, R. Thermodynamic properties of micellization of sodium dodecyl sulfate in binary mixtures of ethylene glycol with water. Can. J. Chem. 1996, 74, 1616–1625. [Google Scholar] [CrossRef]
- Bakshi, M.S. Nlicelle Formation. J. Chem. Soc. Faraday Trans. 1993, 89, 4323–4326. [Google Scholar] [CrossRef]
- Kyung-Hee, K.H.-U.L. Description of Temperature Dependence of Critical Micelle Concentration. Bull. Korean Chem. Soc. 2003, 24, 1449–1454. [Google Scholar]
- Dubey, N. Thermodynamic and FT-IR study of micellization of sodium dodecylbenzene sulfonate in some simple alcohols. Chem. Eng. Commun. 2011, 198, 1394–1404. [Google Scholar] [CrossRef]
- Fritz, G.; Glatter, O. Structure and interaction in dense colloidal systems: Evaluation of scattering data by the generalized indirect Fourier transformation method. J. Phys. Condensed Matter 2006, 18, S2403. [Google Scholar] [CrossRef]
- Ade-Browne, C.; Dawn, A.; Mirzamani, M.; Qian, S.; Kumari, H. Differential behavior of sodium laurylsulfate micelles in the presence of nonionic polymers. J. Colloid Interface Sci. 2019, 544, 276–283. [Google Scholar] [CrossRef] [PubMed]
- Atanase, L.I.; Riess, G. Micellization of pH-stimulable poly(2-vinylpyridine)-b-poly(ethylene oxide) copolymers and their complexation with anionic surfactants. J. Colloid Interface Sci. 2013, 395, 190–197. [Google Scholar] [CrossRef]
- Atanase, L.I.; Winninger, J.; Delaite, C.; Riess, G. Micellization and demicellization of amphiphilic poly(vinyl acetate)-graft-poly(N-vinyl-pyrrolidone) graft copolymers in the presence of sodium dodecyl sulfate. Colloids Surfaces A Physicochem. Eng. Asp. 2014, 461, 287–294. [Google Scholar] [CrossRef]
- Chroni, A.; Mavromoustakos, T.; Pispas, S. Biocompatible PEO-b-PCL nanosized micelles as drug carriers: Structure and drug–polymer interactions. Nanomaterials 2020, 10, 1872. [Google Scholar] [CrossRef] [PubMed]
Temperature (K) | c.m.c. Water * (mol dm−3) | c.m.c. (0.05) (mol dm−3) | c.m.c. (0.10) (mol dm−3) | c.m.c. (0.15) (mol dm−3) |
---|---|---|---|---|
293 | 8.48 | 7.64 | 7.01 | 7.35 |
298 | 8.38 | 7.74 | 7.15 | 7.72 |
303 | 8.31 | 7.79 | 7.74 | 7.73 |
308 | 8.39 | 7.83 | 7.98 | 8.22 |
313 | 8.46 | 8.61 | 8.12 | 8.50 |
Mass Fraction | Temperature (K) | α | (kJ mol−1) | kJ mol−1 | (J mol−1 K−1) | (kJ mol−1) |
---|---|---|---|---|---|---|
Water * | 293 | 0.34 | −35.28 | 1.87 | 126.77 | − |
298 | 0.36 | −35.92 | 0.10 | 120.87 | − | |
303 | 0.35 | −36.48 | −1.66 | 114.92 | − | |
308 | 0.39 | −37.05 | −3.42 | 109.17 | − | |
313 | 0.39 | −37.59 | −5.19 | 103.52 | − | |
0.05 | 293 | 0.47 | −32.99 | −5.57 | 93.58 | 2.29 |
298 | 0.48 | −33.29 | −5.63 | 92.82 | 2.63 | |
303 | 0.53 | −32.71 | −5.53 | 89.69 | 3.77 | |
308 | 0.53 | −33.23 | −5.63 | 89.63 | 3.82 | |
313 | 0.52 | −33.64 | −5.75 | 89.08 | 3.95 | |
0.10 | 293 | 0.53 | −31.94 | −8.79 | 79.00 | 3.34 |
298 | 0.54 | −32.06 | −8.84 | 77.92 | 3.86 | |
303 | 0.54 | −32.28 | −8.98 | 76.90 | 4.20 | |
308 | 0.59 | −31.59 | −8.82 | 73.92 | 5.46 | |
313 | 0.59 | −32.19 | −9.01 | 74.06 | 5.40 | |
0.15 | 293 | 0.58 | −30.46 | −7.26 | 79.17 | 4.82 |
298 | 0.61 | −30.17 | −7.21 | 77.04 | 5.75 | |
303 | 0.63 | −30.23 | −7.25 | 75.85 | 6.25 | |
308 | 0.68 | −29.40 | −7.10 | 72.41 | 7.65 | |
313 | 0.70 | −29.31 | −7.10 | 70.95 | 8.28 |
Mass Fraction | Zeta Potential/mV | Size/nm | |||
---|---|---|---|---|---|
Intensity Peaks | Volume Peak | Number Peak | |||
1. | 2. | ||||
water | −37.4 ± 16.2 | 4.210 ± 1.104 | 119.1 ± 43.00 | 3.46 ± 0.7105 | 3.012 ± 0.4651 |
0.05 | −18.3 ± 8.2 | 4.605 ± 1.431 | 145.0 ± 63.37 | 3.388 ± 0.7672 | 2.832 ± 0.4606 |
0.10 | −16.6 ± 7.40 | 4.251 ± 1.673 | 169.7 ± 83.58 | 2.602 ± 0.6933 | 1.995 ± 0.3877 |
0.15 | −17.8 ± 9.49 | 4.273 ± 1.351 | 218.7 ± 128.8 | 3.887 ± 0.6844 | 2.529 ± 0.4447 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gudelj, M.; Šurina, P.; Jurko, L.; Prkić, A.; Bošković, P. The Additive Influence of Propane-1,2-Diol on SDS Micellar Structure and Properties. Molecules 2021, 26, 3773. https://doi.org/10.3390/molecules26123773
Gudelj M, Šurina P, Jurko L, Prkić A, Bošković P. The Additive Influence of Propane-1,2-Diol on SDS Micellar Structure and Properties. Molecules. 2021; 26(12):3773. https://doi.org/10.3390/molecules26123773
Chicago/Turabian StyleGudelj, Martina, Paola Šurina, Lucija Jurko, Ante Prkić, and Perica Bošković. 2021. "The Additive Influence of Propane-1,2-Diol on SDS Micellar Structure and Properties" Molecules 26, no. 12: 3773. https://doi.org/10.3390/molecules26123773
APA StyleGudelj, M., Šurina, P., Jurko, L., Prkić, A., & Bošković, P. (2021). The Additive Influence of Propane-1,2-Diol on SDS Micellar Structure and Properties. Molecules, 26(12), 3773. https://doi.org/10.3390/molecules26123773