Application of Micellar Mobile Phase for Quantification of Sulfonamides in Medicated Feeds by HPLC-DAD
Abstract
:1. Introduction
2. Results and Discussion
2.1. Optimization Strategy and Mobile Phase Selection
2.1.1. Choice of Appropriate Detection Wavelength
2.1.2. Choice of Column
2.1.3. Selection of SDS Concentration
2.1.4. pH Selection
2.1.5. Use of an Organic Modifier
2.2. Sample Preparation
2.3. Validation of the Method
3. Material and Methods
3.1. Standards, Chemicals, and Reagents
3.2. Preparation of Standard and Mobile Phase Solutions
3.3. Calibration Curves
3.4. Feed Samples
3.5. Extraction and Clean-Up
3.6. Chromatographic Conditions
3.7. Validation Studies
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Cháfer-Pericás, C.; Maquieira, A.; Puchades, R.; Miralles, J.; Moreno, A. Multiresidue determination of antibiotics in feed and fish samples for food safety evaluation. Comparison of immunoassay vs LC-MS-MS. Food Chem. 2011, 22, 993–999. [Google Scholar] [CrossRef]
- Kim, H.J.; Jeong, M.H.; Park, H.J.; Kim, W.C.; Kim, J.E. Development of an immunoaffinity chromatography and HPLC-UV method for detection of 16 sulfonamides in feed. Food Chem. 2016, 196, 1144–1149. [Google Scholar] [CrossRef]
- Patyra, E.; Przeniosło-Siwczyńska, M.; Kwiatek, K. Determination of Sulfonamides in Feeds by High-Performance Liquid Chromatography after Fluorescamine Precolumn Derivatization. Molecules 2019, 24, 452. [Google Scholar] [CrossRef] [Green Version]
- Sales of Veterinary Antimicrobial Agents in 31 European Countries in 2017; European Medicines Agency, European Surveillance of Veterinary Antimicrobial Consumption. Available online: https://www.ema.europa.eu/en/documents/report/sales-veterinary-antimicrobial-agents-31-european-countries-2017_en.pdf (accessed on 15 October 2019).
- Regulation (EU). No 2019/4 of the European Parliament and of the Council of 11 December 2018 on the manufacture, placing on the market and use of medicated feed, amending Regulation (EC) No 183/2005 of the European Parliament and of the Council and repealing Council Directive 90/167/EEC. Off. J. L 2019, L4, 1–23. [Google Scholar]
- Reeves, V.B. Confirmation of multiple sulfonamide residues in bovine milk by gas chromatography-positive chemical ionization mass spectrometry. J. Chromatogr. B 1999, 723, 127–137. [Google Scholar] [CrossRef]
- Abdallah, H.; Arnaudguilhem, C.; Jaber, F.; Lobinski, R. Multiresidue analysis of 22 sulfonamides and their metabolites in animal tissues using quick, easy, cheap, effective, rugged, and safe extraction and high resolution mass spectrometry hybrid linear ion trap-Orbitrap. J. Chromatogr. A 2014, 1355, 61–72. [Google Scholar] [CrossRef]
- Bogialli, S.; Curini, R.; di Corcia, A.; Nazzari, M.; Polci, M.L. Rapid confirmatory assay for detrmining 12 sulfonamide antimicrobials in milka and eggs by matrix solid-phase dispersion and liquid hromatography-mass spectrometry. J. Agric. Food Chem. 2003, 51, 4225–4232. [Google Scholar] [CrossRef]
- Galarini, R.; Diana, F.; Moretti, S.; Puppini, B.; Saluti, G.; Persic, L. Development and validation of a new qualitative ELISA screening for multiresidue detection of sulfonamides in food and feed. Food Control 2014, 35, 300–310. [Google Scholar] [CrossRef]
- Posyniak, A.; Jażdżewski, K.; Pietruszka, K.; Mitrowska, K.; Gajda, A. Improved analytical procedure for the etermination of sulfonamides in honey. Bull. Vet. Inst. Pulawy 2008, 52, 87–91. [Google Scholar]
- Hela, W.; Brandtner, M.; Widek, R.; Schuh, R. Determiantion of sulfonamides in animal tissues using cation exchange reserved phase sorbent for sample cleanup and HPLC-DAD for detection. Food Chem. 2003, 83, 601–608. [Google Scholar] [CrossRef]
- Mccaughey, W.J.; Elliott, C.T.; Crooks, S.R.H. Determination of sulfadimidine in animal feedstuffs by an enzyme-linked immunoassay. Food Addit. Contam. 1990, 7, 259–264. [Google Scholar] [CrossRef]
- Korsrud, G.O.; Boison, J.O.; Nouws, J.F.M.; MacNeil, J.D. Bacterial inhibition tests used to screen for antimicrobial veterinary drug residues in slaughtered animals. J. AOAC Int. 1998, 81, 21–24. [Google Scholar] [CrossRef] [Green Version]
- Pietroń, W.J.; Cybulski, W.; Krasucka, D.; Mitura, A.; Kos, K.; Antczak, M. Determination of five sulfonamides in medicated feedingstuffs by liquid chromatography with ultraviolet detection. Bull. Vet. Inst. Pulawy 2013, 57, 545–552. [Google Scholar] [CrossRef] [Green Version]
- Przeniosło-Swiczyńska, M.; Kowalczyk, E.; Kwiatek, K. Determination of sulfaguanidine in medicated feedingstuffs by liquid chromatography-mass spectrometry. Bull. Vet. Inst. Pulawy 2011, 55, 717–720. [Google Scholar]
- Martinez-Algaba, C.; Bermudez-Saldana, J.M.; Villanueva-Camanas, R.M.; Sagrado, S.; Medina-Hernandez, M.J. Analysis of pharmaceutical preparations containing antihistamine drugs by micellar liquid chromatography. J. Pharm. Biomed. Anal. 2006, 40, 312–321. [Google Scholar] [CrossRef]
- Ibrahim, F.A.; El-Brashy, A.; El-Awady, M.; Abdallah, N.A. Fast simultaneous quantitation of valsartan and amlodipine besylate using an eco-friendly micellar HPLC-UV method: Application to spiked human plasma and content uniformity testing for amlodipine. Anal. Methods 2018, 10, 5227–5235. [Google Scholar] [CrossRef]
- Ruiz-Ángel, M.J.; Carda-Broch, S.; Torres-Lapasióa, J.R.; García-Álvarez-Coque, M.C. Retention mechanisms in micellar liquid chromatography. J. Chromatogr. A 2009, 1216, 1798–1814. [Google Scholar] [CrossRef]
- El-Shaheny, R.N.; El-Maghrabey, M.H.; Belal, F.F. Micellar Liquid Chromatography from Green Analysis Perspective. Open Chem. 2015, 13, 877–892. [Google Scholar] [CrossRef] [Green Version]
- Kawczak, P.; Bączek, T. Recent theoretical and practical applications of micellar liquid chromatography (MLC) in pharmaceutical and biomedical analysis. Cent. Eur. J. Chem. 2012, 10, 570–584. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.L.; Wang, S.P. Determination of steroids in human urine by micellar liquid chromatography. Anal. Lett. 1997, 30, 2315–2325. [Google Scholar] [CrossRef]
- Agrawal, N.; Marco-Peiro, S.; Esteve-Romero, J. Determination of paroxetine in blood and urine using micellar liquid chromatography with electrochemical detection. J. Chromatogr. Sci. 2014, 52, 1217–1223. [Google Scholar] [CrossRef] [Green Version]
- Cline-Love, L.J.; Fett, J.J. Optimization of selectivity in MLC procedures for the determination of drugs in urine by direct injection. J. Pharm. Biomed. Anal. 1991, 9, 323–334. [Google Scholar] [CrossRef]
- Dadgar, D.; Kelly, M.T. Determination of chlorthalidone in human plasma by reversed-phase micellar liquid chromatography. Analyst 1988, 113, 1223–1227. [Google Scholar] [CrossRef]
- Reynolds, J.; Albazi, S.J. Simultaneous determination of nicotine and cotinine in untreated human urine by micellar liquid chromatography. J. Liq. Chromatogr. 1995, 18, 537–552. [Google Scholar] [CrossRef]
- Sentell, K.B.; Clos, J.F.; Dorsey, J.G. Practical approach to direct injection of untreated physiological fluids with MLC: Determination of bumetanide. Biochromatography 1989, 4, 35–40. [Google Scholar]
- Patyra, E.; Kowalczyk, E.; Kwiatek, K. Development and validation method for the determination of selected tetracyclines in animal medicated feedingstuffs with the use of micellar liquid chromatography. Anal. Bioanal. Chem. 2013, 405, 6799–6806. [Google Scholar] [CrossRef]
- Szymański, A. Determination of sulfonamide residues in food by micellar liquid chromatography. Toxicol. Mech. Methods 2008, 18, 473–481. [Google Scholar] [CrossRef]
- Moneferre-Pons, L.; Capello-Peiro, E.; Gil-Agusti, M.; Esteve-Romero, J. Micellar liquid chromatography determination of B vitamins with direct injection and ultraviolet absorbance detection. J. Chromatogr. A 2003, 984, 223–231. [Google Scholar] [CrossRef]
- Rambla-Alegre, M.; Peris-Vicente, J.; Romero-Esteve, J.; Carda-Broch, S. Analysis of selected veterinary antibiotics in fish by micellar liquid chromatography with fluorescence detection and validation in accordance with regulation 2002/657/EC. Food Chem. 2010, 123, 1294–1302. [Google Scholar] [CrossRef]
- Remezeni, A.M.; Absalan, G.; Ahmadi, R. Green-modified micellar liquid chromatography for isocratic isolation of some cardiovascular dgrugs with different polarities through experimental design approach. Anal. Chim. Acta 2018, 1010, 76–85. [Google Scholar] [CrossRef]
- Ibrahim, F.A.; Nasr, J.J.M. Direct determination of ampicillin and amoxicillin residues in food samples after aqueous SDS extraction by micellar liquid chromatography with UV detection. Anal. Methods 2014, 6, 1523–1529. [Google Scholar] [CrossRef]
- Srisom, P.; Liawruangrath, B.; Liawruangrath, S. Micellar liquid chromatographic determination of penicillins in pharmaceuticals. Chromatographia 2006, 65, 687–693. [Google Scholar] [CrossRef]
- Szymański, A. Retention mechanism of sulfonamides in micellar reversed phase liquid chromatography. ARS Sep. Acta 2011, 8, 69–80. [Google Scholar]
- Szymański, A. High performance liquid chromatography with micellar mobile phase in the determination of sulfonamides in honey. Chem. Anal. 2000, 45, 521–528. [Google Scholar]
- Garcia-Alvarez-Coque, M.C.; Simo-Alfonso, E.F.; Ramis-Ramos, G.; Esteve-Romero, J.S. High-performance micellar liquid chromatography determination of sulphonamides in pharmeceuticals after azodye precolumn derivatization. J. Pharm. Biomed. Anal. 1995, 13, 237–245. [Google Scholar] [CrossRef]
- Raviolo, M.A.; Rambla-Alegre, M.; Clausell-Tormos, J.; Capella-Peiro, M.-E.; Carda-Broch, S.; Esteve-Romero, J. Determination of sulfonamides in milk after precolumn derivatisation by micellar liquid chromatography. Anal. Chim. Acta 2007, 593, 152–156. [Google Scholar] [CrossRef]
- Szymański, A.; Szczepaniak, W. Retention Mechanism of Sulfonamides in Ionic Micellar Liquid Chromatoraphy. Chem. Anal. 1998, 43, 617–634. [Google Scholar]
- Terrado-Campos, D.; Tayeb-Cherif, K.; Peris-Vicente, J.; Carda-Broch, S. Determination of oxolinic acid, danofloxacin, ciprofloxacin, and enrofloxacin in porcine and bovine meat by micellar liquid chromatography with fluorecence detection. Food Chem. 2017, 221, 1277–1284. [Google Scholar] [CrossRef]
- Karimi, M.; Aboufazeli, F.; Zhad, H.R.L.Z.; Sadeghi, O.; Najafi, E. Determination of Sulfonamides in Chicken Meat by Magnetic Molecularly Imprinted Polymer Coupled to HPLC-UV. Food Anal. Methods 2014, 7, 73–80. [Google Scholar] [CrossRef]
- Boscher, A.; Guignard, C.; Pellet, T.; Hoffman, L.; Bohn, T. Development of a multi-class method for the quantification of veterinary drug residues in feedingstuffs by liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 2010, 1217, 6394–6404. [Google Scholar] [CrossRef]
- Stringham, R.W.; Mundell, E.C.; Smallidge, R.L. Use of Post-Column Derivatization in Liquid Chromatographic Determination of Sulfamethazine and Sulfathiazole in Feeds and Feed Premixes. J. AOAC 1982, 1, 823–827. [Google Scholar] [CrossRef]
- Decision, C. 657/EC of 12 August implementing Council Directive 96/23/EC concerning the performance of analytical methods and the interpretation of results. Off. J. L 2002, 221, 8–36. [Google Scholar]
- International Conference on Harmonization (ICH) Q2B. Validation of Analytical Procedures: Methodology. Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/ich-q-2-r1-validation-analytical-procedures-text-methodology-step-5_en.pdf (accessed on 31 June 1997).
Sulfonamide | R | pKa1 | pKa2 | logPow | λmax |
---|---|---|---|---|---|
Sulfaguanidine | 2.8 | 12.1 | −1.22 | 260 | |
Sulfadiazine | 2.0 | 6.4 | −0.18 | 218 | |
Sulfamerazine | 2.2 | 7.0 | 0.06 | 261 | |
Sulfamethazine | 2.1 | 7.4 | 0.32 | 268 | |
sulfamethoxazole | 1.7 | 5.6 | 0.91 | 270 |
Parameters | SDS Concentration (mol/dm3) | ||||
---|---|---|---|---|---|
0.03 | 0.04 | 0.05 | 0.06 | 0.07 | |
Peak separation | No separation | No separation | Good separation | Good separation | Good separation |
Column pressure (bar) | <60 | <70 | >80 | 90–100 | >100 |
Peak shape | not Gaussian shape | not Gaussian shape | Gaussian shape | Gaussian shape | Gaussian shape |
Time of analysis (min) | >40 | >30 | <25 | <20 | <20 |
Parameters | Propan-2-ol Concentration (%) | ||||||
---|---|---|---|---|---|---|---|
4 | 5 | 6 | 7 | 8 | 9 | 10 | |
Peak separation | No separation | No separation | Good separation | Good separation | No separation | No separation | No separation |
Column pressure (bar) | >70 | >70 | <70 | <70 | 60 | 50–60 | 50–60 |
Peak shape | Not Gaussian shape | Not Gaussian shape | Gaussian shape | Gaussian shape | Gaussian shape | Gaussian shape | Gaussian shape |
Time of analysis (min) | >30 | >30 | <20 | <20 | <20 | <15 | <15 |
Analyte | Linearity R2 | Linearity Range (mg/kg) | Intra-Day, CV% (mg/kg) | Inter-Day, CV% (mg/kg) | Recovery (%) (mean ± S.D.) | LOD (mg/kg) | LOQ (mg/kg) | U (%) | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
200 | 1000 | 2000 | 200 | 1000 | 2000 | |||||||
SGD | 0.9976 | 0.004–0.40 | 5.7 | 2.9 | 3.3 | 7.2 | 5.5 | 4.3 | 94.7 ± 7.2 | 33.1 | 54.8 | 10.4 |
SDZ | 0.9954 | 0.004–0.40 | 6.1 | 3.3 | 5.0 | 8.0 | 4.3 | 6.7 | 94.4 ± 8.7 | 38.9 | 70.4 | 16.0 |
SMR | 0.9997 | 0.004–0.40 | 8.8 | 2.9 | 3.1 | 9.3 | 9.0 | 5.9 | 78.9 ± 10.7 | 32.7 | 63.2 | 17.1 |
SMZ | 0.9991 | 0.004–0.40 | 7.4 | 6.0 | 5.6 | 6.9 | 7.6 | 7.6 | 85.3 ± 2.1 | 42.3 | 74.7 | 14.5 |
SXZ | 0.9978 | 0.004–0.40 | 6.8 | 8.6 | 7.1 | 9.2 | 8.8 | 9.8 | 72.7 ± 8.4 | 56.3 | 98.4 | 18.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Patyra, E.; Kwiatek, K. Application of Micellar Mobile Phase for Quantification of Sulfonamides in Medicated Feeds by HPLC-DAD. Molecules 2021, 26, 3791. https://doi.org/10.3390/molecules26133791
Patyra E, Kwiatek K. Application of Micellar Mobile Phase for Quantification of Sulfonamides in Medicated Feeds by HPLC-DAD. Molecules. 2021; 26(13):3791. https://doi.org/10.3390/molecules26133791
Chicago/Turabian StylePatyra, Ewelina, and Krzysztof Kwiatek. 2021. "Application of Micellar Mobile Phase for Quantification of Sulfonamides in Medicated Feeds by HPLC-DAD" Molecules 26, no. 13: 3791. https://doi.org/10.3390/molecules26133791
APA StylePatyra, E., & Kwiatek, K. (2021). Application of Micellar Mobile Phase for Quantification of Sulfonamides in Medicated Feeds by HPLC-DAD. Molecules, 26(13), 3791. https://doi.org/10.3390/molecules26133791