Characterization of Basil Volatile Fraction and Study of Its Agronomic Variation by ASCA
Abstract
:1. Introduction
2. Materials and Methods
2.1. Basil Plants
2.2. Sample Preparation
2.3. Heracles e-Nose Analysis
2.4. Gas Chromatography–Mass Spectrometry Olfactometry Analysis (GC–MS/O)
2.5. Quantification of Key Molecules
2.6. Data Analysis
Software
3. Results and Discussion
3.1. Aroma Analysis
3.2. Multivariate Exploratory Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Qing, X.L.; Chiou, L.C. Basil (Ocimum basilicum L.) Oils. In Essential Oils in Food Preservation, Flavor and Safety; Preedy, V.R., Ed.; Academic Press: Cambridge, MA, USA, 2016; pp. 231–238. [Google Scholar]
- Paton, A.; Harley, R.M.; Harley, M.M. Ocimum—An overview of relationships and classification. In Medicinal and Aromatic Plants—Industrial Profiles; Holm, Y., Hiltunen, R., Eds.; Harwood Academic: Amsterdam, The Netherlands, 1999; pp. 1–38. [Google Scholar]
- Eileen, M.K.; Emily, D.N. Variations in phenolic composition and antioxidant properties among 15 basil (Ocimum basilicum L.) cultivars. Food Chem. 2011, 128, 1044–1050. [Google Scholar]
- Grayer, J.R.; Kite, G.C.; Goldstone, F.J.; Bryan, S.E.; Paton, A.; Putievsky, E. Infraspecific taxonomy and essential oil chemotypes in sweet basil, Ocimum basilicum. Phytochemistry 1996, 43, 1033–1039. [Google Scholar] [CrossRef]
- De Masi, L.; Siviero, P.; Esposito, C.; Castaldo, D.; Siano, F.; Laratta, B. Assessment of agronomic, chemical and genetic variability in common basil (Ocimum basilicum L.). Eur. Food Res. Technol. 2006, 223, 273–281. [Google Scholar] [CrossRef]
- Salvadeo, P.; Boggia, R.; Evangelisti, F.; Zunin, P. Analysis of the volatile fraction of “Pesto Genovese” by headspace sorptive extraction (HSSE). Food Chem. 2007, 105, 1228–1235. [Google Scholar] [CrossRef]
- Murarikova, A.; Tazky, A.; Neugebaureova, J.; Plankova, A.; Jampilek, J.; Mucaji, P.; Mikus, P. Characterization of Essential Oil Composition in Different Basil Species and Pot Cultures by a GC-MS Method. Molecules 2017, 22, 1221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Omer, E.A.; Said-Al, H.A.H.A.; Hendawy, S.F. Production, Chemical Composition and Volatile Oil of Different Basil Species/Varieties Cultivated under Egyptian Soil Salinity Conditions. Res. J. Agric. Biol. Sci. 2008, 4, 293–300. [Google Scholar]
- Southwell, I.A.; Russel, M.F.; Davies, N.W. Detecting traces of methyl eugenol in essential oils: Tea tree oil, a case study. Flavour Fragr. J. 2011, 26, 336–340. [Google Scholar] [CrossRef]
- Lee, S.J.; Umano, K.; Shibamoto, T.; Lee, K.G. Identification of volatile components in basil (Ocimum basilicum L.) and thyme leaves (Thymus vulgaris L.) and their antioxidant properties. Food Chem. 2005, 91, 131–137. [Google Scholar] [CrossRef]
- Leonardos, G.; Kendall, D.; Barnard, N. Odor Threshold Determinations of 53 Odorant Chemicals. J. Air Pollut. Control Assoc. 1969, 19, 91–95. [Google Scholar] [CrossRef] [Green Version]
- Plotto, A.; Margaria, C.A.; Goodner, K.L.; Baldwin, E.A. Odour and flavour threshold for key aroma components in an orange juice matrix: Terpenes and aldehydes. Flavour Fragr. J. 2004, 19, 491–498. [Google Scholar] [CrossRef]
- Bertoli, A.; Lucchesini, M.; Mensuali-Sodi, A.; Leonardi, M.; Doveri, S.; Magnabosco, A.; Pistelli, L. Aroma characterization and UV elicitation of purple basil from different plant tissue cultures. Food Chem. 2013, 141, 776–787. [Google Scholar] [CrossRef]
- Manzini, S.; Durante, C.; Baschieri, C.; Cocchi, M.; Marchetti, A.; Sighinolfi, S. Optimization of a Dynamic Headspace—Thermal Desorption—Gas Chromatography/Mass Spectrometry procedure for the determination of furfurals in vinegars. Talanta 2011, 85, 863–869. [Google Scholar] [CrossRef]
- Biasioli, F.; Yeretzian, C.; Märk, T.D.; Dewulf, J.; Van Langenhove, H. Direct-injection mass spectrometry adds the time dimension to (B)VOC analysis. Trends Anal. Chem. 2011, 30, 1003–1017. [Google Scholar] [CrossRef]
- Cocchi, M.; Durante, C.; Marchetti, A.; Armanino, C.; Casale, M. Characterization and discrimination of different aged ‘Aceto Balsamico Tradizionale di Modena’ products by head space mass spectrometry and chemometrics. Anal. Chim. Acta 2007, 589, 96–104. [Google Scholar] [CrossRef]
- Capozzi, V.; Yener, S.; Khomenko, I.; Farneti, B.; Cappellin, L.; Gasperi, F.; Scampicchio, M.; Biasioli, F. PTR-ToF-MS Coupled with an Automated Sampling System and Tailored Data Analysis for Food Studies: Bioprocess Monitoring, Screening and Nose-space Analysis. J. Vis. Exp. JoVE 2017, 123, e54075. [Google Scholar] [CrossRef]
- Lu, Y.; Gao, B.; Chen, P.; Charles, D.; Yu, L. Characterisation of organic and conventional sweet basil leaves using chromatographic and flow-injection mass spectrometric (FIMS) fingerprints combined with principal component analysis. Food Chem. 2014, 154, 262–268. [Google Scholar] [CrossRef] [Green Version]
- Black, C.; Chevallier, O.P.; Elliott, C.T. The current and potential applications of Ambient Mass Spectrometry in detecting food fraud. Trends Anal. Chem. 2016, 82, 268–278. [Google Scholar] [CrossRef] [Green Version]
- Lu, H.; Zhang, H.; Chingin, K.; Xiong, J.; Fang, X.; Chen, H. Ambient mass spectrometry for food science and industry. Trends Anal. Chem. 2018, 107, 99–115. [Google Scholar] [CrossRef]
- Meng, X.; Zhai, Y.; Yuan, W.; Lv, Y.; Lv, Q.; Bai, H.; Niu, Z.; Xu, W.; Ma, Q. Ambient ionization coupled with a miniature mass spectrometer for rapid identification of unauthorized adulterants in food. J. Food Compos. Anal. 2020, 85, 103333. [Google Scholar] [CrossRef]
- Giannoukos, K.; Giannoukos, S.; Lagogianni, C.; Tsitsigiannis, D.I.; Taylor, S. Analysis of volatile emissions from grape berries infected with Aspergillus carbonarius using hyphenated and portable mass spectrometry. Sci. Rep. 2020, 10, 21179. [Google Scholar] [CrossRef]
- Torres, M.N.; Valdes, N.B.; Almirall, J.R. Comparison of portable and benchtop GC–MS coupled to capillary microextraction of volatiles (CMV) for the extraction and analysis of ignitable liquid residues. Forensic Chem. 2020, 19, 100240. [Google Scholar] [CrossRef]
- Ketola, R.A.; Short, R.T.; Bell, R.J. 2.24—Membrane Inlets for Mass Spectrometry. In Comprehensive Sampling and Sample Preparation; Pawliszyn, J., Ed.; Academic Press: Cambridge, MA, USA, 2012; pp. 497–533. [Google Scholar]
- Zlotek, U.; Mikulska, S.; Nagajek, M.; Swieca, M. The effect of different solvents and number of extraction steps on the polyphenol content and antioxidant capacity of basil leaves (Ocimum basilicum L.) extracts. Saudi J. Biol. Sci. 2016, 23, 628–633. [Google Scholar] [CrossRef]
- Jordán, M.J.; Quílez, M.; Luna, M.C.; Bekhradi, F.; Sotomayor, J.A.; Sánchez-Gómez, P.; Gil, M.I. Influence of water stress and storage time on preservation of the fresh volatile profile of three basil genotypes. Food Chem. 2016, 13, 169–177. [Google Scholar] [CrossRef]
- Fratianni, F.; Cefola, M.; Pace, B.; Cozzolino, R.; De Giulio, B.; Cozzolino, A.; d’Acierno, A.; Coppola, R.; Logrieco, A.F.; Nazzaro, F. Changes in visual quality, physiological and biochemical parameters assessed during the postharvest storage at chilling or non-chilling temperatures of three sweet basil (Ocimum basilicum L.) cultivars. Food Chem. 2017, 229, 752–760. [Google Scholar] [CrossRef] [PubMed]
- Acree, T.E. GC/olfactometry GC with a sense of smell. Anal. Chem. 1997, 69, 170A–175A. [Google Scholar] [CrossRef]
- Alpha-MOS. Available online: https://www.alpha-mos.com/heracles-smell-analysis (accessed on 20 April 2021).
- Kostyra, E.; Król, K.; Knysak, D.; Piotrowska, A.; Żakowska-Biemans, S.; Latocha, P. Characteristics of volatile compounds and sensory properties of mixed organic juices based on kiwiberry fruits. Appl. Sci. 2021, 11, 529. [Google Scholar] [CrossRef]
- Huang, L.; Liu, H.; Zhang, B.; Wu, D. Application of electronic nose with multivariate analysis and sensor selection for botanical origin identification and quality determination of honey. Food Bioprocess Technol. 2015, 8, 359–370. [Google Scholar] [CrossRef]
- Wojtasik-Kalinowska, I.; Guzeka, D.; Gorska-Horczyczaka, E.; Głabska, D.; Brodowska, M.; Sun, D.; Wierzbick, A. Volatile compounds and fatty acids profile in Longissimus dorsi muscle from pigs fed with feed containing bioactive components. LWT Food Sci. Technol. 2016, 67, 112–117. [Google Scholar] [CrossRef]
- Melucci, D.; Bendini, A.; Tesini, F.; Barbieri, S.; Zappi, A.; Vichi, S.; Conte, L.; Gallina-Toschi, T. Rapid direct analysis to discriminate geographic origin of extra virgin olive oils by flash gas chromatography electronic nose and chemometrics. Food Chem. 2016, 204, 263–273. [Google Scholar] [CrossRef] [Green Version]
- Smilde, A.K.; Jansen, J.J.; Hoefsloot, H.C.; Lamers, R.J.A.; Van Der Greef, J.; Timmerman, M.E. ANOVA-simultaneous component analysis (ASCA): A new tool for analyzing designed metabolomics data. Bioinformatics 2005, 21, 3043–3048. [Google Scholar] [CrossRef]
- Jansen, J.J.; Hoefsloot, H.C.; van der Greef, J.; Timmerman, M.E.; Westerhuis, J.A.; Smilde, A.K. ASCA: Analysis of multivariate data obtained from an experimental design. J. Chemom. J. Chemom. Soc. 2005, 19, 469–481. [Google Scholar] [CrossRef]
- Rudnitskaya, A.; Rocha, S.M.; Legin, A.; Pereira, V.; Marques, J.C. Evaluation of the feasibility of the electronic tongue as a rapid analytical tool for wine age prediction and quantification of the organic acids and phenolic compounds. The case-study of Madeira wine. Anal. Chim. Acta 2010, 662, 82–89. [Google Scholar] [CrossRef] [PubMed]
- Firmani, P.; Vitale, R.; Ruckebusch, C.; Marini, F. ANOVA-Simultaneous Component analysis modelling of low-level-fused spectroscopic data: A food chemistry case-study. Anal. Chim. Acta 2020, 1125, 308–314. [Google Scholar] [CrossRef]
- Grassi, S.; Lyndgaard, C.B.; Rasmussen, M.A.; Amigo, J.M. Interval ANOVA simultaneous component analysis (i-ASCA) applied to spectroscopic data to study the effect of fundamental fermentation variables in beer fermentation metabolites. Chemom. Intell. Lab. Syst. 2017, 163, 86–93. [Google Scholar] [CrossRef]
- Anderson, M.; Braak, C.T. Permutation tests for multi-factorial analysis of variance. J. Stat. Comput. Simul. 2003, 73, 85–113. [Google Scholar] [CrossRef]
- De Luca, S.; De Filippis, M.; Bucci, R.; Magrì, A.D.; Magrì, A.L.; Marini, F. Characterization of the effects of different roasting conditions on coffee samples of different geographical origins by HPLC-DAD, NIR and chemometrics. Microchem. J. 2016, 129, 348–361. [Google Scholar] [CrossRef]
- Raina, A.; Kumar, A. Chemical characterisation of basil germplasm for essential oil composition and chemotypes. J. Essent. Oils Bear. Plants 2017, 20, 1579–1586. [Google Scholar] [CrossRef]
- Lawrence, B.M. A further examination of the variation of Ocimum basilicum L. In Flavour and Fragrances, Proceedings of the 10th International Congress of Essential Oils, Fragrances and Flavors: A World Perspective, Washington, DC, USA, 16–20 November 1986; Lawrence, B.M., Mookerjee, B.D., Willis, B.J., Eds.; Elsevier: Amsterdam, The Netherlands, 1988; pp. 161–170. [Google Scholar]
Crop Year | Basil Variety | Cut in Bold (No. of Samples) |
---|---|---|
2018 | italiano classico variety 3 variety 5 variety 8 variety 10 variety 11 | 1st (11), 2nd (12), 3rd (3) 1st (1), 2nd (1) 1st (1), 2nd (1) 1st (1), 2nd (1) 1st (1), 2nd (1) 1st (1), 2nd (1) |
2019 | italiano classico variety 5 variety 8 variety 9 variety 10 variety 11 | 1st (4), 2nd (2), 3rd (2), 4th (2) 1st (2), 2nd (1), 3rd (1), 4th (1) 1st (2) 2nd (1), 3rd (1), 4th (1) 1st (2), 2nd (1), 3rd (1), 4th (1) 1st (2), 2nd (1), 3rd (1), 4th (1) |
2020 | italiano classico variety 1 variety 2 variety 4 variety 5 variety 6 variety 7 variety 9 | 2nd (2), 3rd (1), 4th (2) 2nd (1), 3rd (1), 4th (1) 2nd (1), 3rd (1), 4th (1) 2nd (1), 3rd (1), 4th (1) 2nd (1), 4th (1) 3rd (1), 4th (1) 2nd (1), 3rd (1), 4th (1) 2nd (1), 4th (1) |
Molecules | CAS Number | Aroma Description |
---|---|---|
hexanal | 66-25-1 | green grass, rancid |
2-hexenal | 63449-41-2 | spices/herbal |
a-pinene | 80-56-8 | herbal, woody |
b-myrcene | 123-35-3 | flower, cytrus |
eucalyptol | 470-82-6 | balsamic, eucalyptus, menthol |
linalool | 78-70-6 | flower, cytrus, vinegar |
estragole | 140-67-0 | anis, liquorice, fennel |
eugenol | 97-53-0 | cloves, spices |
b-caryophyllene | 87-44-5 | spices |
Compounds | R2 | Slope ± SD | LOD (µg kg−1) |
---|---|---|---|
hexanal | 0.9997 | 0.96 ± 0.01 | 47 |
2-hexenal | 0.9998 | 0.79 ± 0.01 | 23 |
a-pinene | 0.9998 | 1.73 ± 0.01 | 28 |
b-myrcene | 0.9999 | 1.61 ± 0.01 | 11 |
eucalyptol | 0.9999 | 1.88 ± 0.01 | 22 |
linalool | 0.9995 | 0.394 ± 0.004 | 60 |
estragole | 0.9994 | 1.33 ± 0.02 | 52 |
eugenol | 0.9999 | 0.453 ± 0.002 | 32 |
b-caryophyllene | 0.9968 | 1.22 ± 0.03 | 22 |
Year | Cut | Variety |
---|---|---|
2019 | 2 | Variety 5 |
2019 | 2 | Italiano Classico |
2019 | 2 | Variety 9 |
2019 | 4 | Variety 5 |
2019 | 4 | Italiano Classico |
2019 | 4 | Variety 9 |
2020 | 2 | Variety 5 |
2020 | 2 | Italiano Classico |
2020 | 2 | Variety 9 |
2020 | 4 | Variety 5 |
2020 | 4 | Italiano Classico |
2020 | 4 | Variety 9 |
Factor | Expl. Var. % | p |
---|---|---|
Variety | 36.41 | <0.001 |
Year | 22.31 | <0.001 |
Year × Variety | 11.95 | <0.001 |
Year × Cut | 3.74 | <0.001 |
Cut × Variety | 3.1 | 0.003 |
Cut | 3 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
D’Alessandro, A.; Ballestrieri, D.; Strani, L.; Cocchi, M.; Durante, C. Characterization of Basil Volatile Fraction and Study of Its Agronomic Variation by ASCA. Molecules 2021, 26, 3842. https://doi.org/10.3390/molecules26133842
D’Alessandro A, Ballestrieri D, Strani L, Cocchi M, Durante C. Characterization of Basil Volatile Fraction and Study of Its Agronomic Variation by ASCA. Molecules. 2021; 26(13):3842. https://doi.org/10.3390/molecules26133842
Chicago/Turabian StyleD’Alessandro, Alessandro, Daniele Ballestrieri, Lorenzo Strani, Marina Cocchi, and Caterina Durante. 2021. "Characterization of Basil Volatile Fraction and Study of Its Agronomic Variation by ASCA" Molecules 26, no. 13: 3842. https://doi.org/10.3390/molecules26133842
APA StyleD’Alessandro, A., Ballestrieri, D., Strani, L., Cocchi, M., & Durante, C. (2021). Characterization of Basil Volatile Fraction and Study of Its Agronomic Variation by ASCA. Molecules, 26(13), 3842. https://doi.org/10.3390/molecules26133842