Degradation Investigation of Electrocatalyst in Proton Exchange Membrane Fuel Cell at a High Energy Efficiency
Abstract
:1. Introduction
2. Results and Discussion
2.1. Durability Test of PEMFC
2.2. Physicochemical Characterization of the Cathodei Catalyst Layer
3. Materials and Methods
3.1. Fuel Cell Test
3.2. Material Characterization
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Gamburzev, S.; Appleby, A. Recent progress in performance improvement of the proton exchange membrane fuel cell (PEMFC). J. Power Sources 2002, 107, 5–12. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, T.; Chen, H.; Cao, Y. A review of online electrochemical diagnostic methods of on-board proton exchange membrane fuel cells. Appl. Energy 2021, 286, 116481. [Google Scholar] [CrossRef]
- Wu, J.; Yuan, X.Z.; Martin, J.J.; Wang, H.; Zhang, J.; Shen, J.; Wu, S.; Merida, W. A review of PEM fuel cell durability: Degradation mechanisms and mitigation strategies. J. Power Sources 2008, 184, 104–119. [Google Scholar] [CrossRef]
- Pan, M.; Pan, C.; Li, C.; Zhao, J. A review of membranes in proton exchange membrane fuel cells: Transport phenomena, performance and durability. Renew. Sustain. Energy Rev. 2021, 141, 110771. [Google Scholar] [CrossRef]
- Shao, Y.; Yin, G.; Gao, Y. Understanding and approaches for the durability issues of Pt-based catalysts for PEM fuel cell. J. Power Sources 2007, 171, 558–566. [Google Scholar] [CrossRef]
- De Bruijn, F.D.; Dam, V.A.T.; Janssen, G.J.M. Review: Durability and Degradation Issues of PEM Fuel Cell Components. Fuel Cells 2008, 8, 3–22. [Google Scholar] [CrossRef]
- Zhou, X.; Yang, Y.; Li, B.; Zhang, C. Advanced Reversal Tolerant Anode in Proton Exchange Membrane Fuel Cells: Study on the Attenuation Mechanism during Fuel Starvation. ACS Appl. Mater. Interfaces 2021, 13, 2455–2461. [Google Scholar] [CrossRef]
- DOE Technical Targets for Fuel Cell Systems and Stacks for Transportation Applications. Available online: https://www.energy.gov/eere/fuelcells/doe-technical-targets-fuel-cell-systems-and-stacks-transportation-applications (accessed on 3 May 2021).
- Ren, P.; Pei, P.; Li, Y.; Wu, Z.; Chen, D.; Huang, S. Degradation mechanisms of proton exchange membrane fuel cell under typical automotive operating conditions. Prog. Energy Combust. Sci. 2020, 80, 100859. [Google Scholar] [CrossRef]
- Jahnke, T.; Futter, G.; Latz, A.; Malkow, T.; Papakonstantinou, G.; Tsotridis, G.; Schott, P.; Gérard, M.; Quinaud, M.; Quiroga, M.; et al. Performance and degradation of Proton Exchange Membrane Fuel Cells: State of the art in modeling from atomistic to system scale. J. Power Sources 2016, 304, 207–233. [Google Scholar] [CrossRef] [Green Version]
- Curtin, D.E.; Lousenberg, R.D.; Henry, T.J.; Tangeman, P.C.; Tisack, M.E. Advanced materials for improved PEMFC performance and life. J. Power Sources 2004, 131, 41–48. [Google Scholar] [CrossRef]
- Pei, P.; Chang, Q.; Tang, T. A quick evaluating method for automotive fuel cell lifetime. Int. J. Hydrog. Energy 2008, 33, 3829–3836. [Google Scholar] [CrossRef]
- Kang, J.; Kim, J. Membrane electrode assembly degradation by dry/wet gas on a PEM fuel cell. Int. J. Hydrog. Energy 2010, 35, 13125–13130. [Google Scholar] [CrossRef]
- Chu, T.; Zhang, R.; Wang, Y.; Ou, M.; Xie, M.; Shao, H.; Yang, D.; Li, B.; Ming, P.; Zhang, C. Performance degradation and process engineering of the 10 kW proton exchange membrane fuel cell stack. Energy 2021, 219, 119623. [Google Scholar] [CrossRef]
- Pei, P.C.; Chen, H.C. Main factors affecting the lifetime of Proton Exchange Membrane fuel cells in vehicle applications: A review. Appl. Energy 2014, 125, 60–75. [Google Scholar] [CrossRef]
- Wu, J.; Yuan, X.-Z.; Martin, J.J.; Wang, H.; Yang, D.; Qiao, J.; Ma, J. Proton exchange membrane fuel cell degradation under close to open-circuit conditions: Part I: In situ diagnosis. J. Power Sources 2010, 195, 1171–1176. [Google Scholar] [CrossRef]
- Yuan, X.-Z.; Zhang, S.; Wang, H.; Wu, J.; Sun, J.C.; Hiesgen, R.; Friedrich, K.A.; Schulze, M.; Haug, A. Degradation of a polymer exchange membrane fuel cell stack with Nafion® membranes of different thicknesses: Part I, in situ diagnosis. J. Power Sources 2010, 195, 7594–7599. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Huang, F.; Yu, Y.; Wen, S.; Tu, Z. Degradation behavior of a proton exchange membrane fuel cell stack under dynamic cycles between idling and rated condition. Int. J. Hydrog. Energy 2018, 43, 4471–4481. [Google Scholar] [CrossRef]
- Wang, C.; Zhao, Q.; Zhou, X.; Wang, J.; Tang, Y. Degradation characteristics of membrane electrode assembly under drive cycle test protocol. Int. J. Green Energy 2019, 16, 789–795. [Google Scholar] [CrossRef]
- Garcia-Sanchez, D.; Morawietz, T.; da Rocha, P.G.; Hiesgen, R.; Gazdzicki, P.; Friedrich, K. Local impact of load cycling on degradation in polymer electrolyte fuel cells. Appl. Energy 2020, 259, 114210. [Google Scholar] [CrossRef]
- Zhang, T.; Wang, P.; Chen, H.; Pei, P. A review of automotive proton exchange membrane fuel cell degradation under start-stop operating condition. Appl. Energy 2018, 223, 249–262. [Google Scholar] [CrossRef]
- Mittermeier, T.; Weiß, A.; Hasché, F.; Hübner, G.; Gasteiger, H.A. PEM Fuel Cell Start-up/Shut-down Losses vs Temperature for Non-Graphitized and Graphitized Cathode Carbon Supports. J. Electrochem. Soc. 2016, 164, F127–F137. [Google Scholar] [CrossRef]
- Lin, R.; Xiong, F.; Tang, W.; Técher, L.; Zhang, J.; Ma, J. Investigation of dynamic driving cycle effect on the degradation of proton exchange membrane fuel cell by segmented cell technology. J. Power Sources 2014, 260, 150–158. [Google Scholar] [CrossRef]
- Owejan, J.E.; Yu, P.T.; Makharia, R. Mitigation of Carbon Corrosion in Microporous Layers in PEM Fuel Cells. ECS Trans. 2007, 11, 1049–1057. [Google Scholar] [CrossRef]
- Ferreira, P.J.; la O’, G.J.; Shao-Horn, Y.; Morgan, D.; Makharia, R.; Kocha, S.; Gasteiger, H.A. Instability of Pt/C Electrocat-alysts in Proton Exchange Membrane Fuel Cells. J. Electrochem. Soc. 2005, 152, A2256. [Google Scholar] [CrossRef] [Green Version]
- Shao, J.; Huang, H.; Lu, L.; Pei, P. An experimental study on the performance of automotive PEMFC under typical conditions. Automot. Eng. 2007, 29, 566–569. [Google Scholar]
- Vengatesan, S.; Panha, K.; Fowler, M.W.; Yuan, X.-Z.; Wang, H. Membrane electrode assembly degradation under idle conditions via unsymmetrical reactant relative humidity cycling. J. Power Sources 2012, 207, 101–110. [Google Scholar] [CrossRef]
- Darling, R.M.; Meyers, J.P. Mathematical Model of Platinum Movement in PEM Fuel Cells. J. Electrochem. Soc. 2005, 152, A242–A247. [Google Scholar] [CrossRef]
- Zhang, S.; Yuan, X.-Z.; Hin, J.N.C.; Wang, H.; Wu, J.; Friedrich, K.A.; Schulze, M. Effects of open-circuit operation on membrane and catalyst layer degradation in proton exchange membrane fuel cells. J. Power Sources 2010, 195, 1142–1148. [Google Scholar] [CrossRef] [Green Version]
Test Time (h) | Rm (mOhm) | Standard Error | Rct (mOhm) | Standard Error | ECSA (m2 g−1) | ECSA Loss (%) |
---|---|---|---|---|---|---|
0 | 15.19 | 0.000102 | 69.76 | 0.00046 | 28.6 | 0 |
16 | 17.18 | 0.00014 | 74.80 | 0.00064 | 25.2 | 11.9 |
32 | 13.06 | 0.00011 | 83.07 | 0.00067 | 23.7 | 17.2 |
48 | 14.36 | 0.00012 | 86.80 | 0.00073 | 19.9 | 30.6 |
64 | 14.93 | 0.000096 | 88.97 | 0.00056 | 18.2 | 36.6 |
Element | C at% | O at% | F at% | Pt at% | S at% |
---|---|---|---|---|---|
Initial | 49.05 | 8.24 | 36.21 | 4.75 | 1.75 |
After 64 h test | 49.58 | 9.48 | 35.37 | 3.72 | 1.84 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, J.; Ye, Q.; Wang, K.; Guo, Z.; Dou, M. Degradation Investigation of Electrocatalyst in Proton Exchange Membrane Fuel Cell at a High Energy Efficiency. Molecules 2021, 26, 3932. https://doi.org/10.3390/molecules26133932
Song J, Ye Q, Wang K, Guo Z, Dou M. Degradation Investigation of Electrocatalyst in Proton Exchange Membrane Fuel Cell at a High Energy Efficiency. Molecules. 2021; 26(13):3932. https://doi.org/10.3390/molecules26133932
Chicago/Turabian StyleSong, Jie, Qing Ye, Kun Wang, Zhiyuan Guo, and Meiling Dou. 2021. "Degradation Investigation of Electrocatalyst in Proton Exchange Membrane Fuel Cell at a High Energy Efficiency" Molecules 26, no. 13: 3932. https://doi.org/10.3390/molecules26133932
APA StyleSong, J., Ye, Q., Wang, K., Guo, Z., & Dou, M. (2021). Degradation Investigation of Electrocatalyst in Proton Exchange Membrane Fuel Cell at a High Energy Efficiency. Molecules, 26(13), 3932. https://doi.org/10.3390/molecules26133932