Glochidion littorale Leaf Extract Exhibits Neuroprotective Effects in Caenorhabditis elegans via DAF-16 Activation
Abstract
:1. Introduction
2. Results
2.1. Screening of Thai Plant Leaves
2.2. GLE Enhanced Resistance against Oxidative Stress via DAF-16 in C. Elegans
2.3. GLE Treatment Reduced the Lethality of MPP+-Induced DA Neurotoxicity via DAF-16 in C. Elegans
2.4. Effects of GLE on DAF-16 Localization
2.5. Phytochemical Characterization in GLE
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Preparation of Leaf Extracts
4.3. Total Phenolic Contents
4.4. Total Flavonoid Contents
4.5. Free Radical-Scavenging Activity
4.6. C. Elegans Maintenance
4.7. Oxidative Stress Assays
4.8. Intracellular ROS Levels
4.9. Neurotoxicity Assay
4.10. Nuclear Localization of DAF-16
4.11. Phytochemical Profiling Using LC-MS
4.12. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Pohl, F.; Lin, P.K.T. The Potential Use of Plant Natural Products and Plant Extracts with Antioxidant Properties for the Prevention/Treatment of Neurodegenerative Diseases: In Vitro, In Vivo and Clinical Trials. Molecules 2018, 23, 3283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, G.H.; Kim, J.E.; Rhie, S.J.; Yoon, S. The Role of Oxidative Stress in Neurodegenerative Diseases. Exp. Neurobiol. 2015, 24, 325–340. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.-l.; Yao, X.-l.; Liu, Z.; Zhang, H.; Li, W.; Li, Z.; Wang, G.-L.; Pang, J.; Lin, Y.; Xu, Z. Protective effects of xyloketal B against MPP+-induced neurotoxicity in Caenorhabditis elegans and PC12 cells. Brain Res. 2010, 1332, 110–119. [Google Scholar] [CrossRef]
- Trimmer, P.A.; Bennett, J.P., Jr. The cybrid model of sporadic Parkinson’s disease. Exp. Neurol. 2009, 218, 320–325. [Google Scholar] [CrossRef] [Green Version]
- Cheon, S.-M.; Jang, I.; Lee, M.H.; Kim, D.K.; Jeon, H.; Cha, D.S. Sorbus alnifolia protects dopaminergic neurodegeneration in Caenorhabditis elegans. Pharm. Biol. 2016, 55, 481–486. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, N.; Ferger, B. Neurochemical findings in the MPTP model of Parkinson’s disease. J. Neural Transm. 2001, 108, 1263–1282. [Google Scholar] [CrossRef] [PubMed]
- Harrington, A.; Yacoubian, T.A.; Slone, S.R.; Caldwell, K.; Caldwell, G. Functional Analysis of VPS41-Mediated Neuroprotection in Caenorhabditis elegans and Mammalian Models of Parkinson’s Disease. J. Neurosci. 2012, 32, 2142–2153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, R.-H.; Harn, H.-J.; Liu, S.-P.; Chen, C.-S.; Chang, W.-L.; Chen, Y.-M.; Huang, J.-E.; Li, R.-J.; Tsai, S.-Y.; Hung, H.-S.; et al. n-Butylidenephthalide Protects against Dopaminergic Neuron Degeneration and α-Synuclein Accumulation in Caenorhabditis elegans Models of Parkinson’s Disease. PLOS ONE 2014, 9, e85305. [Google Scholar] [CrossRef] [Green Version]
- Jadiya, P.; Khan, A.; Sammi, S.R.; Kaur, S.; Mir, S.S.; Nazir, A. Anti-Parkinsonian effects of Bacopa monnieri: Insights from transgenic and pharmacological Caenorhabditis elegans models of Parkinson’s disease. Biochem. Biophys. Res. Commun. 2011, 413, 605–610. [Google Scholar] [CrossRef]
- Andrade, J.M.D.M.; Fasolo, D. Polyphenol Antioxidants from Natural Sources and Contribution to Health Promotion. In Polyphenols in Human Health and Disease; Elsevier BV: Amsterdam, The Netherlands, 2014; pp. 253–265. [Google Scholar]
- Hsu, A.-L.; Murphy, C.T.; Kenyon, C. Regulation of Aging and Age-Related Disease by DAF-16 and Heat-Shock Factor. Science 2003, 300, 1142–1145. [Google Scholar] [CrossRef] [Green Version]
- Henderson, S.T.; Johnson, T.E. daf-16 integrates developmental and environmental inputs to mediate aging in the nematode Caenorhabditis elegans. Curr. Biol. 2001, 11, 1975–1980. [Google Scholar] [CrossRef] [Green Version]
- Hutadilok-Towatana, N.; Chaiyamutti, P.; Panthong, K.; Mahabusarakam, W.; Rukachaisirikul, V. Antioxidative and Free Radical Scavenging Activities of Some Plants Used in Thai Folk Medicine. Pharm. Biol. 2006, 44, 221–228. [Google Scholar] [CrossRef]
- Stewart, P.; Boonsiri, P.; Puthong, S.; Rojpibulstit, P. Antioxidant activity and ultrastructural changes in gastric cancer cell lines induced by Northeastern Thai edible folk plant extracts. BMC Complement. Altern. Med. 2013, 13, 60. [Google Scholar] [CrossRef] [Green Version]
- Hui, W.; Lee, W.; Ng, K.; Chan, C. The occurrence of triterpenoids and steroids in three Glochidion species. Phytochemistry 1970, 9, 1099–1102. [Google Scholar] [CrossRef]
- Takeda, Y.; Mima, C.; Masuda, T.; Hirata, E.; Takushi, A.; Otsuka, H. Glochidioboside, a glucoside of (7S,8R)-dihydrodehydrodiconiferyl alcohol from leaves of glochidion obovatum. Phytochemistry 1998, 49, 2137–2139. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, J.; Gao, K. Chemical constituents from Glochidion wrightii Benth. Biochem. Syst. Ecol. 2012, 45, 7–11. [Google Scholar] [CrossRef]
- Tian, J.-M.; Fu, X.-Y.; Zhang, Q.; He, H.-P.; Gao, J.-M.; Hao, X.-J. Chemical constituents from Glochidion assamicum. Biochem. Syst. Ecol. 2013, 48, 288–292. [Google Scholar] [CrossRef]
- Kongkachuichai, R.; Charoensiri, R.; Yakoh, K.; Kringkasemsee, A.; Insung, P. Nutrients value and antioxidant content of indigenous vegetables from Southern Thailand. Food Chem. 2015, 173, 838–846. [Google Scholar] [CrossRef]
- Pietta, P.-G. Flavonoids as Antioxidants. J. Nat. Prod. 2000, 63, 1035–1042. [Google Scholar] [CrossRef] [PubMed]
- Duangjan, C.; Rangsinth, P.; Gu, X.; Zhang, S.; Wink, M.; Tencomnao, T. Glochidion zeylanicum leaf extracts exhibit lifespan extending and oxidative stress resistance properties in Caenorhabditis elegans via DAF-16/FoxO and SKN-1/Nrf-2 signaling pathways. Phytomedicine 2019, 64, 153061. [Google Scholar] [CrossRef]
- Jensen, V.L.; Gallo, M.; Riddle, D.L. Targets of DAF-16 involved in Caenorhabditis elegans adult longevity and dauer formation. Exp. Gerontol. 2006, 41, 922–927. [Google Scholar] [CrossRef] [PubMed]
- Daitoku, H.; Fukamizu, A. FOXO Transcription Factors in the Regulatory Networks of Longevity. J. Biochem. 2007, 141, 769–774. [Google Scholar] [CrossRef]
- Lakso, M.; Vartiainen, S.; Moilanen, A.-M.; Sirviö, J.; Thomas, J.H.; Nass, R.; Blakely, R.D.; Wong, G. Dopaminergic neuronal loss and motor deficits in Caenorhabditis elegans overexpressing human α-synuclein. J. Neurochem. 2004, 86, 165–172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nass, R.; Hall, D.H.; Miller, D.M.; Blakely, R.D. Neurotoxin-induced degeneration of dopamine neurons in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 2002, 99, 3264–3269. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.-M.; Pu, P.; Le, W.-D. ATP depletion is the major cause of MPP+ induced dopamine neuronal death and worm lethality in α-synuclein transgenic C. elegans. Neurosci. Bull. 2007, 23, 329–335. [Google Scholar] [CrossRef] [Green Version]
- Braungart, E.; Gerlach, M.; Riederer, P.; Baumeister, R.; Hoener, M. Caenorhabditis elegans MPP+ Model of Parkinson’s Disease for High-Throughput Drug Screenings. Neurodegener. Dis. 2004, 1, 175–183. [Google Scholar] [CrossRef]
- Panowski, S.H.; Dillin, A. Signals of youth: Endocrine regulation of aging in Caenorhabditis elegans. Trends Endocrinol. Metab. 2009, 20, 259–264. [Google Scholar] [CrossRef]
- Mukhopadhyay, A.; Tissenbaum, H.A. Reproduction and longevity: Secrets revealed by C. elegans. Trends Cell Biol. 2007, 17, 65–71. [Google Scholar] [CrossRef]
- Büchter, C.; Ackermann, D.; Havermann, S.; Honnen, S.; Chovolou, Y.; Fritz, G.; Kampkötter, A.; Wätjen, W. Myricetin-Mediated Lifespan Extension in Caenorhabditis elegans Is Modulated by DAF. Int. J. Mol. Sci. 2013, 14, 11895–11914. [Google Scholar] [CrossRef] [Green Version]
- Zheng, S.Q.; Huang, X.B.; Xing, T.K.; Ding, A.J.; Wu, G.S.; Luo, H.R. Chlorogenic Acid Extends the Lifespan of Caenorhabditis elegans via Insulin/IGF-1 Signaling Pathway. J. Gerontol. A Biol. Sci. Med. Sci. 2017, 72, 464–472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blois, M.S. Antioxidant Determinations by the Use of a Stable Free Radical. Nat. Cell Biol. 1958, 181, 1199–1200. [Google Scholar] [CrossRef]
- Stiernagle, T. Maintenance of C. elegans. WormBook 2006, 2, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amrit, F.R.G.; Ratnappan, R.; Keith, S.A.; Ghazi, A. The C. elegans lifespan assay toolkit. Methods 2014, 68, 465–475. [Google Scholar] [CrossRef] [PubMed]
No. | Scientific Name | Phenolic Content (mg GAE 1/g) | Flavonoid Content (mg quercetin/g) | DPPH 2 Radical-Scavenging Activity (%) |
---|---|---|---|---|
1 | Clinacanthus nutans | 3.306 | 1.799 | 41.058 |
2 | Gymnema inodorum | 1.183 | 0.959 | 33.890 |
3 | Glochidion sphaerogynum | 0.709 | 0.781 | 51.705 |
4 | Anethum graveolens | 0.825 | 0.387 | 29.367 |
5 | Spilanthes acmella | 0.552 | 0.243 | 18.580 |
6 | Acacia pennata | 5.031 | 1.563 | 51.914 |
7 | Mentha piperita | 1.107 | 0.761 | 59.151 |
8 | Glochidion littorale | 20.104 | 4.527 | 78.984 |
9 | Ocimum sanctum Linn. | 0.131 | 0.076 | 45.442 |
10 | Ocimum basilicum Linn. | 1.342 | 0.771 | 51.635 |
11 | Ocimum × citriodorum | 2.446 | 1.612 | 39.666 |
12 | Azadirachta indica | 13.744 | 2.725 | 79.819 |
13 | Morus Alba | 6.190 | 4.019 | 54.488 |
14 | Moringa oleifera | 1.696 | 5.696 | 18.928 |
15 | Psidium guajava Linn. | 3.414 | 2.937 | 61.865 |
16 | Melientha suavis Pierre | 2.263 | 2.433 | 40.362 |
17 | Pandanus amaryllifolius | 1.409 | 1.050 | 36.395 |
18 | Zanthoxylum limonella | 3.128 | 1.469 | 46.555 |
19 | Piper sarmentosum | 0.584 | 0.487 | 24.217 |
20 | Citrus maxima | 11.690 | 2.461 | 79.193 |
Survival Time | MPP+ 1 | MPP+ + GLE (100 µg/mL) | MPP+ + GLE (200 µg/mL) |
---|---|---|---|
Median (h) | 48.0 ± 1.2 | 48.0 ± 1.7 | 48.0 ± 1.6 |
Maximum (h) | 72.0 ± 1.5 | 72.0 ± 2.1 | 72.0 ± 1.8 |
Survival Time | MPP+ 1 | MPP+ + GLE (100 µg/mL) | MPP+ + GLE (200 µg/mL) |
---|---|---|---|
Median (h) | 60.0 ± 2.6 | 84.0 ± 3.9 *** | 84.0 ± 4.0 *** |
Maximum (h) | 108.0 ± 5.3 | 180.0 ± 5.5 **** | 192.0 ± 9.6 **** |
Peak | Retention Time (min) | [M + H]+ (m/z) | Identified Compounds | Theoretical Mass | Mass Error (ppm) |
---|---|---|---|---|---|
1 | 8.7 | 431.0973 | Coumestrin | 430.0900 | 6 |
2 | 8.8 | 299.2005 | All-trans-3,4-didehydro-retinoic acid | 298.1933 | 1 |
3 | 9.0 | 248.2009 | Lycopodine | 247.1936 | 3 |
4 | 9.2 | 289.0707 | 2-Hydroxynaringenin | 288.0634 | 10 |
5 | 10.0 | 166.1226 | Hordenine | 165.1154 | 1 |
6 | 15.3 | 355.1024 | Chlorogenic acid | 354.0952 | 7 |
7 | 18.3 | 611.1970 | Hesperidin | 610.1898 | 5 |
8 | 20.7 | 449.1078 | Quercitrin | 448.1006 | 17 |
9 | 21.2 | 459.0922 | Epigallocatechin gallate | 458.0849 | 3 |
10 | 25.3 | 319.0448 | Myricetin | 318.2370 | 5 |
11 | 26.2 | 465.1028 | Isoquercitrin | 464.0955 | 3 |
12 | 26.6 | 465.3575 | Unknown | - | - |
13 | 27.3 | 567.3038 | Unknown | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bagoudou, A.F.; Zheng, Y.; Nakabayashi, M.; Rawdkuen, S.; Park, H.-Y.; Vattem, D.A.; Sato, K.; Nakamura, S.; Katayama, S. Glochidion littorale Leaf Extract Exhibits Neuroprotective Effects in Caenorhabditis elegans via DAF-16 Activation. Molecules 2021, 26, 3958. https://doi.org/10.3390/molecules26133958
Bagoudou AF, Zheng Y, Nakabayashi M, Rawdkuen S, Park H-Y, Vattem DA, Sato K, Nakamura S, Katayama S. Glochidion littorale Leaf Extract Exhibits Neuroprotective Effects in Caenorhabditis elegans via DAF-16 Activation. Molecules. 2021; 26(13):3958. https://doi.org/10.3390/molecules26133958
Chicago/Turabian StyleBagoudou, Abdel Fawaz, Yifeng Zheng, Masahiro Nakabayashi, Saroat Rawdkuen, Hyun-Young Park, Dhiraj A. Vattem, Kenji Sato, Soichiro Nakamura, and Shigeru Katayama. 2021. "Glochidion littorale Leaf Extract Exhibits Neuroprotective Effects in Caenorhabditis elegans via DAF-16 Activation" Molecules 26, no. 13: 3958. https://doi.org/10.3390/molecules26133958
APA StyleBagoudou, A. F., Zheng, Y., Nakabayashi, M., Rawdkuen, S., Park, H.-Y., Vattem, D. A., Sato, K., Nakamura, S., & Katayama, S. (2021). Glochidion littorale Leaf Extract Exhibits Neuroprotective Effects in Caenorhabditis elegans via DAF-16 Activation. Molecules, 26(13), 3958. https://doi.org/10.3390/molecules26133958