Variability of the Chemical Composition of the Essential Oil from the Amazonian Ishpingo Species (Ocotea quixos)
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Soil Type Analysis
4.3. Shade Level Measurements
4.4. Plant Material
4.5. Leaf Age
4.6. Postharvest Treatments
4.7. Moisture Determination
4.8. Essential Oil Extraction
4.9. Identification of the Chemical Constituents of the Essential Oil
4.9.1. Quantitative Analysis
4.9.2. Qualitative Analysis
4.10. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- The Plant List. Lauraceae. Available online: http://www.theplantlist.org/1.1/browse/A/Piperaceae/ (accessed on 7 April 2021).
- Simpson, M.G. Plant. Systematics, 2nd ed.; Academic Press: San Diego, CA, USA, 2010. [Google Scholar] [CrossRef]
- Encyclopædia Britannica. Lauraceae. Available online: https://www.britannica.com/plant/Meliaceae (accessed on 7 March 2021).
- León-Yánez, S.; Valencia, R.; Pitmam, N.; Endara, L.; Ulloa Ulloa, C.; Navarrete, H. Libro Rojo de Plantas Endémicas del Ecuador; Publicaciones del Herbario QCA, Pontificia Universidad Católica del Ecuador: Quito, Ecuador, 2019. [Google Scholar]
- Palacios, W. Árboles del Ecuador: Familias y Géneros; Ministerio del Ambiente del Ecuador-MAE: Quito, Ecuador, 2011. [Google Scholar]
- Jørgesen, P.M.; León-Yáñez, S. Catalogue of the Vascular Plants of Ecuador. Available online: http://legacy.tropicos.org/ProjectAdvSearch.aspx?projectid=2 (accessed on 11 July 2020).
- Ministerio de Cultura y Patrimonio de Ecuador. Ishpingo Amazonía. Available online: https://patrimonioalimentario.culturaypatrimonio.gob.ec (accessed on 5 March 2021).
- Sacchetti, G.; Guerrini, A.; Noriega, P.; Bianchi, A.; Bruni, R. Essential oil of wild Ocotea quixos (Lam.) Kosterm. (Lauraceae) leaves from Amazonian Ecuador. Flavour Fragr. J. 2006, 21, 674–676. [Google Scholar] [CrossRef]
- Noriega Rivera, P.F.; Larenas Uría, C.F.; Chasipanta Ronquillo, E.C.; Chicaiza Galarza, T.S.; Ibarra Martínez, M.V. Antioxidant potential of five essential oils from kutukú biological station. Pharmacologyonline 2018, 3, 161–169. [Google Scholar]
- Scalvenzi, L.; Yaguache-Camacho, B.; Cabrera-Martínez, P.; Guerrini, A. In vitro antifungal activity of essential oils of ocotea quixos (Lam.) kosterm. and Piper aduncum L. Bioagro 2016, 28, 39–46. [Google Scholar]
- Scalvenzi, L.; Radice, M.; Toma, L.; Severini, F.; Boccolini, D.; Bella, A.; Guerrini, A.; Tacchini, M.; Sacchetti, G.; Chiurato, M.; et al. Larvicidal activity of Ocimum campechianum, Ocotea quixos and Piper aduncum essential oils against Aedes aegypti. Parasite 2019, 26. [Google Scholar] [CrossRef] [Green Version]
- Radice, M.; Pietrantoni, A.; Guerrini, A.; Tacchini, M.; Sacchetti, G.; Chiurato, M.; Venturi, G.; Fortuna, C. Inhibitory effect of Ocotea quixos (Lam.) Kosterm. and Piper aduncum L. essential oils from Ecuador on West Nile virus infection. Plant Biosyst. Int. J. Deal. Asp. Plant Biol. 2018, 153, 344–351. [Google Scholar] [CrossRef]
- Rolli, E.; Marieschi, M.; Maietti, S.; Sacchetti, G.; Bruni, R. Comparative phytotoxicity of 25 essential oils on pre- and post-emergence development of Solanum lycopersicum L.: A multivariate approach. Ind. Crop. Prod. 2014, 60, 280–290. [Google Scholar] [CrossRef]
- Rapposelli, E.; Melito, S.; Barmina, G.G.; Foddai, M.; Azara, E.; Scarpa, G.M. Relationship between Soil and Essential Oil Profiles in Salvia desoleana Populations: Preliminary Results. Nat. Prod. Commun. 2015, 10, 1934578X61501000932‱8. [Google Scholar] [CrossRef] [Green Version]
- Thakur, M.; Bhatt, V.; Kumar, R. Effect of shade level and mulch type on growth, yield and essential oil composition of damask rose (Rosa damascena Mill.) under mid hill conditions of Western Himalayas. PLoS ONE 2019, 14, e0214672. [Google Scholar] [CrossRef] [PubMed]
- Bedini, S.; Farina, P.; Napoli, E.; Flamini, G.; Ascrizzi, R.; Verzera, A.; Conti, B.; Zappalà, L. Bioactivity of Different Chemotypes of Oregano Essential Oil against the Blowfly Calliphora vomitoria Vector of Foodborne Pathogens. Insects 2021, 12, 52. [Google Scholar] [CrossRef]
- Valarezo, E.; Ojeda-Riascos, S.; Cartuche, L.; Andrade-González, N.; González-Sánchez, I.; Meneses, M.A. Extraction and Study of the Essential Oil of Copal (Dacryodes peruviana), an Amazonian Fruit with the Highest Yield Worldwide. Plants 2020, 9, 1658. [Google Scholar] [CrossRef] [PubMed]
- Burbott, A.J.; Loomis, W.D. Effects of Light and Temperature on the Monoterpenes of Peppermint. Plant Physiol. 1967, 42, 20–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, Y.; Qin, J.; Wang, P.; Li, Q.; Yu, S.; Zhang, Y.; Wang, Y. Chemical composition and larvicidal activities of essential oil of Cinnamomum camphora (L.) leaf against Anopheles stephensi. Rev. Soc. Bras. Med. Trop. 2020, 53, e20190211. [Google Scholar] [CrossRef]
- Costa, A.A.; Naspi, C.V.; Lucia, A.; Masuh, H.M. Repellent and Larvicidal Activity of the Essential Oil From Eucalyptus nitens Against Aedes aegypti and Aedes albopictus (Diptera: Culicidae). J. Med. Entomol. 2017, 54, 670–676. [Google Scholar] [CrossRef]
- El-Alam, I.; Zgheib, R.; Iriti, M.; El Beyrouthy, M.; Hattouny, P.; Verdin, A.; Fontaine, J.; Chahine, R.; Sahraoui, A.L.-H.; Makhlouf, H. Origanum syriacum Essential Oil Chemical Polymorphism According to Soil Type. Foods 2019, 8, 90. [Google Scholar] [CrossRef] [Green Version]
- Hendawy, S.F.; Hussein, M.S.; Amer, H.M.; El-Gohary, A.E.; Soliman, W.S. Effect of soil type on growth, productivity, and essential oil constituents of rosemary, Rosmarinus officinalis. Asian J. Agric. Biol. 2017, 5, 303–311. [Google Scholar]
- Sefidkon, F.; Abbasi, K.; Khaniki, G.B. Influence of drying and extraction methods on yield and chemical composition of the essential oil of Satureja hortensis. Food Chem. 2006, 99, 19–23. [Google Scholar] [CrossRef]
- Yeddes, W.; Aidi Wannes, W.A.; Hammami, M.; Smida, M.; Chebbi, A.; Marzouk, B.; Saidani Tounsi, M. Effect of Environmental Conditions on the Chemical Composition and Antioxidant Activity of Essential Oils from Rosmarinus officinalis L. Growing Wild in Tunisia. J. Essent. Oil Bear. Plants 2018, 21, 972–986. [Google Scholar] [CrossRef]
- Bouyoucos, G.J. Directions for Making Mechanical Analyses of Soils by the Hydrometer Method. Soil Sci. 1936, 42, 225–230. [Google Scholar] [CrossRef]
- Beretta, A.N.; Silbermann, A.V.; Paladino, L.; Torres, D.; Bassahun, D.; Musselli, R.; García-Lamohte, A. Soil texture analyses using a hydrometer: Modifications of the Bouyoucos method. Cienc. Investig. Agrar. 2014, 41, 263–271. [Google Scholar] [CrossRef] [Green Version]
- Farfán Valencia, F. Instrumentos Para Estimar el Porcentaje de Sombra en el Cafetal; Federación Nacional de cafeteros de Colombia—Centro Nacional de Investigaciones de Café Caldas: Caldas, Colombia, 2015. [Google Scholar]
- Valarezo, E.; Guamán, M.d.C.; Paguay, M.; Meneses, M.A. Chemical Composition and Biological Activity of the Essential Oil from Gnaphalium elegans Kunth from Loja, Ecuador. J. Essent. Oil Bear. Plants 2019, 22, 1372–1378. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th ed.; Allured Publishing Corporation: Carol Stream, IL, USA, 2007. [Google Scholar]
- NIST 05. Mass Spectral Library (NIST/EPA/NIH); National Institute of Standards and Technology: Gaithersburg, MD, USA, 2005. [Google Scholar]
- NIST. Libro del Web de Química del NIST, SRD 69. In Base de Datos de Referencia Estándar del NIST Número 69. Available online: http://webbook.nist.gov (accessed on 19 March 2021).
- Van Den Dool, H.; Kratz, P.D. A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. J. Chromatogr. A 1963, 11, 463–471. [Google Scholar] [CrossRef]
Sample | Soil Type (Sand-Silt-Clay) | Height (m a.s.l.) 1 | Shade Level (%) | Leaf Age | Branch Presence | Moisture (%) |
---|---|---|---|---|---|---|
OQ1 | Poor clay (30-25-45) | 600 | 70 | Mixture | With | 65 ± 5 |
OQ2 | Clay (25-15-60) | 600 | 70 | Mixture | With | 65 ± 5 |
OQ3 | Rich clay (10-10-80) | 600 | 70 | Mixture | With | 65 ± 5 |
OQ4 | Sand (85-10-5) | 600 | 70 | Mixture | With | 65 ± 5 |
OQ5 | Loam (40-40-20) | 600 | 70 | Mixture | With | 65 ± 5 |
OQ6 | Loam (40-40-20) | 400 | 0 | Mixture | With | 65 ± 5 |
OQ7 | Loam (40-40-20) | 500 | 0 | Mixture | With | 65 ± 5 |
OQ8 | Loam (40-40-20) | 600 | 0 | Mixture | With | 65 ± 5 |
OQ9 | Rich clay (10-10-80) | 400 | 30 | Mixture | With | 65 ± 5 |
OQ10 | Rich clay (10-10-80) | 600 | 30 | Mixture | With | 65 ± 5 |
OQ11 | Loam (40-40-20) | 600 | 0 | Mixture | With | 65 ± 5 |
OQ12 | Loam (40-40-20) | 600 | 10 | Mixture | With | 65 ± 5 |
OQ13 | Loam (40-40-20) | 600 | 30 | Mixture | With | 65 ± 5 |
OQ14 | Loam (40-40-20) | 600 | 50 | Mixture | With | 65 ± 5 |
OQ15 | Loam (40-40-20) | 600 | 70 | Mixture | With | 65 ± 5 |
OQ16 | Loam (40-40-20) | 600 | 10 | Young | With | 65 ± 5 |
OQ17 | Loam (40-40-20) | 600 | 10 | Old | With | 65 ± 5 |
OQ18 | Loam (40-40-20) | 600 | 10 | Mixture | Without | 65 ± 5 |
OQ19 | Loam (40-40-20) | 600 | 10 | Mixture | With | 65 ± 5 |
OQ20 | Loam (40-40-20) | 600 | 10 | Mixture | With | 65 ± 5 |
OQ21 | Loam (40-40-20) | 600 | 10 | Mixture | With | 12 ± 2 |
CN | Compound | RI | RIref | OQ1 | OQ2 | OQ3 | OQ4 | OQ5 | OQ6 | OQ7 | OQ8 | OQ9 | OQ10 | Type |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | α-Pinene | 932 | 932 | 0.42 | 2.46 | 1.99 | 0.26 | 3.40 | 1.39 | 0.86 | 1.40 | 0.80 | 3.21 | ALM |
2 | Camphene | 947 | 946 | - | - | 0.13 | - | - | - | - | - | - | 0.15 | ALM |
3 | Sabinene | 968 | 969 | 0.15 | - | 0.33 | 0.05 | - | - | 0.20 | 0.45 | 0.14 | 0.14 | ALM |
4 | β-Pinene | 973 | 974 | 0.55 | 1.48 | 1.96 | 0.34 | 2.47 | 0.92 | 0.96 | 1.58 | 1.06 | 2.73 | ALM |
5 | ρ-Cymene | 1019 | 1020 | - | - | - | 0.26 | - | ARM | |||||
6 | Limonene | 1023 | 1024 | 0.32 | 0.49 | 1.20 | 0.74 | 0.47 | 0.31 | 0.30 | 0.44 | 0.36 | 0.55 | ALM |
7 | 1,8-Cineole | 1025 | 1026 | 1.54 | 0.60 | 1.82 | 0.63 | - | 1.13 | 1.03 | 1.29 | 1.05 | 1.29 | OXM |
8 | (E)-β-Ocimene | 1043 | 1044 | - | - | 0.16 | - | - | 0.16 | - | - | - | - | ALM |
9 | Linalool | 1093 | 1095 | 0.29 | - | 0.13 | - | - | 0.56 | 0.71 | - | 0.14 | OXM | |
10 | Terpinen-4-ol | 1172 | 1174 | 0.26 | - | 0.23 | - | - | 0.24 | - | - | 0.25 | 0.29 | OXM |
11 | α-Terpineol | 1189 | 1186 | 0.46 | 0.27 | 0.54 | 0.20 | - | 0.40 | 0.23 | - | 0.44 | 0.55 | OXM |
12 | (E)-Cinnamaldehyde | 1268 | 1267 | 8.19 | 9.00 | 12.68 | 3.61 | 1.33 | 1.97 | 3.62 | 2.14 | 4.02 | 7.52 | OTC |
13 | α-Cubebene | 1345 | 1345 | 0.22 | 0.35 | 0.77 | - | - | - | - | - | 0.44 | 0.21 | ALS |
14 | α-Copaene | 1372 | 1374 | 6.76 | 3.32 | 3.44 | 1.84 | 6.30 | 0.31 | 1.52 | 4.13 | 1.39 | 0.84 | ALS |
15 | (E)-Methyl cinnamate | 1376 | 1376 | 29.79 | 16.00 | 12.08 | 37.25 | 6.16 | 7.32 | 6.49 | 6.57 | 37.91 | 8.85 | OXM |
16 | (Z)-Cinnamyl acetate | 1388 | 1388 | - | 0.93 | - | - | 0.85 | 1.31 | 0.70 | 0.72 | - | 0.19 | OTC |
17 | α-cis-Bergamotene | 1410 | 1411 | - | - | 0.15 | - | 1.92 | - | - | 0.81 | - | - | ALS |
18 | trans-Caryophyllene | 1415 | 1417 | 12.16 | 14.14 | 21.19 | 21.16 | 13.41 | 12.71 | 20.22 | 17.55 | 8.77 | 21.61 | ALS |
19 | α-Guaiene | 1435 | 1437 | - | - | 0.17 | - | 3.23 | - | - | 1.66 | - | - | ALS |
20 | 6,9-Guaiadiene | 1442 | 1442 | 1.65 | 9.64 | 2.05 | 2.95 | 5.33 | 18.78 | 2.49 | - | - | 0.89 | ALS |
21 | (E)-Cinnamyl acetate | 1445 | 1443 | 12.14 | 9.95 | 15.31 | 11.60 | 5.96 | 26.68 | 24.20 | 11.86 | 13.33 | 23.53 | OTC |
22 | (E)-β-Farnesene | 1458 | 1454 | - | 0.41 | 0.63 | - | - | - | 0.47 | - | 0.44 | 0.54 | ALS |
23 | trans-Cadina-1(6),4-diene | 1475 | 1475 | - | - | - | 0.27 | 0.95 | 2.16 | 0.63 | - | - | 0.35 | ALS |
24 | β-Chamigrene | 1478 | 1476 | 0.44 | - | - | - | 0.79 | 0.19 | 0.75 | 0.63 | - | 0.21 | ALS |
25 | β-Selinene | 1489 | 1489 | 3.14 | 13.24 | 1.03 | 1.76 | 9.37 | 10.15 | 7.93 | 8.95 | 13.16 | 5.28 | ALS |
26 | Viridiflorene (=Ledene) | 1492 | 1496 | - | 0.46 | 0.39 | 0.34 | 2.91 | 0.41 | 0.5 | 1.8 | 0.37 | 0.43 | ALS |
27 | Bicyclogermacrene | 1496 | 1500 | 2.19 | 6.88 | 3.54 | 3.33 | 3.89 | 6.52 | 4.79 | 5.13 | 4.48 | 3.65 | ALS |
28 | Anisyl propanoate | 1510 | 1511 | 5.12 | 0.27 | 2.77 | 0.25 | - | - | 9.89 | 9.53 | 1.47 | 5.10 | OTC |
29 | δ-Amorphene | 1511 | 1511 | - | 0.45 | 1.19 | 0.31 | 1.00 | 0.28 | - | - | 1.07 | 0.53 | ALS |
30 | (Z-)-γ-Bisabolene | 1515 | 1514 | 1.15 | 0.58 | 0.20 | 0.35 | - | 0.76 | - | 2.14 | - | 0.76 | ALS |
31 | 7-epi-α-Selinene | 1520 | 1520 | 5.00 | 1.75 | 0.61 | 0.41 | 5.38 | 0.32 | 3.03 | 5.03 | 0.43 | 0.57 | ALS |
32 | δ-Cadinene | 1521 | 1522 | - | - | 0.40 | 0.21 | - | - | - | - | 0.29 | - | ALS |
33 | (E)-γ-Bisabolene | 1527 | 1529 | 0.96 | 3.05 | 5.30 | 0.38 | 1.40 | 0.42 | 2.93 | 2.66 | 1.75 | 2.54 | ALS |
34 | α-Calacorene | 1540 | 1544 | 1.18 | 0.32 | - | 0.08 | 5.01 | - | 0.45 | 3.02 | - | - | ARS |
35 | Selina-3,7(11)-diene | 1543 | 1545 | 0.27 | 0.34 | 0.53 | 0.47 | - | 0.20 | - | - | 0.44 | 0.37 | ALS |
36 | Elemol | 1549 | 1548 | - | 0.25 | - | 0.39 | - | 0.70 | - | - | - | 0.22 | OXS |
37 | Pentyl salicylate | 1570 | 1574 | - | - | 0.46 | 0.27 | - | - | - | - | 0.39 | 0.44 | OTC |
38 | Spathulenol | 1575 | 1577 | 0.31 | - | 0.51 | 1.34 | 2.87 | 0.29 | 0.70 | 2.15 | 0.72 | 0.21 | OXS |
39 | Caryophyllene oxide | 1580 | 1582 | 1.49 | 1.37 | 4.76 | 6.94 | 4.63 | 1.29 | 2.05 | 3.60 | 3.01 | 4.15 | OXS |
40 | Thujopsan-2-β-ol | 1586 | 1588 | - | - | 0.82 | 0.71 | 1.51 | - | - | 0.97 | 0.29 | 0.15 | OXS |
41 | Humulene epoxide II | 1605 | 1608 | - | 0.70 | - | 0.37 | 1.72 | 0.90 | - | 0.56 | - | 0.12 | OXS |
42 | α-Corocalene | 1620 | 1622 | 0.88 | - | - | - | 0.81 | - | 0.27 | 0.68 | - | - | ARS |
43 | Muurola-4,10(14)-dien-1β-ol | 1626 | 1630 | - | - | - | 0.11 | - | - | - | - | - | - | OXS |
44 | Exalatacin | 1652 | 1655 | - | - | - | - | 0.81 | - | 0.33 | - | - | - | OTC |
45 | trans-Calamenen-10-ol | 1664 | 1669 | - | - | - | - | 1.62 | - | - | - | - | - | OXS |
46 | Cadalene | 1671 | 1675 | - | - | - | - | 1.66 | - | - | 0.39 | - | - | ARS |
47 | Benzyl benzoate | 1755 | 1759 | 0.35 | - | - | - | - | - | - | - | - | 0.71 | OTC |
Aliphatic monoterpene hydrocarbons (ALM) | 1.45 | 4.44 | 5.76 | 1.39 | 6.34 | 2.78 | 2.31 | 3.87 | 2.36 | 6.79 | ||||
Aromatic monoterpene hydrocarbons (ARM) | - | - | - | - | - | - | - | - | 0.26 | - | ||||
Oxygenated monoterpenes (OXM) | 32.34 | 16.87 | 14.81 | 38.08 | 6.16 | 9.09 | 8.31 | 8.56 | 39.66 | 11.12 | ||||
Aliphatic sesquiterpene hydrocarbons (ALS) | 33.94 | 54.61 | 41.58 | 33.78 | 55.89 | 53.22 | 45.26 | 50.48 | 33.03 | 38.78 | ||||
Aromatic sesquiterpene hydrocarbons (ARS) | 2.06 | 0.32 | - | 0.08 | 7.48 | - | 0.72 | 3.70 | - | - | ||||
Oxygenated sesquiterpene (OXS) | 1.80 | 2.31 | 6.090 | 9.85 | 12.35 | 3.18 | 2.75 | 7.66 | 4.02 | 4.86 | ||||
Other compounds (OTC) | 25.8 | 20.16 | 31.22 | 15.72 | 8.94 | 29.95 | 38.73 | 24.25 | 19.23 | 37.49 | ||||
Total identified | 97.39 | 98.70 | 99.47 | 98.92 | 97.17 | 98.22 | 98.08 | 98.53 | 98.55 | 99.03 | ||||
CN | Compound | OQ11 | OQ12 | OQ13 | OQ14 | OQ15 | OQ16 | OQ17 | OQ18 | OQ19 | OQ20 | OQ21 | Type | |
1 | α-Pinene | 1.40 | 4.07 | 0.94 | 0.34 | 3.40 | 4.51 | 5.76 | 0.60 | 1.13 | 0.86 | 0.76 | ALM | |
2 | Camphene | - | 0.22 | - | - | - | 0.24 | 0.28 | - | - | - | - | ALM | |
3 | Sabinene | 0.45 | 0.14 | - | 0.12 | - | 0.23 | 0.23 | 0.06 | 0.32 | 0.20 | 0.30 | ALM | |
4 | β-Pinene | 1.58 | 2.62 | 0.79 | 0.50 | 2.47 | 2.8 | 3.30 | 0.71 | 1.27 | 0.96 | 0.75 | ALM | |
5 | ρ-Cymene | - | 0.20 | - | - | - | 0.20 | - | - | - | - | - | ARM | |
6 | Limonene | 0.44 | 1.36 | 0.18 | 0.29 | 0.47 | 0.56 | 1.96 | 0.33 | 0.37 | 0.30 | 0.32 | ALM | |
7 | 1,8-Cineole | 1.29 | 1.29 | 0.75 | 0.74 | - | 1.16 | 1.73 | 0.93 | 1.16 | 1.03 | 0.68 | OXM | |
8 | (E)-β-Ocimene | - | - | - | - | - | - | - | 0.13 | - | - | - | ALM | |
9 | Linalool | 0.71 | 0.07 | - | - | - | 0.10 | - | 0.17 | 0.64 | 0.56 | 0.66 | OXM | |
10 | Terpinen-4-ol | - | - | - | 0.15 | - | - | - | 0.23 | - | - | - | OXM | |
11 | α-Terpineol | - | 0.37 | 0.28 | 0.29 | - | 0.33 | 0.34 | 0.29 | 0.11 | 0.23 | 0.22 | OXM | |
12 | (E)-Cinnamaldehyde | 2.14 | 3.51 | 2.25 | 8.97 | 1.33 | 2.21 | 2.18 | 5.05 | 2.88 | 3.62 | 2.68 | OTC | |
13 | α-Cubebene | - | 0.54 | 0.20 | 1.06 | - | 0.54 | 0.45 | 0.53 | - | - | 0.22 | ALS | |
14 | α-Copaene | 4.13 | 0.83 | 0.56 | 4.48 | 6.30 | 0.77 | 1.53 | 3.47 | 2.82 | 1.52 | 2.62 | ALS | |
15 | (E)-Methyl cinnamate | 6.57 | 1.82 | 7.84 | 17.05 | 6.16 | 0.38 | 2.15 | 9.48 | 6.53 | 6.49 | 6.31 | OXM | |
16 | (Z)-Cinnamyl acetate | 0.72 | 0.23 | - | - | 0.85 | - | 0.48 | 0.31 | 0.71 | 0.70 | 0.56 | OTC | |
17 | α-cis-Bergamotene | 0.81 | 0.25 | 0.33 | - | 1.92 | 0.26 | 0.24 | - | - | - | - | ALS | |
18 | trans-Caryophyllene | 17.55 | 30.07 | 21.44 | 16.62 | 13.41 | 37.02 | 26.63 | 20.4 | 18.89 | 20.22 | 20.48 | ALS | |
19 | α-Guaiene | 1.66 | 0.24 | - | 0.23 | 3.23 | 0.24 | 0.28 | 0.12 | 0.83 | ALS | |||
20 | 6,9-Guaiadiene | - | 2.45 | 2.13 | 1.84 | 5.33 | 3.68 | - | 2.4 | 1.25 | 2.49 | 2.47 | ALS | |
21 | (E)-Cinnamyl acetate | 11.86 | 18.21 | 41.65 | 28.62 | 5.96 | 14.27 | 8.68 | 24.54 | 18.03 | 24.2 | 22.63 | OTC | |
22 | (E)-β-Farnesene | - | 0.91 | 0.79 | - | - | 1.05 | 0.37 | 0.17 | 0.23 | 0.47 | - | ALS | |
23 | trans-Cadina-1(6),4-diene | - | 0.44 | 1.71 | - | 0.95 | 0.57 | - | 0.24 | 0.61 | 0.63 | 0.60 | ALS | |
24 | β-Chamigrene | 0.63 | - | - | 0.38 | 0.79 | - | - | 0.70 | 0.69 | 0.75 | 1.00 | ALS | |
25 | β-Selinene | 8.95 | 4.40 | 1.74 | 3.68 | 9.37 | 2.46 | 9.70 | 6.87 | 8.44 | 7.93 | 9.71 | ALS | |
26 | Viridiflorene (=Ledene) | 1.80 | - | - | 0.65 | 2.91 | 0 | - | 0.73 | 1.15 | 0.50 | 0.59 | ALS | |
27 | Bicyclogermacrene | 5.13 | 2.30 | 1.47 | 4.34 | 3.89 | 1.59 | 3.74 | 5.20 | 4.96 | 4.79 | 5.95 | ALS | |
28 | Anisyl propanoate | 9.53 | 9.03 | 3.53 | 1.46 | - | 8.35 | 9.22 | 5.55 | 9.71 | 9.89 | 8.49 | OTC | |
29 | δ-Amorphene | - | 1.53 | 1.40 | - | 1.00 | 1.54 | 1.75 | - | - | - | - | ALS | |
30 | (Z-)-γ-Bisabolene | 2.14 | - | - | 0.93 | - | - | - | 1.44 | 1.94 | - | 1.70 | ALS | |
31 | 7-epi-α-Selinene | 5.03 | 0.54 | 0.83 | 3.39 | 5.38 | 0.58 | 0.63 | 3.71 | 4.03 | 3.03 | 3.84 | ALS | |
32 | δ-Cadinene | 0.08 | 0.47 | - | 0.30 | 0.23 | - | - | - | ALS | ||||
33 | (E)-γ-Bisabolene | 2.66 | 3.42 | 3.68 | 0.77 | 1.40 | 3.40 | 3.82 | 1.69 | 2.79 | 2.93 | 1.24 | ALS | |
34 | α-Calacorene | 3.02 | - | - | 0.38 | 5.01 | 0 | - | 0.47 | 1.73 | 0.45 | 0.45 | ARS | |
35 | Selina-3,7(11)-diene | - | 0.49 | 0.39 | - | - | 0.56 | 0.63 | - | - | - | - | ALS | |
36 | Elemol | - | 0.20 | - | - | - | 0.13 | - | - | - | - | - | OXS | |
37 | Pentyl salicylate | - | 0.21 | 0.17 | - | - | 0.32 | 0.69 | - | - | - | - | OTC | |
38 | Spathulenol | 2.15 | 0.31 | 0.23 | - | 2.87 | 0.32 | 0.49 | 0.37 | 1.42 | 0.70 | 0.70 | OXS | |
39 | Caryophyllene oxide | 3.60 | 6.63 | 3.29 | 0.99 | 4.63 | 8.23 | 10.32 | 1.31 | 2.82 | 2.05 | 1.45 | OXS | |
40 | Thujopsan-2-β-ol | 0.97 | 0.37 | - | 0.23 | 1.51 | 0.55 | 0.31 | 0.11 | 0.48 | - | 0.30 | OXS | |
41 | Humulene epoxide II | 0.56 | 0.25 | - | - | 1.72 | 0.37 | 0.39 | - | 0.28 | - | - | OXS | |
42 | α-Corocalene | 0.68 | - | - | 0.39 | 0.81 | - | - | 0.34 | 0.47 | 0.27 | 0.36 | ARS | |
43 | Muurola-4,10(14)-dien-1β-ol | - | - | - | - | - | - | - | - | - | - | - | OXS | |
44 | Exalatacin | - | - | - | - | 0.81 | - | - | 0.32 | 0.16 | 0.33 | 0.58 | OTC | |
45 | trans-Calamenen-10-ol | 0.39 | - | - | - | 1.62 | - | - | - | 0.20 | - | - | OXS | |
46 | Cadalene | - | - | - | - | 1.66 | - | - | - | - | - | - | ARS | |
47 | Benzyl benzoate | - | - | 0.23 | - | - | - | - | 0.37 | - | - | 0.78 | OTC | |
Aliphatic monoterpene hydrocarbons (ALM) | 3.87 | 8.41 | 1.92 | 1.25 | 6.34 | 8.34 | 11.53 | 1.83 | 3.09 | 2.31 | 2.13 | |||
Aromatic monoterpene hydrocarbons (ARM) | - | 0.20 | - | - | - | 0.20 | - | - | - | - | - | |||
Oxygenated monoterpenes (OXM) | 8.56 | 3.54 | 8.87 | 18.23 | 6.16 | 1.97 | 4.22 | 11.09 | 8.44 | 8.31 | 7.87 | |||
Aliphatic sesquiterpene hydrocarbons (ALS) | 50.48 | 48.48 | 36.67 | 38.82 | 55.89 | 54.27 | 50.06 | 47.89 | 48.62 | 45.26 | 50.42 | |||
Aromatic sesquiterpene hydrocarbons (ARS) | 3.70 | - | - | 0.78 | 7.48 | - | - | 0.81 | 2.21 | 0.72 | 0.81 | |||
Oxygenated sesquiterpene (OXS) | 7.66 | 7.76 | 3.52 | 1.22 | 12.35 | 9.60 | 11.51 | 1.79 | 5.21 | 2.75 | 2.45 | |||
Other compounds (OTC) | 24.25 | 31.19 | 47.83 | 39.04 | 8.94 | 25.15 | 21.24 | 36.13 | 31.49 | 38.73 | 35.72 | |||
Total identified | 98.53 | 99.6 | 98.81 | 99.34 | 97.17 | 99.53 | 98.56 | 99.54 | 99.06 | 98.08 | 99.39 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valarezo, E.; Vullien, A.; Conde-Rojas, D. Variability of the Chemical Composition of the Essential Oil from the Amazonian Ishpingo Species (Ocotea quixos). Molecules 2021, 26, 3961. https://doi.org/10.3390/molecules26133961
Valarezo E, Vullien A, Conde-Rojas D. Variability of the Chemical Composition of the Essential Oil from the Amazonian Ishpingo Species (Ocotea quixos). Molecules. 2021; 26(13):3961. https://doi.org/10.3390/molecules26133961
Chicago/Turabian StyleValarezo, Eduardo, Antoine Vullien, and Dayra Conde-Rojas. 2021. "Variability of the Chemical Composition of the Essential Oil from the Amazonian Ishpingo Species (Ocotea quixos)" Molecules 26, no. 13: 3961. https://doi.org/10.3390/molecules26133961
APA StyleValarezo, E., Vullien, A., & Conde-Rojas, D. (2021). Variability of the Chemical Composition of the Essential Oil from the Amazonian Ishpingo Species (Ocotea quixos). Molecules, 26(13), 3961. https://doi.org/10.3390/molecules26133961