Use of Propionibacterium freudenreichii T82 Strain for Effective Biosynthesis of Propionic Acid and Trehalose in a Medium with Apple Pomace Extract and Potato Wastewater
Abstract
:1. Introduction
2. Results and Discussion
2.1. Composition of Apple Pomace and Potato Wastewater
2.2. Consumption of Carbon Sources and Growth of P. freudenreichii T82 Strain
2.3. Propionic Acid Production
2.4. Treahlose Accumulation
3. Materials and Methods
3.1. Biological Material
3.2. Culture Media
3.3. Culture Conditions
3.4. Analytical Methods
3.5. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Falentin, H.; Deutsch, S.M.; Jan, G.; Loux, V.; Thierry, A.; Parayre, S.; Maillard, M.B.; Dherbécourt, J.; Cousin, F.J.; Jardin, J.; et al. The Complete Genome of Propionibacterium freudenreichii CIRM-BIA1T, a Hardy Actinobacterium with Food and Probiotic Applications. PLoS ONE 2010, 5, e11748. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonzalez-Garcia, R.A.; McCubbin, T.; Navone, L.; Stowers, C.; Nielsen, L.K.; Marcellin, E. Microbial Propionic Acid Production. Fermentation 2017, 3, 21. [Google Scholar] [CrossRef]
- Vidra, A.; Németh, Á. Bio-produced Propionic Acid: A Review. Period. Polytech. Chem. Eng. 2018, 62, 57–67. [Google Scholar] [CrossRef]
- Piwowarek, K.; Lipińska, E.; Hać-Szymańczuk, E.; Kieliszek, M.; Ścibisz, I. Propionibacterium spp.—source of propionic acid, vitamin B12, and other metabolites important for the industry. Appl. Microbiol. Biotechnol. 2018, 102, 515–538. [Google Scholar]
- Cai, X.; Seitl, I.; Mu, W.; Zhang, T.; Stressler, T.; Fischer, L.; Jiang, B. Biotechnical production of trehalose through the trehalose synthase pathway: Current status and future prospects. Appl. Microbiol. Biotechnol. 2018, 102, 2965–2976. [Google Scholar] [CrossRef]
- Othake, S.; Wang, Y.J. Trehalose: Current use and future applications. J. Pharm. Sci. 2011, 100, 2020–2053. [Google Scholar]
- Teramoto, N.; Sachinvala, N.D.; Shibata, M. Trehalose and Trehalose-based Polymers for Environmentally Benign, Biocompatible and Bioactive Materials. Molecules 2008, 13, 1773–1816. [Google Scholar] [CrossRef] [Green Version]
- Yu, W.B.; Jiang, T.; Lan, D.M.; Lu, J.H.; Yue, Z.Y.; Wang, J.; Zhou, P. Trehalose inhibits fibrillation of A53T mutant alpha-synuclein and disaggregates existing fibrils. Arch. Biochem. Biophys. 2012, 523, 144–150. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, R.K.; Kardani, J.; Singh, K.; Banerjee, R.; Roy, I. Deciphering the Roles of Trehalose and Hsp104 in the Inhibition of Aggregation of Mutant Huntingtin in a Yeast Model of Huntington’s Disease. Neuromol. Med. 2014, 16, 280–291. [Google Scholar] [CrossRef] [PubMed]
- Eş, I.; Khaneghah, A.M.; Hashemi, S.M.B.; Koubaa, M. Current advances in biological production of propionic acid. Biotechnol. Lett. 2017, 39, 635–645. [Google Scholar] [CrossRef]
- Piwowarek, K.; Lipińska, E.; Hać-Szymańczuk, E.; Rudziak, A.; Kieliszek, M. Optimization of propionic acid production in apple pomace extract with Propionibacterium freudenreichii. Prep. Biochem. Biotechnol. 2019, 43, 1–13. [Google Scholar] [CrossRef]
- Piwowarek, K.; Lipińska, E.; Hać-Szymańczuk, E.; Pobiega, K. Propionic acid production from apple pomace in bioreactor using Propionibacterium freudenreichii: An economic analysis of the process. 3 Biotech. 2021, 11, 1–15. [Google Scholar] [CrossRef]
- Ammar, E.M.; Martin, J.; Brabo-Catala, L.; Philippidis, G.P. Propionic acid production by Propionibacterium freudenreichii using sweet sorghum bagasse hydrolysate. Appl. Microbiol. Biotechnol. 2020, 104, 9619–9629. [Google Scholar] [CrossRef]
- Wang, P.; Shen, C.; Li, L.; Guo, L.; Cong, Q.; Lu, J. Simultaneous production of propionic acid and vitamin B12 from corn stalk hydrolysates by Propionibacterium freudenreichii in an expanded bed adsorption bioreactor. Prep. Biochem. Biotechnol. 2020, 50, 763–767. [Google Scholar] [CrossRef] [PubMed]
- Xie, C.; Coda, R.; Chamlagain, B.; Varmanen, P.; Piironen, V.; Katina, K. Co-fermentation of Propionibacterium freudenreichii and Lactobacillus brevis in Wheat Bran for in situ Production of Vitamin B12. Front. Microbiol. 2019, 10, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Xie, C.; Coda, R.; Chamlagain, B.; Edelmann, M.; Varmanen, P.; Piironen, V.; Katina, K. Fermentation of cereal, pseudo-cereal and legume materials with Propionibacterium freudenreichii and Levilactobacillus brevis for vitamin B12 fortification. LWT-Food Sci. Technol. 2021, 137, 110431. [Google Scholar] [CrossRef]
- Grigoras, C.G.; Destandau, E.; Fougere, L.; Elfakir, C. Evaluation of apple pomace extracts as a source of bioactive compounds. Ind. Crop Prod. 2013, 49, 794–804. [Google Scholar] [CrossRef]
- Grigelmo-Miguel, N.; Martın-Belloso, O. Comparison of dietary fibre from by-products of processing fruits and greens and from cereals. LWT-Food Sci. Technol. 1999, 32, 503–508. [Google Scholar] [CrossRef]
- Awasthi, M.K.; Ferreira, J.A.; Sirohi, R.; Sarsaiya, S.; Khoshnevisan, B.; Baladi, S.; Sindhu, R.; Binod, P.; Pandey, A.; Juneja, A.; et al. A critical review on the development stage of biorefinery systems towards the management of apple processing-derived waste. Renew. Sustain. Energ. Rev. 2021, 143, 1–18. [Google Scholar] [CrossRef]
- Magyar, M.; Sousa, L.C.; Jin, M.; Sarks, C.; Balan, V. Conversion of apple pomace waste to ethanol at industrial relevant conditions. Appl. Microbiol. Biot. 2016, 100, 7349–7358. [Google Scholar] [CrossRef]
- Skinner, R.C.; Gigliotti, J.C.; Ku, K.-M.; Tou, J.C. A comprehensive analysis of the composition, health benefits, and safety of apple pomace. Nutr. Rev. 2018, 76, 893–909. [Google Scholar] [CrossRef] [PubMed]
- Kot, A.M.; Pobiega, K.; Piwowarek, K.; Kieliszek, M.; Błażejak, S.; Gniewosz, M.; Lipińska, E. Biotechnological Methods of Management and Utilization of Potato Industry Waste—A Review. Potato Res. 2020, 63, 431–447. [Google Scholar] [CrossRef]
- Kieliszek, M.; Piwowarek, K.; Kot, A.M.; Pobiega, K. The aspects of microbial biomass use in the utilization of selected waste from the agro-food industry. Open Life Sci. 2020, 15, 787–796. [Google Scholar] [CrossRef]
- Kot, A.; Błażejak, S.; Kurcz, A.; Bryś, J.; Gientka, I.; Bzducha-Wróbel, A.; Maliszewska, M.; Reczek, L. Effect of initial pH of medium with potato wastewater and glycerol on protein, lipid and carotenoid biosynthesis by Rhodotorula glutinis. Electron. J. Biotechnol. 2017, 27, 25–31. [Google Scholar] [CrossRef]
- Kot, A.M.; Błażejak, S.; Kieliszek, M.; Gientka, I.; Bryś, J. Simultaneous Production of Lipids and Carotenoids by the Red Yeast Rhodotorula from Waste Glycerol Fraction and Potato Wastewater. Appl. Biochem. Biotechnol. 2019, 189, 589–607. [Google Scholar] [CrossRef]
- Antonic, B.; Jancikova, S.; Dordevic, D.; Tremlova, B. Apple pomace as food fortification ingredient: A systematic review and meta-analysis. J. Food Sci. 2020, 85, 2977–2983. [Google Scholar] [CrossRef]
- Dishisha, T.; Ståhl, A.; Lundmark, S.; Hatti-Kaul, R. An economical biorefinery process for propionic acid production from glycerol and potato juice using high cell density fermentation. Bioresour. Technol. 2013, 135, 504–512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dishisha, T.; Ibrahim, M.H.A.; Cavero, V.H.; Alvarez, M.T.; Hatti-Kaul, R. Improved propionic acid production from glycerol: Combining cyclic batch and sequential batch fermentations with optimal nutrient composition. Bioresour. Technol. 2015, 176, 80–87. [Google Scholar] [CrossRef] [Green Version]
- Fröhlich-Wyder, M.T.; Bachmann, H.P.; Casey, M.G. Interaction between propionibacteria and starter/non-starter lactic acid bacteria in Swiss-type cheeses. Lait 2002, 82, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Guan, N.; Liu, L.; Shin, H.D.; Chen, R.R.; Zhang, J.; Li, J.; Du, G.; Shi, Z.; Chen, J. Systems-level understanding how Propionibacterium acidipropionici respond to propionic acid stress at the microenvironment levels: Mechanism and application. J. Biotechnol. 2013, 167, 56–63. [Google Scholar] [CrossRef]
- Wang, Z.; Sun, J.; Zhang, A.; Yang, S.-T. Propionic acid fermentation. In Bioprocessing Technologies in Biorefinery for Sustainable Production of Fuels, Chemicals, and Polymers, 1st ed.; Yang, S.T., El-Enshasy, H.A., Thongchul, N., Eds.; Wiley: New York, NY, USA, 2013; pp. 331–350. [Google Scholar]
- Wang, Z.; Yang, S.T. Propionic acid production in glycerol/glucose co-fermentation by Propionibacterium freudenreichii subsp. shermanii. Bioresour. Technol. 2013, 137, 116–123. [Google Scholar] [CrossRef] [PubMed]
- Zhang, A.; Yang, S.T. Propionic acid production from glycerol by metabolically engineered Propionibacterium acidipropionici. Process Biochem. 2009, 44, 1346–1351. [Google Scholar] [CrossRef]
- Quesada-Chanto, A.; Costa, J.; Silveira, M.; Schroeder, A.; Schmid-Meyer, A.; Jonas, R. Influence of different vitamin-nitrogen sources on cell growth and propionic acid production from sucrose by Propionibacterium shermanii. Acta BioTechnol. 1998, 18, 267–274. [Google Scholar] [CrossRef]
- Wang, X.; Salvachua, D.; Nogue, V.; Michener, W.; Bratis, A.; Dorgan, J.; Beckham, G. Propionic acid production from corn stover hydrolysate by Propionibacterium acidipropionici. BioTechnol. Biofuels 2017, 10, 1–13. [Google Scholar] [CrossRef]
- Feng, X.; Chen, F.; Xu, H.; Wu, B.; Li, H.; Li, S.; Ouyang, P. Green and economical production of propionic acid by Propionibacterium freudenreichii CCTCC M207015 in plant fibrous-bed bioreactor. Bioresour. Technol. 2011, 102, 6141–6146. [Google Scholar] [CrossRef]
- Yang, H.; Wang, Z.; Lin, M.; Yang, S.T. Propionic acid production from soy molasses by Propionibacterium acidipropionici: Fermentation kinetics and economic analysis. Bioresour. Technol. 2018, 250, 1–9. [Google Scholar] [CrossRef]
- Acosta de Assis, D.; Matte, C.; Aschidamini, B.; Rodrigues, E.; Antônio, M.; Ayub, Z. Biosynthesis of vitamin B12 by Propionibacterium freudenreichii subsp. shermanii ATCC 13673 using liquid acid protein residue of soybean as culture medium. BioTechnol. Progress 2020, 36, 1–9. [Google Scholar]
- Liang, Z.X.; Li, L.; Li, S.; Cai, Y.H.; Yang, S.T.; Wang, J.F. Enhanced propionic acid production from Jerusalem artichoke hydrolysate by immobilized Propionibacterium acidipropionici in a fibrous-bed bioreactor. Bioprocess Biosyst. Eng. 2012, 35, 915–921. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, F.S.; Castro, R.F.; Borges, N.; Santos, H. Biochemical and genetic characterization of the pathways for trehalose metabolism in Propionibacterium freudenreichii, and their role in stress response. Microbiology 2007, 153, 270–280. [Google Scholar] [CrossRef] [Green Version]
- Ruhal, R.; Kataria, R.; Choudhury, B. Trends in bacterial trehalose metabolism and significant nodes of metabolic pathway in the direction of trehalose accumulation. Microbial BioTechnol. 2013, 6, 493–502. [Google Scholar] [CrossRef] [PubMed]
- Ruhal, R.; Choudhury, B. Improved trehalose production from biodiesel waste using parent and osmotically sensitive mutant of Propionibacterium freudenreichii subsp. shermanii under aerobic conditions. J. Ind. Microbiol. BioTechnol. 2012, 39, 1153–1160. [Google Scholar] [CrossRef]
- Benaroudj, N.; Lee, D.H.; Goldberg, A.L. Trehalose accumulation during cellular stress protect cells and cellular proteins from damage by oxygen radicals. J. Biol. Chem. 2001, 276, 24261–24267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cardoso, F.S.; Gaspar, P.; Hugenholtz, J.; Ramos, A.; Santos, H. Enhancement of trehalose production in dairy propionibacteria through manipulation of environmental conditions. Int. J. Food Microbiol. 2004, 91, 195–204. [Google Scholar] [CrossRef]
- Pawlicka-Kaczorowska, J.; Czaczyk, K. Effect of crude and pure glycerol on biomass production and trehalose accumulation by Propionibacterium freudenreichii ssp. shermanii 1. Acta Biochim. Pol. 2017, 64, 621–629. [Google Scholar] [CrossRef] [PubMed]
Component/Parameter | Apple Pomace Extract | Potato Wastewater |
---|---|---|
Total sugars (g/100 mL) | 4.54 ± 0.11 | 0.51 ± 0.08 |
Glucose (g/100 mL) | 1.91 ± 0.11 (42%) | 0.24 ± 0.02 (47%) |
Fructose (g/100 mL) | 2.42 ± 0.14 (53%) | 0.27 ± 0.00 (53%) |
Saccharose (g/100 mL) | 0.21 ± 0.08 (5%) | 0.00 ± 0.00 (0%) |
Total protein (g/100 mL) | 0.138 ± 0.020 | 1.338 ± 0.057 |
Nitrogen (g/100 mL) | 0.022 ± 0.030 | 0.214 ± 0.009 |
pH | 3.82 | 5.09 |
C/N | 39.2:1 | 0.5:1 |
Medium | PA Yield | AA Yield | PA Productivity | AA Productivity | P/A Ratio |
---|---|---|---|---|---|
(g/g) | (g/Lh) | ||||
I | 0.18 | 0.08 | 0.011 | 0.005 | 2.37:1 |
II | 0.41 | 0.12 | 0.062 | 0.019 | 3.53:1 |
III | 0.39 | 0.18 | 0.053 | 0.025 | 2.15:1 |
IV | 0.21 | 0.10 | 0.019 | 0.009 | 2.05:1 |
V | 0.44 | 0.11 | 0.121 | 0.030 | 3.99:1 |
VI | 0.42 | 0.16 | 0.106 | 0.042 | 2.53:1 |
Compound | Medium | |||||
---|---|---|---|---|---|---|
I * | II * | III * | IV | V | VI | |
Apple pomace (kg/L) | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
Potato wastewater (L) | - | - | 1.00 | - | - | 1.00 |
Yeast extract (g/L) | - | 10.00 | - | - | 20.00 | - |
Peptone (g/L) | - | 5.00 | - | - | 10.00 | - |
Potassium dihydrogen phosphate (g/L) | - | 2.50 | - | - | 2.50 | - |
Dipotassium hydrogen phosphate (g/L) | - | 1.50 | - | - | 1.50 | - |
L-cysteine hydrochloride (g/L) | 0.40 | 0.40 | 0.40 | 0.40 | 0.40 | 0.40 |
Biotin (mg/L) | - | 0.20 | - | - | 0.20 | - |
Distilled water (L) | 1.00 | 1.00 | - | 1.00 | 1.00 | - |
C/N ** | 36.6:1 | 4.6:1 | 3.6:1 | 34.9:1 | 4.4:1 | 3.5:1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piwowarek, K.; Lipińska, E.; Hać-Szymańczuk, E.; Kot, A.M.; Kieliszek, M.; Bonin, S. Use of Propionibacterium freudenreichii T82 Strain for Effective Biosynthesis of Propionic Acid and Trehalose in a Medium with Apple Pomace Extract and Potato Wastewater. Molecules 2021, 26, 3965. https://doi.org/10.3390/molecules26133965
Piwowarek K, Lipińska E, Hać-Szymańczuk E, Kot AM, Kieliszek M, Bonin S. Use of Propionibacterium freudenreichii T82 Strain for Effective Biosynthesis of Propionic Acid and Trehalose in a Medium with Apple Pomace Extract and Potato Wastewater. Molecules. 2021; 26(13):3965. https://doi.org/10.3390/molecules26133965
Chicago/Turabian StylePiwowarek, Kamil, Edyta Lipińska, Elżbieta Hać-Szymańczuk, Anna Maria Kot, Marek Kieliszek, and Sylwia Bonin. 2021. "Use of Propionibacterium freudenreichii T82 Strain for Effective Biosynthesis of Propionic Acid and Trehalose in a Medium with Apple Pomace Extract and Potato Wastewater" Molecules 26, no. 13: 3965. https://doi.org/10.3390/molecules26133965
APA StylePiwowarek, K., Lipińska, E., Hać-Szymańczuk, E., Kot, A. M., Kieliszek, M., & Bonin, S. (2021). Use of Propionibacterium freudenreichii T82 Strain for Effective Biosynthesis of Propionic Acid and Trehalose in a Medium with Apple Pomace Extract and Potato Wastewater. Molecules, 26(13), 3965. https://doi.org/10.3390/molecules26133965