Hydrogen-Bonded and Halogen-Bonded: Orthogonal Interactions for the Chloride Anion of a Pyrazolium Salt
Abstract
:1. Introduction
2. Results and Discussion
2.1. Experimental Crystal Structures
2.2. Theoretical Evaluation of the Halogen Bond
3. Conclusions and Outlook
4. Experimental Section
4.1. Computational Details
4.2. Materials and Methods
4.3. Synthesis of 3-(3,5-Dimethyl-1-phenyl-1 H-pyrazol-4-yl)acetylacetone, HacacPhPz, 1
4.4. Synthesis of HacacPhPz·HCl·0·5TFDIB, 2
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
bcp | bond critical point |
HacacPhPz | 3-(3,5-dimethyl-1-phenyl-1H-pyrazol-4-yl)acetylacetone |
QTAIM | Quantum Theory of Atoms in Molecules |
SCXRD | single-crystal X-ray diffraction |
TAE | tetraacetylethane |
TFDIB | tetrafluorodiiodobenzene |
References
- Pauling, L. The Dynamic Model of the Chemical Bond and its Application to the Structure of Benzene. J. Am. Chem. Soc. 1926, 48, 1132–1143. [Google Scholar] [CrossRef]
- Pauling, L. The theoretical prediction of the physical properties of many electron atoms and ions. Mole refraction, diamagnetic susceptibility, and extension in space. Proc. R. Soc. Lond. A 1927, 114, 181–211. [Google Scholar] [CrossRef] [Green Version]
- Pauling, L. The Crystal Structure of Magnesium Stannide. J. Am. Chem. Soc. 1923, 45, 2777–2780. [Google Scholar] [CrossRef]
- Pauling, L.; Dickinson, R.G. The Crystal Structure of Uranyl Nitrate Hexahydrate. J. Am. Chem. Soc. 1924, 46, 1615–1622. [Google Scholar] [CrossRef]
- Pauling, L. The Nature of the Chemical Bond, 3rd ed.; Cornell University Press: Ithaca, NY, USA, 1960. [Google Scholar]
- Nobel Prize Committee. The Nobel Prize in Chemistry 1954; Nobel Prize Committee: Stockholm, Sweden, 1954. [Google Scholar]
- Cavallo, G.; Metrangolo, P.; Milani, R.; Pilati, T.; Priimagi, A.; Resnati, G.; Terraneo, G. The Halogen Bond. Chem. Rev. 2016, 116, 2478–2601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bent, H.A. Structural chemistry of donor-acceptor interactions. Chem. Rev. 1968, 68, 587–648. [Google Scholar] [CrossRef]
- Clark, T.; Hennemann, M.; Murray, J.S.; Politzer, P. Halogen bonding: The sigma-hole. Proceedings of “Modeling interactions in biomolecules II”, Prague, September 5th–9th, 2005. J. Mol. Model. 2007, 13, 291–296. [Google Scholar] [CrossRef]
- Hassel, O.; Hvoslef, J. The Structure of Bromine 1,4-Dioxonate. Acta Chim. Scand. 1954, 8, 873. [Google Scholar] [CrossRef] [Green Version]
- Politzer, P.; Murray, J.S. Halogen bonding: An interim discussion. ChemPhysChem 2013, 14, 278–294. [Google Scholar] [CrossRef] [PubMed]
- Wolters, L.P.; Schyman, P.; Pavan, M.J.; Jorgensen, W.L.; Bickelhaupt, F.M.; Kozuch, S. The many faces of halogen bonding: A review of theoretical models and methods. Comput. Mol. Sci. 2014, 4, 523–540. [Google Scholar] [CrossRef]
- Kirshenboim, O.; Kozuch, S. How to Twist, Split and Warp a sigma-Hole with Hypervalent Halogens. J. Phys. Chem. A 2016, 120, 9431–9445. [Google Scholar] [CrossRef]
- Murray, J.S.; Politzer, P. Interaction and Polarization Energy Relationships in sigma-Hole and pi-Hole Bonding. Crystals 2020, 10, 76. [Google Scholar] [CrossRef] [Green Version]
- Forni, A. Experimental and theoretical study of the Br...N halogen bond in complexes of 1,4-dibromotetrafluorobenzene with dipyridyl derivatives. J. Phys. Chem. A 2009, 113, 3403–3412. [Google Scholar] [CrossRef]
- Wang, R.; Kalf, I.; Englert, U. Insight into trifluoromethylation—Experimental electron density for Togni reagent I. RSC Adv. 2018, 8, 34287–34290. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.; Hartnick, D.; Englert, U. Short is strong: Experimental electron density in a very short N···I halogen bond. Z. Kristallogr. Cryst. Mater. 2018, 233, 733–744. [Google Scholar] [CrossRef]
- Wang, R.; George, J.; Potts, S.K.; Kremer, M.; Dronskowski, R.; Englert, U. The many flavours of halogen bonds—Message from experimental electron density and Raman spectroscopy. Acta Crystallogr. 2019, C75, 1190–1201. [Google Scholar] [CrossRef] [Green Version]
- Otte, F.; Kleinheider, J.; Hiller, W.; Wang, R.; Englert, U.; Strohmann, C. Weak yet Decisive: Molecular Halogen Bond and Competing Weak Interactions of Iodobenzene and Quinuclidine. J. Am. Chem. Soc. 2021, 143, 4133–4137. [Google Scholar] [CrossRef]
- Nemec, V.; Lisac, K.; Bedeković, N.; Fotović, L.; Stilinović, V.; Cinčić, D. Crystal engineering strategies towards halogen-bonded metal—Organic multi-component solids: Salts, cocrystals and salt cocrystals. CrystEngComm 2021, 23, 3063–3083. [Google Scholar] [CrossRef]
- Riel, A.M.S.; Decato, D.A.; Sun, J.; Massena, C.J.; Jessop, M.J.; Berryman, O.B. The intramolecular hydrogen bonded-halogen bond: A new strategy for preorganization and enhanced binding. Chem. Sci. 2018, 9, 5828–5836. [Google Scholar] [CrossRef] [Green Version]
- Kremer, M.; Englert, U. N Donor substituted acetylacetones—Versatile ditopic ligands. Z. Kristallogr. Cryst. Mater. 2018, 233, 437–452. [Google Scholar] [CrossRef]
- Burrows, A.D.; Cassar, K.; Mahon, M.F.; Warren, J.E. The stepwise formation of mixed-metal coordination networks using complexes of 3-cyanoacetylacetonate. Dalton Trans. 2007, 24, 2499–2509. [Google Scholar] [CrossRef]
- Kondracka, M.; Englert, U. Bimetallic coordination polymers via combination of substitution-inert building blocks and labile connectors. Inorg. Chem. 2008, 47, 10246–10257. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Fronczek, F.R.; Maverick, A.W. Porous Cu-Cd mixed-metal-organic frameworks constructed from Cu(Pyac)2 Bis3-(4-pyridyl)pentane-2,4-dionatocopper(II). Inorg. Chem. 2004, 43, 8209–8211. [Google Scholar] [CrossRef]
- Guo, Q.; Englert, U. An Acetylacetonate or a Pyrazole? Both! 3-(3,5-Dimethyl-pyrazol-4-yl)pentane-2,4-dione as a Ditopic Ligand. Cryst. Growth Des. 2016, 16, 5127–5135. [Google Scholar] [CrossRef]
- Van Terwingen, S.; Nachtigall, N.; Ebel, B.; Englert, U. N-Donor-Functionalized Acetylacetones for Heterobimetallic Coordination Polymers, the Next Episode: Trimethylpyrazoles. Cryst. Growth Des. 2021, 21, 2962–2969. [Google Scholar] [CrossRef]
- Merkens, C.; Pan, F.; Englert, U. 3-(4-Pyridyl)-2,4-pentanedione—A bridge between coordinative, halogen, and hydrogen bonds. CrystEngComm 2013, 15, 8153. [Google Scholar] [CrossRef]
- Mosby, W.L. The Reaction of Some 1:4-Dicarbonyl Systems with Hydrazine. J. Chem. Soc. 1957, 3997–4003. [Google Scholar] [CrossRef]
- Spek, A.L. Structure validation in chemical crystallography. Acta Crystallogr. 2009, D65, 148–155. [Google Scholar] [CrossRef]
- Boese, R.; Antipin, M.Y.; Bläser, D.; Lyssenko, K. Molecular Crystal Structure of Acetylacetone at 210 and 110 K: Is the Crystal Disorder Static or Dynamic? J. Phys. Chem. B 1998, 102, 8654–8660. [Google Scholar] [CrossRef]
- Yufit, D.S.; Howard, J.A.K. Low melting molecular complexes. The structures of molecular complexes of tri- and di-chloromethanes with small ketones and 1,4-dioxane. CrystEngComm 2012, 14, 2003. [Google Scholar] [CrossRef]
- Kalf, I.; Englert, U. The molecular conformation of pentan-3-one studied in cholic acid pentan-3-one solvate. Acta Crystallogr. 2011, C67, o206–o208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martinez, V.; Bedeković, N.; Stilinović, V.; Cinčić, D. Tautomeric Equilibrium of an Asymmetric beta-Diketone in Halogen-Bonded Cocrystals with Perfluorinated Iodobenzenes. Crystals 2021, 11, 699. [Google Scholar] [CrossRef]
- Abdalrahman, M.A.; Awwadi, F.F.; Jameson, G.B.; Landee, C.P.; Saunders, C.G.; Turnbull, M.M.; Wikaira, J.L. Effects of halogen and hydrogen bonding on defect disorder: The ladder that wasn’t there. CrystEngComm 2013, 15, 4309. [Google Scholar] [CrossRef]
- Zordan, F.; Purver, S.L.; Adams, H.; Brammer, L. Halometallate and halide ions: Nucleophiles in competition for hydrogen bond and halogen bond formation in halopyridinium salts of mixed halide–halometallate anions. CrystEngComm 2005, 7, 350. [Google Scholar] [CrossRef]
- Raatikainen, K.; Rissanen, K. Modulation of N...I and + N-H...Cl - ...I Halogen Bonding: Folding, Inclusion, and Self-Assembly of Tri- and Tetraamino Piperazine Cyclophanes. Cryst. Growth Des. 2010, 10, 3638–3646. [Google Scholar] [CrossRef]
- Ducharme, G.; Nesterov, E.E.; Fronczek, F.R. Private Communication (Refcode VIDHEY); CCDC: Cambridge, UK, 2018. [Google Scholar] [CrossRef]
- Mondal, B.; Zhang, T.; Prabhakar, R.; Captain, B.; Ramamurthy, V. Role of hydrogen bonds in molecular packing of photoreactive crystals: Templating photodimerization of protonated stilbazoles in crystalline state with a combination of water molecules and chloride ions. Photochem. Photobiol. Sci. 2014, 13, 1509–1520. [Google Scholar] [CrossRef]
- Fotović, L.; Stilinović, V. Halogenide anions as halogen and hydrogen bond acceptors in iodopyridinium halogenides. CrystEngComm 2020, 22, 4039–4046. [Google Scholar] [CrossRef]
- Gillespie, R.J.; Nyholm, R.S. Inorganic Stereochemistry. Q. Rev. Chem. Soc. 1957, 11, 339–380. [Google Scholar] [CrossRef]
- Gillespie, R.J.; Robinson, E.A. Electron Domains and the VSEPR Model of Molecular Geometry. Angew. Chem. Int. Ed. 1996, 35, 495–514. [Google Scholar] [CrossRef]
- Pröhm, P.; Schmid, J.R.; Sonnenberg, K.; Voßnacker, P.; Steinhauer, S.; Schattenberg, C.J.; Müller, R.; Kaupp, M.; Riedel, S. Improved Access to Organo-Soluble Di- and Tetrafluoridochlorate(I)/(III) Salts. Angew. Chem. Int. Ed. 2020, 59, 16002–16006. [Google Scholar] [CrossRef]
- Ellern, A.M.; Antipin, M.Y.; Sharabarin, A.V.; Struchkov, Y.T. Crystal structures of difluorochloronium hexafluoroniobate and hexafluorotantalate, ClF2NbF6 and ClF2TaF6. Russ. J. Inorg. Chem. 1991, 36, 2266–2270. [Google Scholar]
- Spackman, M.A.; Jayatilaka, D. Hirshfeld surface analysis. CrystEngComm 2009, 11, 19–32. [Google Scholar] [CrossRef]
- Spackman, P.R.; Turner, M.J.; McKinnon, J.J.; Wolff, S.K.; Grimwood, D.J.; Jayatilaka, D.; Spackman, M.A. CrystalExplorer: A program for Hirshfeld surface analysis, visualization and quantitative analysis of molecular crystals. J. Appl. Cryst. 2021, 54, 1006–1011. [Google Scholar] [CrossRef]
- Bader, R.F.W. Atoms in Molecules—A Quantum Theory; Clarendon Press: Oxford, UK, 1990. [Google Scholar]
- Keith, T.A. AIMAll: Version 17.01.25; TK Gristmill Software: Overland Park, KS, USA, 2017. [Google Scholar]
- Wang, R.; Dols, T.S.; Lehmann, C.W.; Englert, U. The halogen bond made visible: Experimental charge density of a very short intermolecular Cl...Cl donor-acceptor contact. Chem. Commun. 2012, 48, 6830–6832. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Dols, T.S.; Lehmann, C.W.; Englert, U. Charge Density of Intra- and Intermolecular Halogen Contacts. Z. Anorg. Allg. Chem. 2013, 639, 1933–1939. [Google Scholar] [CrossRef]
- Wang, A.; Wang, R.; Kalf, I.; Dreier, A.; Lehmann, C.W.; Englert, U. Charge-Assisted Halogen Bonds in Halogen-Substituted Pyridinium Salts: Experimental Electron Density. Cryst. Growth Des. 2017, 17, 2357–2364. [Google Scholar] [CrossRef]
- Espinosa, E.; Alkorta, I.; Elguero, J.; Molins, E. From weak to strong interactions: A comprehensive analysis of the topological and energetic properties of the electron density distribution involving X-H...F-Y systems. J. Chem. Phys. 2002, 117, 5529–5542. [Google Scholar] [CrossRef]
- Allen, F.H.; Bruno, I.J. Bond lengths in organic and metal-organic compounds revisited: X-H bond lengths from neutron diffraction data. Acta Crystallogr. 2010, B66, 380–386. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. GAUSSIAN 16, Revision C.01; Gaussian Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Easton, R.E.; Giesen, D.J.; Welch, A.; Cramer, C.J.; Truhlar, D.G. The MIDI! basis set for quantum mechanical calculations of molecular geometries and partial charges. Theor. Chim. Acta 1996, 93, 281–301. [Google Scholar] [CrossRef]
- Lu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592. [Google Scholar] [CrossRef]
- Abramov, Y.A. On the Possibility of Kinetic Energy Density Evaluation from the Experimental Electron-Density Distribution. Acta Crystallogr. 1997, A53, 264–272. [Google Scholar] [CrossRef]
- Espinosa, E.; Molins, E.; Lecomte, C. Hydrogen bond strengths revealed by topological analyses of experimentally observed electron densities. Chem. Phys. Lett. 1998, 285, 170–173. [Google Scholar] [CrossRef]
- Espinosa, E.; Lecomte, C.; Molins, E. Experimental electron density overlapping in hydrogen bonds: Topology vs. energetics. Chem. Phys. Lett. 1999, 300, 745–748. [Google Scholar] [CrossRef]
- Ponomarova, V.V.; Komarchuk, V.V.; Boldog, I.; Krautscheid, H.; Domasevitch, K.V. Modular construction of 3D coordination frameworks incorporating SiF62- links: Accessing the significance of [M(pyrazole)4SiF6] synthon. CrystEngComm 2013, 15, 8280. [Google Scholar] [CrossRef]
- Bruker. SAINT+: Program for Reduction of Data Collected on Bruker CCD Area Detector Diffractometer; Bruker: Madison, WI, USA, 2009. [Google Scholar]
- Bruker. SADABS; Bruker: Madison, WI, USA, 2008. [Google Scholar]
- Sheldrick, G.M. SHELXT—Integrated space-group and crystal-structure determination. Acta Crystallogr. 2015, A71, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Chaplot, S.L.; McIntyre, G.J.; Mierzejewski, A.; Pawley, G.S. The High-Temperature Phase of 1,2,4,5-Tetrafluoro-3,6-diiodobenzene and the Phase Transition. Acta Crystallogr. 1981, B37, 2210–2214. [Google Scholar] [CrossRef]
Short Biography of Authors
Steven van Terwingen studied chemistry at RWTH Aachen University from 2013 on. He finished his Master degree under supervision of Ulli Englert in 2018 and is currently working on his Ph. D. thesis in the same group. He has a keen interest in crystal chemistry including crystal engineering, catalysis and structural aspects elucidated by diffraction methods. | |
Daniel Brüx was born in 1999 and studies chemistry at RWTH since 2018. He is currently working on his bachelor thesis under the supervision of Steven van Terwingen in the Englert group, in which he investigates the crystal chemistry of N-aryl pyrazolyl substituted acetylacetonates. His main interests are coordination chemistry and developing new crystallization procedures. | |
Ruimin Wang joined RWTH with a B. Sc. degree form Nankai University, China and obtained her Ph. D. with Ulli Englert in 2000. Her main area of interest as a senior scientist is experimental electron density and the application of high resolution diffraction data for the understanding of intra- and inter-molecular interactions. | |
Ulli Englert has fallen in love with diffraction methods decades ago as a student in Tübingen and Pisa. His chemical crystallography group in RWTH is involved in the synthesis of building blocks for extended structures and in the characterization of the products, both in the home lab and at large research facilities. |
Compound | d(I···Cl)/Å | d(Cl···N)/Å | ∠(C–I···Cl)/° | ∠(I···Cl···N)/° |
---|---|---|---|---|
2 | 3.1653(11) | 2.970(2) | 179.32(6) | 73.99(4) |
BEXPOL [35] | 3.211 | 3.085 | 177.81 | 111.72 |
JAQNAR [36] | 3.331 | 3.137 | 169.49 | 92.01 |
RUWVUB [37] | 3.223 | 3.133 | 172.72 | 106.15 |
RUWWIQ [37] | 3.102 | 3.103 | 179.00 | 111.33 |
VIDHEY [38] | 3.489 | 3.124 | 169.32 | 71.89 |
WOQRIF [39] | 3.422 | 2.989 | 160.38 | 77.60 |
JULRIU [40] | 3.122 | 3.003 | 176.41 | 90.99 |
JULSAN [40] | 3.240 | 3.033 | 171.83 | 101.30 |
Bond | I1···Cl1 in 2 | Cl1···H1N in 2 | Cl···H in LAVNUU [49] |
---|---|---|---|
/ | 0.129 | 0.321 | 0.28 |
/ | 1.184 | 1.785 | 0.6 |
bond path length/Å | 3.1654 | 2.0680 | 2.11 |
G/a. u. | 0.0110 | 0.0300 | 0.018 |
/a. u. | 0.58 | 0.63 | 0.44 |
V/a. u. | −0.0097 | −0.0415 | −0.030 |
E/a. u. | 0.0123 | −0.0115 | −0.012 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
van Terwingen, S.; Brüx, D.; Wang, R.; Englert, U. Hydrogen-Bonded and Halogen-Bonded: Orthogonal Interactions for the Chloride Anion of a Pyrazolium Salt. Molecules 2021, 26, 3982. https://doi.org/10.3390/molecules26133982
van Terwingen S, Brüx D, Wang R, Englert U. Hydrogen-Bonded and Halogen-Bonded: Orthogonal Interactions for the Chloride Anion of a Pyrazolium Salt. Molecules. 2021; 26(13):3982. https://doi.org/10.3390/molecules26133982
Chicago/Turabian Stylevan Terwingen, Steven, Daniel Brüx, Ruimin Wang, and Ulli Englert. 2021. "Hydrogen-Bonded and Halogen-Bonded: Orthogonal Interactions for the Chloride Anion of a Pyrazolium Salt" Molecules 26, no. 13: 3982. https://doi.org/10.3390/molecules26133982
APA Stylevan Terwingen, S., Brüx, D., Wang, R., & Englert, U. (2021). Hydrogen-Bonded and Halogen-Bonded: Orthogonal Interactions for the Chloride Anion of a Pyrazolium Salt. Molecules, 26(13), 3982. https://doi.org/10.3390/molecules26133982