Zanthoxylum Species: A Comprehensive Review of Traditional Uses, Phytochemistry, Pharmacological and Nutraceutical Applications
Abstract
:1. Introduction
2. Traditional Uses of Zanthoxylum Species as Food and Medicine
3. Phytochemical Constituents of Zanthoxylum Species
4. Health-Related Bioactive Properties of Zanthoxylum Species
4.1. Antioxidant Activities of Zanthoxylum Species
4.2. Neuroprotective and Alzheimer’s Disease Modulatory Effects of Zanthoxylum Species
4.3. Antidiabetic Effects of Zanthoxylum Species
4.4. Gastroprotective Effects of Zanthoxylum Species
4.5. Hepatoprotective Effects of Zanthoxylum Species
4.6. Lipid-Lowering Effects of Zanthoxylum Species
4.7. Antihypertensive Effects of Zanthoxylum Species
4.8. Cardioprotective Effects of Zanthoxylum Species
4.9. Anti-inflammatory and Analgesic Activities of Zanthoxylum Species
4.10. Anti-Thrombotic Activity of Zanthoxylum Species
4.11. Antispasmodic Activity of Zanthoxylum Species
5. Toxicological Aspects of Zanthoxylum Species
6. Conclusions and Future Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Tantapakul, C.; Phakhodee, W.; Ritthiwigrom, T.; Yossathera, K.; Deachathai, S.; Laphookhieo, S. Antibacterial compounds from Zanthoxylum rhetsa. Arch. Pharm. Res. 2012, 35, 1139–1142. [Google Scholar] [CrossRef] [PubMed]
- Ochwang’I, D.O.; Kimwele, C.N.; Oduma, J.A.; Gathumbi, P.K.; Mbaria, J.M.; Kiama, S.G. Medicinal plants used in treatment and management of cancer in Kakamega County, Kenya. J. Ethnopharmacol. 2014, 151, 1040–1055. [Google Scholar] [CrossRef] [PubMed]
- Tankeo, S.B.; Damen, F.; Awouafack, M.D.; Mpetga, J.; Tane, P.; Eloff, J.N.; Kuete, V. Antibacterial activities of the methanol extracts, fractions and compounds from Fagara tessmannii. J. Ethnopharmacol. 2015, 169, 275–279. [Google Scholar] [CrossRef] [PubMed]
- Bunalema, L.; Obakiro, S.; Tabuti, J.R.; Waako, P. Knowledge on plants used traditionally in the treatment of tuberculosis in Uganda. J. Ethnopharmacol. 2014, 15, 999–1004. [Google Scholar] [CrossRef]
- Goodman, C.D.; Hoang, A.T.; Diallo, D.; Malterud, K.E.; McFadden, G.I.; Wangensteen, H. Anti-plasmodial effects of Zanthoxylum zanthoxyloides. Planta Med. 2019, 85, 1073–1079. [Google Scholar] [CrossRef]
- Groppo, M.; Pirani, J.R. A new species of Zanthoxylum (Rutaceae) with a key to the species from Northeastern Brazil. Phytotaxa 2017, 314, 259–265. [Google Scholar] [CrossRef]
- Mabogo, D.E.N. The Ethnobotany of the Vhavenda. Ph.D. Thesis, University of Pretoria, Pretoria, South Africa, 1990. [Google Scholar]
- Asase, A.; Oppong-Mensah, G. Traditional antimalarial phytotherapy remedies in herbal markets in southern Ghana. J. Ethnopharmacol. 2009, 126, 492–499. [Google Scholar] [CrossRef]
- Massoma, L.; Gasco, M.; Rubio, J.; Yucra, S.; Sock, E.N.; Gonzales, G.F. Effect of the ethanolic extract from Fagara tessmannii on testicular function, sex reproductive organs and hormonal level in adult male rats. J. Androl. 2011, 43, 139–144. [Google Scholar] [CrossRef]
- Phuyal, N.; Jha, P.K.; Raturi, P.P.; Rajbhandary, S. Zanthoxylum armatum DC.: Current knowledge, gaps and opportunities in Nepal. J. Ethnopharmacol. 2019, 229, 326–341. [Google Scholar] [CrossRef]
- Plazas, E.; Rosana, C.R.; Monica, A.M.; Fernando, B.C.; Cuca, L.E. Metabolomic profiling of Zanthoxylum species: Identification of anticholinesterase alkaloids candidates. Phytochemistry 2019, 168, 112128. [Google Scholar] [CrossRef]
- Nurain, I.O.; Bewaji, C.O.; Johnson, J.S.; Davenport, R.D.; Zhang, Y. Potential of three ethnomedicinal plants as antisickling agents. Mol. Pharm. 2017, 14, 172–182. [Google Scholar] [CrossRef]
- Yu, B.; Zhang, G.; Jin, L.; Zhang, B.; Yan, D.; Yang, H.; Ye, Z.; Ma, T. Inhibition of PAI-1 activity by toddalolactone as a mechanism for promoting blood circulation and removing stasis by Chinese herb Zanthoxylum nitidum var. tomentosum. Front. Pharm. 2017, 8, 489. [Google Scholar] [CrossRef] [Green Version]
- Akakpo-Akue, J.; Kplé, T.K.M.; Coulibaly, K.; Ahon, G.M.; Fofié, Y.; Yapo-Crezoit, A.; Zirihi, G.N.; Kra, A.K.M. Ethnobotanical study of medicinal plants used against sickle cell anaemia in the eastern part of the Côte d’Ivoire. J. Anim. Plant. Sci. 2020, 45, 7839–7852. [Google Scholar] [CrossRef]
- Tatiana, K.M.K.; Akakpo-Akue, J.; Yvette, F.; Marcel, A.G.; Julien, G.K.; Mathieu, K.A.K.; Ibrahime, S.; Chiayé, C.A.Y. Sickling cells inhibition and radical scavenging activities of Zanthoxylum leprieurii’s (GUILL) bark extracts: Comparative study. J. Pharm. Res. Int. 2020, 32, 42–50. [Google Scholar] [CrossRef]
- Bryant, A.T. Zulu Medicine and Medicine-Men; Struik: Cape Town, South Africa, 1996; pp. 98–105. [Google Scholar]
- Rabe, T.; Van Staden, J.V. Antibacterial activity of South African plants used for medicinal purposes. J. Ethnopharmacol. 1997, 56, 81–87. [Google Scholar] [CrossRef]
- Van Wyk, B.E.; van Oudtshoorn, B.; Gericke, N. Medicinal Plants of South Africa; Briza Publications: Pretoria, South Africa, 1997; p. 262. [Google Scholar]
- Adebayo, S.A.; Dzoyem, J.P.; Shai, L.J.; Eloff, J.N. The anti-inflammatory and antioxidant activity of 25 plant species used traditionally to treat pain in southern African. BMC Complement. Altern. Med. 2015, 15, 159. [Google Scholar] [CrossRef] [Green Version]
- Ogwal-Okeng, J.W.; Obua, C.; Anokbonggo, W.W. Acute toxicity effects of the methanolic extract of Fagara zanthoxyloides (Lam.) root-bark. Afr. Health Sci. 2003, 3, 124–126. [Google Scholar]
- Andima, M.; Coghi, P.; Yang, L.J.; Wong, V.K.W.; Ngule, C.M.; Heydenreich, M.; Ndakala, A.J.; Yenesew, A.; Derese, S. Antiproliferative activity of secondary metabolites from Zanthoxylum zanthoxyloides Lam: In vitro and in silico studies. Pharm. Commun. 2020, 10, 44–51. [Google Scholar] [CrossRef] [Green Version]
- Supabphol, R.; Tangjitjareonkun, J. Chemical constituents and biological activities of Zanthoxylum limonella (Rutaceae): A review. Trop. J. Pharm. Res. 2014, 13, 2119–2130. [Google Scholar] [CrossRef] [Green Version]
- Negi, J.S.; Bisht, V.K.; Bhandari, A.K.; Singh, P.; Sundriyal, R.C. Chemical constituents and biological activities of the genus Zanthozylum: A review. Afr. J. Pure Appl. Chem. 2011, 5, 412–416. [Google Scholar]
- Singh, T.P.; Singh, O.M. Phytochemical and pharmacological profile of Zanthoxylum armatum DC—An overview. Indian J. Nat. Prod. Res. 2011, 2, 275–285. [Google Scholar]
- Brijwal, L.; Pandey, A.; Tamta, S. An overview on phytomedicinal approaches of Zanthoxylum armatum DC: An important magical medicinal plant. J. Med. Plants Res. 2013, 7, 366–370. [Google Scholar] [CrossRef]
- Mukhtar, H.M.; Kalsi, V. A review on medicinal properties of Zanthoxylum armatum DC. Res. J. Pharm. Technol. 2018, 11, 2131–2138. [Google Scholar] [CrossRef]
- Paul, A.; Kumar, A.; Singh, G.; Choudhary, A. Medicinal, pharmaceutical and pharmacological properties of Zanthoxylum armatum: A review. J. Pharmacogn. Phytochem. 2018, 7, 892–900. [Google Scholar]
- Zhang, M.; Wang, J.; Zhu, L.; Li, T.; Jiang, W.; Zhou, J.; Peng, W.; Wu, C. Zanthoxylum bungeanum Maxim. (Rutaceae): A systematic review of its traditional uses, botany, phytochemistry, pharmacology, pharmacokinetics, and toxicology. Int. J. Mol. Sci. 2017, 18, 2172. [Google Scholar] [CrossRef] [PubMed]
- Sinan, K.I.; Zengin, G.; Bene, K.; Mahomoodally, M.F. Chemistry and pharmacology of three antiplasmodial traditional medicinal plants from tropical Africa—A review. S. Afr. J. Bot. 2019, 126, 265–276. [Google Scholar] [CrossRef]
- Guendéhou, F.; Djossa, B.A.; Kènou, C.; Assogbadjo, C.A.E. Review of studies on Zanthoxylum zanthoxyloids (Lam): Availability and ethnomedical, phytochemical, pharmacological uses. Sch. J. Res. Agric. Biol. 2018, 3, 2456–6527. [Google Scholar]
- Lu, Q.; Ma, R.; Yang, Y.; Mo, Z.; Pu, X.; Li, C. Zanthoxylum nitidum (Roxb.) DC: Traditional uses, phytochemistry, pharmacological activities and toxicology. J. Ethnopharmacol. 2020, 260, 112946. [Google Scholar] [CrossRef]
- Kigen, G.; Kipkore, W.; Wanjohi, B.; Haruki, B.; Kemboi, J. Medicinal plants used by traditional healers in Sangurur, Elgeyo Marakwet County, Kenya. Pharm. Res. 2017, 9, 333–347. [Google Scholar] [CrossRef]
- Bodede, S.O. Phytochemical Investigation and Tissue Culture Studies on the South African Knob Trees, Zanthoxylum capense and Senegalia nigrescens. Ph.D. Thesis, University of KwaZulu-Natal, Westville, South Africa, 2017. [Google Scholar]
- Ameh, S.J.; Tarfa, F.D.; Ebeshi, B.U. Traditional herbal management of sickle cell anemia: Lessons from Nigeria. Anemia 2012, 2012, 607436. [Google Scholar] [CrossRef] [Green Version]
- Gbadamosi, I.T. An inventory of ethnobotanicals used in the management of sickle cell disease in Oyo State, Nigeria. Bot. Res. Int. 2015, 8, 65–72. [Google Scholar]
- Adesina, S.K. The Nigerian Zanthoxylum: Chemical and biological values. Afr. J. Trad. Comp. Alt. Med. 2005, 2, 282–301. [Google Scholar] [CrossRef] [Green Version]
- Kiyinlma, C.; Chimène, A.; Allassane, D.; Justin, K.N. Ethnobotanical study and valorization of medicinal plants from the classified forest of Foumbo (Northern Cote D’ivoire). Int. J. Recent Sci. Res. 2020, 11, 38848–38853. [Google Scholar] [CrossRef]
- Yaovi, N. Characteristics, fatty acid profile, strategic importance of Zanthoxylum zanthoxyloides (rutaceae) seed oil and sustainable conservation of the species. Int. J. Dev. Res. 2018, 8, 21425–21429. [Google Scholar]
- Kosh-Komba, E.; Touckia, I.; Worowounga, X.; Toumnou, A.L.; Mololi, A.; Mukeina, G.; Semballa, S.; Batawilla, K.; Akpagana, K. Case study and phytochemical investigation of Zanthoxylum zanthoxyloids and Zanthoxylum macrophylum (Rutaceae) in the Central African Republic and Togo: A comparative approach. Am. J. PhytoMed. Clin. Ther. 2017, 6, 1. [Google Scholar] [CrossRef]
- Zirihi, G.N.; N’guessan, K.; Etien, D.T.; Serikouassi, B.P.H. Evaluation in vitro of antiplasmodial activity of ethanolic extracts of Funtumia elastica, Rauvolfia vomitoria and Zanthoxylum gilletii on Plasmodium falciparum isolates from Côted’Ivoire. J. Anim. Plant. Sci. 2009, 5, 406–413. [Google Scholar]
- Zirihi, G.; Yao, D.; Kra-adou, K.; Grellier, P. Phytochemical and pharmacological studies of alcoholic extract of Fagara macrophylla (Oliv) Engl (Rutaceae): Chemical structure of active compound inducing antipaludic activity. J. Chin. Clin. Med. 2007, 2, 205–210. [Google Scholar]
- Tarus, P.K.; Coombes, P.H.; Crouch, N.R.; Mulholland, D.A. Benzo[c]phenanthridine alkaloids from stem bark of the Forest Knobwood, Zanthoxylum davyi (Rutaceae). S. Afr. J. Bot. 2006, 72, 555–558. [Google Scholar] [CrossRef] [Green Version]
- Sibirina, S.; Djakalia, O.; Mathieu, E.W.; Dossahoua, T. Usages traditionnels de quelques espèces végétales de la forêt marecageuse classée de Port Gauthier, en zone cotière au Sud-ouest de la Côte d’Ivoire. Eur. Sci. J. 2014, 2014, 10. [Google Scholar]
- Gaya, C.; Kawaka, J.; Muchugi, A.; Ngeranwa, J. Variation of alkaloids in the Kenyan Zanthoxylum gilletii (De wild Waterman). Afr. J. Plant. Sci. 2013, 7, 438–444. [Google Scholar] [CrossRef]
- Kipkore, W.; Wanjohi, B.; Rono, H.; Kigen, G. A study of the medicinal plants used by the Marakwet Community in Kenya. J. EthnoBiol. EthnoMed. 2014, 10, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Omara, T. Antimalarial plants used across Kenyan Communities. Evid.-Based Comp. Alt. Med. 2020, 2020, 4538602. [Google Scholar] [CrossRef] [PubMed]
- Die’guez-Hurtado, R.; Garrido-Garrido, G.; Prieto-Gonza´lez, S.; Iznaga, Y.; Gonza´lez, L.; Molina-Torres, J.; Curini, M.; Epifano, F.; Marcotullio, M.C. Antifungal activity of some Cuban Zanthoxylum species. Fitoterapia 2003, 74, 384–386. [Google Scholar] [CrossRef]
- Rana, V.S.; Blazquez, M.A. Terpenoid constituents of Zanthoxylum acanthopodium DC. Leaves. J. Essent. Oil Res. 2008, 20, 515–516. [Google Scholar] [CrossRef]
- Semenya, S.S.; Maroyi, A. Plants used by Bapedi traditional healers to treat asthma and related symptoms in Limpopo Province, South Africa. Evid.-Based Complementary Altern. Med. 2018, 2018, 2183705. [Google Scholar] [CrossRef]
- Cock, I.E.; Van Vuuren, S.F. The traditional use of southern African medicinal plants for the treatment of bacterial respiratory diseases: A review of the ethnobotany and scientific evaluations. J. Ethnopharmacol. 2020, 263, 113204. [Google Scholar] [CrossRef]
- Fouda, Y.B.; Tom, E.N.L.; Oumarou, B.A.; Mbolang, L.N.; Kuissu, A.M.T.; Djomeni, P.D.D.; Dimo, T. Aqueous extract of Fagara tessmannii Engl. (Rutaceae) exhibits antihypertensive activity in NO synthase inhibitor-induced hypertensive rats. J. Integr. Cardiol. Open Access 2020, 3, 2–9. [Google Scholar] [CrossRef]
- Randrianarivelojosia, M.; Rasidimanana, V.T.; Rabarison, H.; Cheplogoi, P.K.; Ratsimbason, M.; Mulholland, D.A.; Mauclère, P. Plants traditionally prescribed to treat tazo (malaria) in the eastern region of Madagascar. Malar. J. 2003, 2, 25. [Google Scholar] [CrossRef] [Green Version]
- Sepsamli, L.; Prihastanti, J.E. Ethnobotany of Balimo (Zanthoxylum nitidum) in the Kanayatn Dayak Community in Tapakng, West Kalimantan. Biosaintifika 2019, 11, 318–324. [Google Scholar] [CrossRef]
- Chakthong, S.; Ampaprom, S.; Inparn, S.; Phetkul, U.; Chusri, S.; Limsuwan, S.; Voravuthikunchai, S.P. New alkylamide from the stems of Zanthoxylum nitidum. Nat. Prod. Res. 2019, 33, 153–161. [Google Scholar] [CrossRef]
- Han, Z.Z.; Li, R.L.; Yang, T.C.; Zhan, R.T.; Chen, W.W. The effect of Zanthoxylum nitidum on gastric ulcer rats induced by hydrochloric acid and ethanol. J. Guangzhou Univ. Tradit. Chin. Med. 2012, 29, 292–294. [Google Scholar]
- Lu, Q.; Li, C.; Wu, G. Insight into the inhibitory effects of Zanthoxylum nitidum against Helicobacter pylori urease and jack bean urease: Kinetics and mechanism. J. Ethnopharmacol. 2020, 249, 112419. [Google Scholar] [CrossRef]
- Enechi, O.C.; Amah, C.C.; Okagu, I.U.; Ononiwu, C.; Azidiegwu, V.C.; Ugwuoke, E.O.; Onoh, A.P.; Ndukwe, E.E. Methanol extracts of Fagara zanthoxiloides leaves possesses antimalarial effects and normalizes haematological and biochemical status of Plasmodium berghei-passaged mice. Pharm. Biol. 2019, 57, 577–585. [Google Scholar] [CrossRef] [Green Version]
- Tamdem, S.B.G. Phytochemical, Chemopreventive and Antimalarial Activity Evaluation of Five Selected Medicinal Plants from the Cameroonian flora. Ph.D. Thesis, John Moores University, Liverpool, UK, 2019. [Google Scholar]
- Burkill, H.M. The Useful Plants of West Tropical Africa; Royal Botanic Gardens: Kew, UK, 1985; pp. 4–6. [Google Scholar]
- Ngoumfo, R.M.; Jouda, J.B.; Mouafo, F.T.; Komguem, J.; Mbazoa, C.D.; Shiao, T.C.; Choudhary, M.I.; Laatsch, H.; Legault, J.; Pichette, A.; et al. In vitro cytotoxic activity of isolated acridones alkaloids from Zanthoxylum leprieurii Guill. et Perr. Bioorg. Med. Chem. 2010, 18, 3601–3605. [Google Scholar] [CrossRef]
- Ouédraogo, L.; Nacoulma, A.P.; Compaoré, M.; Lagnika, L.; Kiendrebeogo, M. Stem bark of Zanthoxylum zanthoxyloïdes a possible substitute of root bark for the conservation of the species in Burkina Faso. Afr. J. Biotech. 2019, 18, 197–205. [Google Scholar] [CrossRef]
- Chaaib, F.; Queiroz, E.F.; Ndjoko, K.; Diallo, D.; Hostettmann, K. Antifungal and antioxidant compounds from the root bark of Fagara zanthoxyloides. Planta Med. 2003, 69, 316–320. [Google Scholar] [CrossRef]
- Hwang, K.A.; Kwon, J.E.; Noh, Y.; Park, B.; Jeong, Y.J.; Lee, S.M.; Kim, S.Y.; Kim, I.; Kang, S.C. Effects of Zanthoxylum piperitum ethanol extract on osteoarthritis inflammation and pain. Biomed. Pharm. 2008, 105, 481–490. [Google Scholar] [CrossRef]
- Lee, S.; Lim, K. Glycoprotein of Zanthoxylum piperitum DC has a hepatoprotective effect via anti-oxidative character in vivo and in vitro. Toxicol. In Vitro 2008, 22, 376–385. [Google Scholar] [CrossRef]
- Kim, M.H.; Lee, H.J.; Park, J.C.; Hong, J.; Yang, W.M. Zanthoxylum piperitum reversed alveolar bone loss of periodontitis via regulation of bone remodeling-related factors. J. Ethnopharmacol. 2017, 195, 137–142. [Google Scholar] [CrossRef]
- Hatano, T.; Inada, K.; Ogawa, T.; Ito, H.; Yoshida, T. Aliphatic acid amides of the fruits of Zanthoxylum piperitum. Phytochemistry 2004, 65, 2599–2604. [Google Scholar] [CrossRef]
- Cui, H.Z.; Choi, H.R.; Choi, D.H.; Cho, K.W.; Kang, D.G.; Lee, H.S. Aqueous extract of Zanthoxylum schinifolium elicits contractile and secretory responses via β1-adrenoceptor activation in beating rabbit atria. J. Ethnopharmacol. 2009, 126, 300–307. [Google Scholar] [CrossRef]
- Burkill, H.M. The Useful Plants of West Tropical Africa, Families M-R, 2nd ed.; The Royal Botanic Garden: Kew, UK, 1998; Volume 4, pp. 1–969. [Google Scholar]
- Fonge, B.A.; Egbe, E.A.; Fongod, A.G.N.; Focho, D.A.; Tchetcha, D.J.; Nkembi, L.; Tacham, W.N. Ethnobotany survey and uses of plants in the Lewoh-Lebang communities in the Lebialem highlands, South West Region, Cameroon. J. Med. Plants Res. 2012, 6, 855–865. [Google Scholar]
- Sandjo, L.P.; Kuete, V.; Tchangna, R.S.; Efferth, T.; Ngadjui, B.T. Cytotoxic benzophenanthridine and furoquinoline alkaloids from Zanthoxylum buesgenii (Rutaceae). Chem. Cent. J. 2014, 8, 61. [Google Scholar] [CrossRef] [Green Version]
- Sagbo, I.J.; Mbeng, W.O. Plants used for cosmetics in the Eastern Cape Province of South Africa: A case study of skin care. Phcog. Rev. 2018, 12, 139–156. [Google Scholar] [CrossRef]
- Zhou, X.J.; Chen, X.L.; Li, X.S.; Su, J.; He, J.B.; Wang, Y.H.; Li, Y.; Cheng, Y.X. Two dimeric lignans with an unusual α,β-unsaturated ketone motif from Zanthoxylum podocarpum and their inhibitory effects on nitric oxide production. Bioorg. Med. Chem. Lett. 2011, 21, 373–376. [Google Scholar] [CrossRef]
- Kaigongi, M.M.; Lukhoba, C.W.; Yaouba, S.; Makunga, N.P.; Githiomi, J.; Yenesew, A. In vitro antimicrobial and antiproliferative activities of the root bark extract and isolated chemical constituents of Zanthoxylum paracanthum Kokwaro (Rutaceae). Plants 2020, 9, 920. [Google Scholar] [CrossRef]
- Charoenying, P.; Teerarak, M.; Laosinwattana, C. An allelopathic substance isolated from Zanthoxylum limonella Alston fruit. Sci. Hort. 2010, 125, 411–416. [Google Scholar] [CrossRef]
- Beirigo, P.J.S.; Torquato, H.F.V.; dos Santos, C.H.C.; de Carvalho, M.G.; Castro, R.N.; Paredes-Gamero, E.J.; de Sousa, P.T.; Jacinto, M.J.; da Silva, V.C. [1-8-NαC]-Zanriorb A1, a proapoptotic orbitide from leaves of Zanthoxylum Riedelianum. J. Nat. Prod. 2016, 79, 1454–1458. [Google Scholar] [CrossRef]
- Erichsen-Brown, C. Use of Plants for the Past 500 Years; Breezy Creeks Press: Aurora, ON, Canada, 1979. [Google Scholar]
- Moerman, D.E. Native American Ethnobotany; Timber Press Inc.: Portland, OR, USA, 1998. [Google Scholar]
- Pachón, G.; Rasoanaivo, H.; Azqueta, A.; Rakotozafy, J.C.; Raharisololalao, A.; de Cerain, A.L.; de Lapuente, J.; Borra’s, M.; Moukha, S.; Centelles, J.J.; et al. Anticancer effect of a new benzophenanthridine isolated from Zanthoxylum madagascariense (Rutaceline). In Vivo 2007, 21, 417–422. [Google Scholar]
- Halstead, C.W.; Forster, P.I.; Waterman, P.G. Alkaloids from the stem bark of an Australian population of Zanthoxylum ovalifolium. Nat. Prod. Res. 2006, 20, 940–945. [Google Scholar] [CrossRef]
- Pavani, P.; Naika, R. Evalution of anti-bacterial activity of zanthoxylum ovalifolium wight (Rutaceae) against selected pathogenic bacteria. Plant. Arch. 2020, 20, 2591–2594. [Google Scholar]
- Gonzaga, W.A.; Weber, A.D.; Giacomelli, S.R.; Dalcol, I.I.; Hoelzel, S.C.S.; Morel, A.F. Antibacterial alkaloids from Zanthoxylum Rhoifolium. Planta Med. 2003, 69, 371–374. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, F.H.; Yiwei, L. Harnessing the fruits of nature for the development of multi-targeted cancer therapeutics. Cancer Treat. Rev. 2009, 35, 597–607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cebrián-Torrejón, G.; Assad-Kahn, S.; Lagarde, N.; Castellano, F.; Leblanc, K.; Rodrigo, J.; Molinier-Frenkel, V.; Rojas de Arias, A.; Ferreira, M.E.; Thirant, C.; et al. Antiproliferative activity of trans-avicennol from Zanthoxylum chiloperone var. angustifolium against human cancer stem cells. J. Nat. Prod. 2012, 75, 257–261. [Google Scholar] [CrossRef]
- Choi, H.J.; Song, J.H.; Kwon, D.H.; Baek, S.H.; Ahn, Y.J. Antiviral activity of Zanthoxylum species against influenza virus. Korean J. Med. Crop. Sci. 2008, 16, 273–278. [Google Scholar]
- Guleria, S.; Tiku, A.K.; Kurl, A.; Gupta, S.; Sign, G.; Razdan, V.K. Antioxidant and antimicrobial properties of the essential oil and extracts of Zanthoxylum alatum grown in North-Western Himalaya. Sci. World J. 2013, 2013, 790580. [Google Scholar] [CrossRef] [Green Version]
- Phuyal, N.; Jha, P.K.; Raturi, P.P.; Rajbhandary, S. Total phenolic, flavonoid contents, and antioxidant activities of fruit, seed, and bark extracts of Zanthoxylum armatum DC. Sci. World J. 2020, 2020, 8780704. [Google Scholar] [CrossRef] [Green Version]
- Sandberg, F.; Perera-Ivarsson, P.; El-Seedi, H.R. A Swedish collection of medicinal plants from Cameroon. J. Ethnopharmacol. 2005, 102, 336–343. [Google Scholar] [CrossRef]
- Zirihi, G.N.; Mambu, L.; Guédé-Guina, F.; Bodo, B.; Grellier, P. In vitro antiplasmodial activity and citotoxicity of 33 West African plants used for treatment of malaria. J. Ethnopharmacol. 2005, 98, 281–285. [Google Scholar] [CrossRef]
- Ntchapda, F.; Maguirgue, K.; Adjia, H.; Etet, P.F.S.; Dimo, T. Hypolipidemic, antioxidant and anti-atherosclerogenic effects of aqueous extract of Zanthoxylum heitzii stem bark in diet-induced hypercholesterolemic rats. Asian Pac. J. Trop. Med. 2015, 2015, 359–365. [Google Scholar] [CrossRef]
- Binutu, O.A.; Cordell, G.A. Constituents of Zanthoxylum sprucei. Pharm. Biol. 2000, 38, 210–213. [Google Scholar] [CrossRef]
- Chou, S.; Peng, H.; Chang, C.; Yang, J.; Chung, H.; Yang, S.; Wood, W.G.; Chung, J. Zanthoxylum ailanthoides Sieb and Zucc. extract inhibits growth and induces cell death through G2/M-phase arrest and activation of apoptotic signals in Colo 205 human colon adenocarcinoma cells. Anticancer Res. 2011, 31, 1667–1676. [Google Scholar]
- Cao, X.L.; Xu, J.; Bai, G.; Zhang, H.; Liu, Y.; Xiang, J.F.; Tang, Y. Isolation of anti-tumor compounds from the stem bark of Zanthoxylum ailanthoides Sieb. & Zucc. by silica gel column and counter-current chromatography. J. Chromatogr. B 2013, 929, 6–10. [Google Scholar] [CrossRef]
- Ahsan, M.; Haque, M.R.; Hossain, M.B.; Islam, S.N.; Gray, A.I.; Hasan, C.M. Cytotoxic dimeric quinolone-terpene alkaloids from the root bark of Zanthoxylum rhetsa. Phytochemistry 2014, 103, 8–12. [Google Scholar] [CrossRef]
- Adesina, S.K.; Olugbade, T.A.; Akinwusi, D.D.; Bergenthal, D. Extractives from Zanthoxylum lemairei root and stem. Pharmazie 1997, 52, 720–724. [Google Scholar]
- Patiño, L.O.J.; Prieto, R.J.A.; Cuca, S.L.E. Zanthoxylum Genus as Potential Source of Bioactive Compounds. In Bioactive Compounds in Phytomedicine; Rasooli, I., Ed.; InTech Open: London, UK, 2012; pp. 185–218. [Google Scholar] [CrossRef] [Green Version]
- Costa, R.S.; Lins, M.O.; Le Hyaric, M.; Barros, T.F.; Velozo, E.S. In vitro antibacterial effects of Zanthoxylum tingoassuiba root bark extracts and two of its alkaloids against multiresistant Staphylococcus aureus. Braz. J. Pharmacol. 2017, 27, 195–198. [Google Scholar] [CrossRef]
- Ladino, O.J.P.; Suárez, L.E.C. Chemical constituents of the wood from Zanthoxylum quinduense Tul. (Rutaceae). Quim. Nova 2010, 33, 1019–1021. [Google Scholar] [CrossRef] [Green Version]
- Xiong, Y.; Huang, G.; Yao, Z.; Zhao, C.; Zhu, X.; Wu, Q.; Zhou, X.; Li, J. Screening effective antifungal substances from the bark and leaves of Zanthoxylum avicennae by the bioactivity-guided isolation method. Molecules 2019, 24, 4207. [Google Scholar] [CrossRef] [Green Version]
- Kusuda, M.; Inada, K.; Ogawa, T.; Yoshida, T.; Shiota, S.; Tsuchiya, T.; Hatano, T. Polyphenolic constituent structures of Zanthoxylum piperitum fruit and the antibacterial effects of its polymeric procyanidin on methicillin-resistant Staphylococcus aureus. BioSci. BioTechnol. BioChem. 2006, 70, 1423–1431. [Google Scholar] [CrossRef] [Green Version]
- Awouafack, M.D.; Kusari, S.; Lamshöft, M.; Fernandes, C.C.; Vieira, P.C.; Da Silva, V.C.; Dall’Oglio, E.L.; Da Silva, L.E.; De Sousa, P.T. 6-Acetonyl-N-methyl-dihydrodecarine, a new alkaloid from Zanthoxylum riedelianum. J. Braz. Chem. Soc. 2009, 20, 379–382. [Google Scholar]
- Mbaze, L.M.; Poumale, H.M.P.; Wansi, J.D.; Lado, J.A.; Khan, S.N.; Iqbal, M.C.; Ngadjui, B.T.; Laatsch, H. α-Glucosidase inhibitory pentacyclic triterpenes from the stem bark of Fagara tessmannii (Rutaceae). Phytochemistry 2007, 68, 591–595. [Google Scholar] [CrossRef]
- Kosh-Komba, E.; Toumnou, L.A.; Zinga, I.; Touckia, I.; Lembo, P.U.N.Z.W.; Mukeina, G.; Semballa, S.; Yongo, O.D.; Syssa-Magale, J.L. Phytochemical screening, antifungal and antibacterial effect of Zanthoxylum zanthoxyloides and Zanthoxylum macrophylum used in traditional medicine in Yamboro (Central African Republic). Eur. J. Med. Plants 2017, 19, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Tine, Y.; Yang, Y.; Renucci, F.; Costa, J.; Wélé, A.; Paolini, J. LC-MS/MS analysis of flavonoid compounds from Zanthoxylum zanthoxyloides extracts and their antioxidant activities. Nat. Prod. Commun. 2017, 12, 1865–1868. [Google Scholar]
- Tine, Y.; Diop, A.; Diatta, W.; Desjobert, J.; Boye, C.S.B.; Costa, J.; Wélé, A.; Paolini, J. Chemical diversity and antimicrobial activity of volatile compounds from Zanthoxylum zanthoxyloides Lam. according to compound classes, plant organs and Senegalese sample locations. Chem. Biodivers. 2017, 14, e1600125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Queiroz, E.F.; Hay, A.; van Diemen, D.; Chaaib, F.; Diallo, D.; Hostettmann, K. New and Bioactive Aromatic Compounds from Zanthoxylum Zanthoxyloides. Planta Med. 2006, 72, e213–e216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ogunbolude, Y.; Ibrahim, M.; Elekofehinti, O.O.; Adeniran, A.; Abolaji, A.O.; Rocha, J.B.T.; Kamdem, J.P. Effects of Tapinanthus globiferus and Zanthoxylum zanthoxyloides extracts on human leukocytes in vitro. J. Intercult. EthnoPharm. 2014, 3, 167–172. [Google Scholar] [CrossRef] [PubMed]
- Masinde, W.R.G. Phytochemical Investigation of Zanthoxylum gilletii (Rutaceae) for Antiplasmodial Biomolecules. Ph.D. Thesis, University of Nairobi, Nairobi, Kenya, 2014. [Google Scholar]
- Djeukeu, K.C.; Kenmogne, K.A.; Azebaze, G.B.A.; Kedi, B.E.P.; Vardamides, J.C.; Sewald, N.; Wansi, D.J. A new aromatic amide from the roots of Zanthoxylum tessmannii (Rutaceae). Chem. Biodivers. 2019, 16, e1800590. [Google Scholar] [CrossRef]
- Jirovetzl, L.; Buchbauer, G.; Fleischhacker, W.; Ngassoum, M.B. Analysis of leaf volatiles of Zanthoxylum gilletti used in folk medicine of Cameroon. Planta Med. 1999, 65, 181–183. [Google Scholar] [CrossRef]
- Yang, C.H.; Cheng, M.J.; Lee, S.J.; Yang, C.W.; Chang, H.S.; Chen, I.S. Secondary metabolites and cytotoxic activities from the stem bark of Zanthoxylum Nitidum. Chem. Biodiv. 2009, 6, 846–857. [Google Scholar] [CrossRef]
- Wangensteen, H.; Ho, G.T.T.; Tadesse, M.; Miles, C.O.; Moussavi, N.; Mikolo, B.; Malterud, K.E. A new benzophenanthridine alkaloid and other bioactive constituents from the stem bark of Zanthoxylum heitzii. Fitoterapia 2016, 109, 196–200. [Google Scholar] [CrossRef]
- Ouattara, B.; Jansen, O.; Angenot, L.; Guissou, I.P.; Frederich, M.; Fondu, P.; Tits, M. Antisickling properties of divanilloylquinic acids isolated from Fagara zanthoxyloides Lam. (Rutaceae). Phytomedicine 2009, 16, 125–129. [Google Scholar] [CrossRef]
- Wu, J.; Mei, W.L.; Dai, H.F. A new monoterpenoid glycoside from roots of Zanthoxylum simulans. Chin. Tradit. Herb. Drug 2007, 38, 488–490. [Google Scholar]
- De Moura, N.F.; Morel, A.F.; Dessoy, E.C.; Zanatta, N.; Burger, M.M.; Ahlert, N.; Porto, G.P.; Baldisserotto, B. Alkaloids, amides and antispasmodic activity of Zantoxylum hyemale. Planda Med. 2002, 68, 534–538. [Google Scholar] [CrossRef]
- Fan, M.; Tian, Y.; Chen, G.; Sarker, S.D.; Nahar, L.; Wu, J.; Li, N.; Guo, M. Enrichment and analysis of quaternary alkaloids from Zanthoxylum simulans using weak cation exchange solid-phase extraction coupled with LC–MS. Phytochem. Anal. 2019, 2019, 1–8. [Google Scholar] [CrossRef]
- Guo, T.; Dai, L.; Tang, X.; Song, T.; Wang, Y.; Zhao, A.; Cao, Y.; Chang, J. Two new phenolic glycosides from the stem of Zanthoxylum armatum DC. Nat. Prod. Res. 2017, 31, 2335–2340. [Google Scholar] [CrossRef]
- Mahgoub, M.A.; Abd-Elfattah, A.S. Diabetes mellitus and cardiac function. Mol. Cell BioChem. 1998, 180, 59–64. [Google Scholar] [CrossRef]
- Wu, T.; Zhu, Y. Extracts of Zanthoxylum bungeanum regulate cholesterol accumulation induced by sterols and LPS in vitro and in vivo. J. Chin. Pharm. Sci. 2012, 21, 582–590. [Google Scholar] [CrossRef]
- Chen, J.J.; Yang, C.K.; Kuo, Y.H.; Hwang, T.L.; Kuo, W.L.; Lim, Y.P.; Sung, P.J.; Chang, T.S.; Cheng, M.J. New coumarin derivatives and other constituents from the stem bark of Zanthoxylum avicennae: Effects on neutrophil pro-inflammatory responses. Int. J. Mol. Sci. 2015, 16, 9719–9731. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Wu, H.; Liu, S.; Wang, G.; Yan, F.; Feng, J. Chemical constituents from the leaves of Zanthoxylum nitidum (Roxb.) DC. BioChem. Syst. Ecol. 2020, 91, 104080. [Google Scholar] [CrossRef]
- Chen, I.S.; Lin, Y.C.; Tsai, I.L.; Teng, C.M.; Ko, F.N.; Ishikawa, T.; Ishii, H. Coumarins and anti-platelet aggregation constituents from Zanthoxylum schinifolium. Phytochemistry 1995, 39, 1091–1097. [Google Scholar] [CrossRef]
- Tsai, I.L.; Lin, W.Y.; Teng, C.M.; Ishikawa, T.; Doong, S.L.; Huang, M.W.; Chen, Y.C.; Chen, I.S. Coumarins and antiplatelet constituents from the root bark of Zanthoxylum schinifolium. Planta Med. 2000, 66, 618–623. [Google Scholar] [CrossRef]
- Negi, J.S.; Bisht, V.K.; Bhandari, A.K.; Bisht, R.; Negi, S.K. Major constituents, antioxidant and antibacterial activities of Zanthoxylum armatum DC. essential oil. Iran. J. Pharm. Ther. 2012, 11, 68–72. [Google Scholar]
- Guo, T.; Deng, Y.; Xie, H.; Yao, C.; Cai, C.; Pan, S.; Wang, Y. Antinociceptive and anti-inflammatory activities of ethylacetate fraction from Zanthoxylum armatum in mice. Fitoterapia 2011, 82, 347–351. [Google Scholar] [CrossRef]
- Huang, X.; Kakiuchi, N.; Che, Q.; Huang, S.; Hattori, M.; Namba, T. Effects of extracts of Zanthoxylum fruit and their constituents on spontaneous beating rate of myocardial cell sheets in culture. Phytother. Res. 1993, 7, 41–48. [Google Scholar] [CrossRef]
- Wang, Y.; Liao, Z.B.; Cao, R.; Li, H.; Wei, A.Z.; Gao, J.M. Isolation, structural characterization and neurotrophic activity of alkylamides from Zanthoxylum Bungeanum. Nat. Prod. Comm 2017, 12, 1121–1124. [Google Scholar] [CrossRef] [Green Version]
- Jeong, C.H.; Kwak, J.H.; Kim, J.H.; Choi, G.N.; Kim, D.O.; Heo, H.J. Neuronal cell protective and antioxidant effects of phenolics obtained from Zanthoxylum piperitum leaf using in vitro model system. Food Chem. 2011, 125, 417–422. [Google Scholar] [CrossRef]
- Suematsu, N.; Hosoda, M.; Fujimori, K. Protective effects of quercetin against hydrogen peroxide-induced apoptosis in human neuronal SH-SY5Y cells. NeuroSci. Lett. 2011, 504, 223–227. [Google Scholar] [CrossRef]
- Fu, Y.H.; Guo, J.M.; Xie, Y.T.; Hu, J.; Dai, Y.Y.; Zhang, W.; Lin, T.C.; Liu, Y.P. Structural characterization, antiproliferative and anti-inflammatory activities of alkaloids from the roots of Zanthoxylum austrosinense. Bioorganic Chem. 2020, 102, 104101. [Google Scholar] [CrossRef]
- Park, Y.D.; Lee, W.S.; An, S.; Jeong, T.S. Human acyl-CoA: Cholesterol acyltransferase inhibitory activities of aliphatic acid amides from Zanthoxylum piperitum DC. Biol. Pharm. Bull. 2007, 30, 205–207. [Google Scholar] [CrossRef] [Green Version]
- Islam, K.M.; Biswas, N.N.; Saha, S.; Hossain, H.; Jahan, I.A.; Khan, T.A.; Awang, K.; Shilpi, J.A. Antinociceptive and antioxidant activity of Zanthoxylum budrunga Wall (Rutaceae) seeds. Sci. World J. 2014, 2014, 869537. [Google Scholar] [CrossRef] [Green Version]
- Bodede, O.; Moodley, R.; Shaik, S.; Singh, M. Phytochemical analysis with antioxidant and cytotoxicity studies of the bioactive principles from Zanthoxylum capense (small knobwood). Anticancer Agents Med. Chem. 2017, 17, 627–634. [Google Scholar] [CrossRef] [PubMed]
- Yamazaki, E.; Inagaki, M.; Kurita, O.; Inoue, T. Antioxidant activity of Japanese pepper (Zanthoxylum piperitum DC.) fruit. Food Chem. 2007, 100, 171–177. [Google Scholar] [CrossRef]
- Omosa, L.K.; Mbogo, G.M.; Korir, E.; Omole, R.; Seo, E.J.; Yenesew, A.; Heydenreich, M.; Midiwo, J.O.; Efferth, T. Cytotoxicity of fagaramide derivative and canthin-6-one from Zanthoxylum (Rutaceae) species against multidrug resistant leukemia cells. Nat. Prod. Res. 2021, 35, 579–586. [Google Scholar] [CrossRef] [PubMed]
- Júnior, J.M.F.; Silva, M.G.V.; Monteiro, J.A.; Barros, A.S.; Falcão, M.J.C.; de Morais, S.M. Evaluation of antioxidant activity and inhibition of corrosion by Brazilian plant extracts and constituents. Int. J. ElectroChem. Sci. 2016, 11, 3862–3875. [Google Scholar] [CrossRef]
- Epifano, F.; Curini, M.; Marcotullio, M.C.; Genovese, S. Searching for novel cancer chemopreventive plants and their products: The genus Zanthoxylum. Curr. Drug Targets 2011, 12, 1895–1902. [Google Scholar] [CrossRef]
- Nguyen, X.N.; Pham, M.Q.; Nguyen, T.H.V. Alkaloids and their Pharmacology Effects from Zanthoxylum Genus. In Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health; Sharma, K., Mishra, K., Senapati, K.K., Danciu, C., Eds.; IntechOpen: London, UK, 2020; p. 91685. [Google Scholar] [CrossRef] [Green Version]
- Martin, J.B. Molecular basis of the neurodegenerative disorder. N. Eng. J. Med. 1999, 340, 1970–1980. [Google Scholar] [CrossRef]
- Djordjevic, V.B. Free radicals in cell biology. Int. Rev. Cytol. 2004, 237, 57–89. [Google Scholar]
- Tan, B.L.; Norhaizan, M.E.; Liew, W.P.P.; Sulaiman, R.H. Antioxidant and oxidative stress: A mutual interplay in age-related diseases. Front. Pharm. 2018, 9, 1162. [Google Scholar] [CrossRef] [Green Version]
- Willcox, J.K.; Ash, S.L.; Catignani, G.L. Antioxidants and prevention of chronic disease. Crit. Rev. Food Sci. Nutr. 2004, 44, 275–295. [Google Scholar] [CrossRef]
- Wilson, D.W.; Nash, P.; Buttar, H.S.; Griffiths, K.; Singh, R.; De Meester, F.; Horiuchi, R.; Takahashi, T. The role of food antioxidants, benefits of functional foods, and influence of feeding habits on the health of the older person: An overview. Antioxidants 2017, 6, 81. [Google Scholar] [CrossRef] [Green Version]
- Huang, D. Dietary antioxidants and health promotion. Antioxidants 2018, 7, 9. [Google Scholar] [CrossRef] [Green Version]
- Goñi, I.; Hernández-Galiot, A. Intake of nutrient and non-nutrient dietary antioxidants. Contribution of macromolecular antioxidant polyphenols in an elderly Mediterranean population. Nutrients 2019, 11, 2165. [Google Scholar] [CrossRef] [Green Version]
- Kumar, V.; Khan, A.A.; Tripathi, A.; Dixit, P.K.; Bajaj, U.K. Role of oxidative stress in various diseases: Relevance of dietary antioxidants. J. Phytopharm. 2015, 4, 126–132. [Google Scholar]
- Hisatomi, E.; Matsui, M.; Kobayashi, A.; Kubota, K. Antioxidative activity in the pericarp and seed of Japanese pepper (Zanthoxylum piperitum DC). J. Agric. Food Chem. 2000, 48, 4924–4928. [Google Scholar] [CrossRef]
- Imaga, N.O.A.; Shaire, E.A.; Ogbeide, S.; Samuel, K.A. In vitro biochemical investigations of the effects of Carica papaya and Fagara zanthoxyloides on antioxidant status and sickle erythrocytes. Afr. J. BioChem. Res. 2011, 5, 226–236. [Google Scholar]
- Rizzi, L.; Rosset, I.; Roriz-Cruz, M. Global epidemiology of dementia: Alzheimer’s and vascular types. BioMed Res. Int. 2014, 2014, 908915. [Google Scholar] [CrossRef]
- Alzheimer’s Association Report (AAR). 2020 Alzheimer’s disease facts and figures. Alzheimer’s Dement. 2020, 16, 391–460. [Google Scholar] [CrossRef]
- GBD 2016 Alzheimer’s disease and other dementia Collaborators (2019). Global, regional, and national burden of Alzheimer’s disease and other dementias, 1990–2016, A systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019, 18, 88–106. [CrossRef] [Green Version]
- Seoposengwe, K.; van Tonder, J.J.; Steenkamp, V. In vitro neuroprotective potential of four medicinal plants against rotenone-induced toxicity in SH-SY5Y neuroblastoma cells. BMC Complementary Altern. Med. 2013, 13, 353. [Google Scholar] [CrossRef] [Green Version]
- Bao, M.H.; Dai, W.; YJ, L.; Hu, C.P. Rutaecarpine prevents hypoxia-reoxygenation-induced myocardial cell apoptosis via inhibition of NADPH oxidases. Can. J. Physiol. Pharm. 2011, 89, 177–186. [Google Scholar] [CrossRef]
- Cao, Y.; Zhang, L.; Sun, S.; Yi, Z.; Jiang, X.; Jia, D. Neuroprotective effects of syringic acid against OGD/R-induced injury in cultured hippocampal neuronal cells. Int. J. Mol. Med. 2016, 38, 567–573. [Google Scholar] [CrossRef] [Green Version]
- Arun, K.; Paridhavi, M. An ethnobotanical, phytochemical and pharmacological utilization of widely distributed species Zanthoxylum: A comprehensive overview. Int. J. Pharm. Invent 2012, 2, 24–35. [Google Scholar]
- Kimani, C.N.; Mbaria, J.M.; Suleiman, M.; Gakuya, D.; Kiama, S.G. Antihyperglycemic activity of Zanthoxylum chalybeum stem bark extract in diabetic rats. J. Phytopathol. 2015, 4, 183–189. [Google Scholar]
- Jarald, E.; Joshi, S.B.; Jain, D.C. Diabetes and herbal medicines. Iran. J. Pharm. Ther. 2008, 7, 97–106. [Google Scholar]
- Agwaya, M.S.; Vuzi, P.C.; Nandutu, A.M. Hypoglycemic activity of aqueous root bark extract Zanthoxylum chalybeum in alloxan-induced diabetic rats. J. Diabetes Res. 2016, 2016, 8727590. [Google Scholar] [CrossRef] [Green Version]
- Keter, L.K.; Mutiso, P.C. Ethnobotanical studies of medicinal plants used by traditional health practitioners in the management of diabetes in Lower Eastern Province, Kenya. J. Ethnopharmacol. 2012, 139, 74–80. [Google Scholar] [CrossRef]
- Karki, H.; Upadhayay, K.; Pal, H.; Singh, R. Antidiabetic potential of Zanthoxylum armatum bark extract on streptozotocin-induced diabetic rats. Int. J. Green Pharm. 2014, 8, 77–83. [Google Scholar] [CrossRef]
- Rynjah, C.V.; Devi, N.N.; Khongthaw, N.; Syiem, D.; Majaw, S. Evaluation of the antidiabetic property of aqueous leaves extract of Zanthoxylum armatum DC. using in vivo and in vitro approaches. J. Trad. Complement. Med. 2018, 8, 134–140. [Google Scholar] [CrossRef]
- Alam, F.; Saqib, Q.S.U.; Ashraf, M. Zanthoxylum armatum DC extracts from fruit, bark and leaf induce hypolipidemic and hypoglycemic effects in mice- in vivo and in vitro study. BMC Complement. Altern. Med. 2018, 18, 68. [Google Scholar] [CrossRef] [Green Version]
- Gomaa, M.S.; Abd El-Mottaleb, N.A.; Aamer, H.A. Antioxidant and anti-inflammatory activities of alpha lipoic acid protect against indomethacin-induced gastric ulcer in rats. BioMed Pharmacother. 2018, 101, 188–194. [Google Scholar] [CrossRef] [PubMed]
- Abubakar, I.; Tillmann, T.; Banerjee, A. Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013, A systematic analysis for the Global burden of disease study 2013. Lancet 2015, 385, 117–171. [Google Scholar] [CrossRef]
- Byrge, N.; Barton, R.G.; Enniss, T.M.; Nirula, R. Laparoscopic versus open repair of perforated gastroduodenal ulcer: A National surgical quality improvement program analysis. Am. J. Surg. 2013, 206, 957–963. [Google Scholar] [CrossRef] [PubMed]
- Ayantunde, A.A. Current opinions in bleeding peptic ulcer disease. J. Gastrointestin Dig. Syst. 2014, 4, 172–180. [Google Scholar] [CrossRef] [Green Version]
- Palle, S.; Kanakalatha, A.; Kavitha, C.N. Gastroprotective and antiulcer effects of Celastrus paniculatus seed oil against several gastric ulcer models in rats. J. Diet. Suppl. 2017, 15, 373–385. [Google Scholar] [CrossRef]
- Rao, C.V.; Ojha, S.K.; Radhakrishnan, K.; Govindarajan, R.; Rastogi, S.; Mehrotra, S.; Pushpangadan, P. Antiulcer activity of Utleria salicifolia rhizome extract. J. Ethnopharmacol. 2004, 91, 243–249. [Google Scholar] [CrossRef]
- Henry, D.A.; Langman, M.J.S. Adverse effects of antiulcer drugs. Drugs 1981, 21, 444–459. [Google Scholar] [CrossRef]
- Boye, A.; Koffuor, G.A.; Boampong, J.N.; Amoateng, P.; Ameyaw, E.O.; Ansah, E.O.; Addai, G.M.; Adjei, C.K.; Addo, J.; Penu, D.K.A. Gastroprotective effect and safety assessment of Zanthoxylum Zanthoxyloides (Lam) Waterm root bark extract. Am. J. Pharm. Toxicol. 2012, 7, 73–80. [Google Scholar]
- Bhattacharya, S.; Zaman, K. Ameliorative effect of Zanthoxylum nitidum root in chemical and stress induced gastric mucosal lesions in rats. Middle-East. J. Sci. Res. 2012, 12, 1349–1353. [Google Scholar] [CrossRef]
- Pang, H.; He, H.; Jian, L.J.; Gao, Z.R.; Wei, Q.; Jia, X.D. Study on the effect of the total alkaloids of Zanthoxylum nitidum on gastric ulcer. Pharm. Clin. Chin. Mater. Med. 2007, 23, 38–39. [Google Scholar]
- Pang, H.; He, H.; Jia, X.D.; Jian, L.J.; Wei, Q.; Gao, Z.R. Effect of the total alkaloids from Zanthoxylum nitidum on gastric mucosal defensive factors in rats with gastric ulcer. Lishizhen Med. Mater. Med. Res. 2007, 18, 533–534. [Google Scholar]
- Qin, Z.H.; Chen, W.X.; Li, R.L.; Han, Z.Z.; Yang, T.C.; Zhan, R.T.; Chen, W.W. Comparative study on effects of anti-gastritis, gastric mucosal protection and gastrointestinal movement promotion of root and stem of Zanthoxylum nitidum. J. Chin. Med. Mat. 2016, 39, 164–169. [Google Scholar]
- Freitas, F.F.B.P.; Fernandes, H.B.; Piauilino, C.A.; Pereira, S.S.; Carvalho, K.I.M.; Chaves, M.H.; Soares, P.M.G.; Miura, L.M.C.V.; Leite, J.R.S.A.; Oliveira, R.C.M.; et al. Gastroprotective activity of Zanthoxylum rhoifolium Lam. in animal models. J. Ethnopharmacol. 2011, 137, 700–708. [Google Scholar] [CrossRef] [Green Version]
- Hur, J.M.; Park, J.G.; Yang, K.H.; Park, J.C.; Park, J.R.; Chun, S.S.; Choi, J.S.; Choi, J.W. Effect of methanol extract of Zanthoxylum piperitum leaves and of its compound, protocatechuic acid, on hepatic drug metabolizing enzymes and lipid peroxidation in rats. BioSci. BioTechnol. BioChem. 2003, 67, 945–950. [Google Scholar] [CrossRef] [Green Version]
- Verma, N.; Khosa, R.L. Hepatoprotective activity of leaves of Zanthoxylum armatum DC in CCl4-induced hepatotoxicity in rats. Indian J. BioChem. Biophys. 2010, 47, 124–127. [Google Scholar]
- Talluri, M.R.; Gummadi, V.P.; Battu, G.R.; Killari, K.N. Evaluation of hepatoprotective activity of Zanthoxylum armatum on paracetamol-induced liver toxicity in rats. Indian J. Pharm. Sci. 2019, 81, 138–145. [Google Scholar] [CrossRef]
- Sabir, S.M.; Rocha, J.B.T.; Boligon, A.A.; Athayde, M.L. Hepatoprotective activity and phenolic profile of Zanthoxylum alatum Roxb. fruit extract. Pak. J. Pharm. Sci. 2017, 30, 1551–1556. [Google Scholar]
- Islam, M.K.; Acharzo, A.K.; Saha, S.; Hossain, H.; Shilpi, J.A.; Das, A.K.; Biswas, N.N. Bioactivity studies on Zanthoxylum budrunga Wall (Rutaceae) root bark. Clin. Phytosci. 2018, 4, 24. [Google Scholar] [CrossRef] [Green Version]
- Wu, T.; Zhong, L.; Hong, Z.; Li, Y.; Liu, X.; Pan, L.; Xin, H.; Zhu, Y. The effects of Zanthoxylum bungeanum extract on lipid metabolism induced by sterols. J. Pharm. Sci. 2015, 127, 251–259. [Google Scholar] [CrossRef] [Green Version]
- Gwon, S.Y.; Ahn, J.Y.; Kim, T.W.; Ha, T.Y. Zanthoxylum piperitum DC ethanol extract suppresses fat accumulation in adipocytes and high fat diet-induced obese mice by regulating adipogenesis. J. Nutr. Sci. Vitam. 2012, 58, 393–401. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.; Kang, R.; Hahn, Y.; Yang, Y.; Kim, S.S.; Cho, S.H.; Chung, S.I.; Yoon, Y. Antiobesity effect of baicalin involves the modulatons of proadipogenic and antiadipogenic regulators of the adipogensis pathway. Phytother. Res. 2009, 23, 1615–1623. [Google Scholar] [CrossRef]
- Mulvihill, E.E.; Assini, J.M.; Sutherland, B.G.; DiMattia, A.S.; Khami, M.; Koppes, J.B.; Swyez, C.G.; Whitman, S.C.; Huff, M.W. Naringenin decreases progression of atherosclerosis by improving dyslipidemia in high-fat-fed low-density lipoprotein receptor-null mice. Arteioscler. Thromb. Vasc. Biol. 2010, 30, 742–748. [Google Scholar] [CrossRef] [Green Version]
- Miranda, R.A.; da Silva Franco, C.C.; de Oliveira, J.C.; Barella, L.F.; Tófolo, L.P.; Ribeiro, T.A.; Pavanello, A.; da Conceição, E.P.S.; Torrezan, R.; Armitage, J.; et al. Cross-fostering reduces obesity induced by early exposure to monosodium glutamate in male rats. Endocrine 2017, 55, 101–112. [Google Scholar] [CrossRef]
- Li, X.; Kim, H.Y.; Cui, H.Z.; Cho, K.W.; Kang, D.G.; Lee, H.S. Water extract of Zanthoxylum piperitum induces vascular relaxation via endothelium-dependent NO-cGMP signaling. J. Ethnopharmacol. 2010, 129, 197–202. [Google Scholar] [CrossRef]
- Fouda, Y.B.; Tom, E.N.L.; Atsamo, A.D.; Bonabe, C.; Dimo, T. Effects of stem bark aqueous extract of Fagara tessmannii Engl (Rutaceae) on cardiovascular risks related to monosodium glutamate-induced obesity in rat: In vivo and in vitro assessments. J. Ethnopharamacol. 2020, 260, 112972. [Google Scholar] [CrossRef]
- Sihotang, Y.; Silalahi, J.; Anjelisa, P. Cardioprotective effect of ethylacetate extract of Zanthoxylum acanthopodium Dc. against doxorubicin-induced cardiotoxicity in rats. Int. J. PharmTech. Res. 2016, 9, 249–253. [Google Scholar]
- Dhalla, N.S.; Pierce, G.N.; Innes, I.R.; Beamish, R.E. Pathogenesis of cardiac dysfunction in diabetes mellitus. Can. J. Cardiol. 1985, 1, 263–281. [Google Scholar]
- Lenzen, S. The mechanisms of alloxan and streptozotocin-induced diabetes. Diabetologia 2008, 51, 216–226. [Google Scholar] [CrossRef] [Green Version]
- Agwaya, M.S.; Nandutu, A.M.; Vuzi, P.C. Protective effects of Zanthoxylum chalybeum in diabetes-induced myocardial dysfunction in rats. Eur. J. Med. Plants 2016, 12, 1–10. [Google Scholar] [CrossRef]
- Chen, L.; Deng, H.; Cui, H.; Fang, J.; Zuo, Z.; Deng, J.; Li, Y.; Wang, X.; Zhao, L. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 2018, 9, 7204–7218. [Google Scholar] [CrossRef] [Green Version]
- Modi, C.M.; Mody, S.K.; Patel, H.B.; Dudhatra, G.B.; Kumar, A.; Avale, M. Toxicopathological overview of analgesic and anti-inflammatory drugs in animals. J. Appl. Pharm. Sci. 2012, 2, 149–157. [Google Scholar]
- Harirforoosh, S.; Asghar, W.; Jamali, F. Adverse effects of nonsteroidal antinflammatory drugs: An update of gastrointestinal, cardiovascular and renal complications. J. Pharm. Pharm. Sci. 2013, 16, 821–847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gabriel, S.E.; Jaakkimainen, L.; Bombardier, C. Risk for serious gastrointestinal complications related to use of non-steroidal anti-inflammatory drugs. A meta-analysis. Ann. Intern. Med. 1991, 328, 1313–1316. [Google Scholar]
- Salmon, S.D. Cyclooxygenase-2 inhibitors and cardiovascular risk. Curr. Opin. Cardiol. 2006, 21, 613–617. [Google Scholar] [CrossRef]
- Thu, N.B.; Trung, T.N.; Ha, D.T. Zanthoxylum rhetsa stem bark extract inhibits LPS-induced COX-2 and iNOS expression in RAW264.7 cells via the NF-κB inactivation. Nat. Prod. Sci. 2010, 16, 265–270. [Google Scholar]
- Oyedapo, O.O.; Famurewa, A.J. Antiprotease and membrane stabilizing activities of extracts of Fagara zanthoxyloides, Olax subscorpioides and Tetrapleura tetraptera. Int. J. Pharm. 1995, 33, 65–69. [Google Scholar] [CrossRef]
- Aloke, C.; Nwachukwu, N.; Ugwuja, E.I.; Idenyi, J.N.; Nwachi, E.U.; Obasi, I.O.; Oga, O. Effects of Zanthoxylum zanthoxyloides leaves on blood glucose, lipid profile and some liver enzymes in alloxan induced diabetic rats. Int. J. Sci. Nat. 2012, 3, 497–501. [Google Scholar]
- Ha, S.Y.; Youn, H.; Song, C.S.; Kang, S.C.; Bae, J.J.; Kim, H.T.; Lee, K.M.; Eom, T.H.; Kim, I.S.; Kwak, J.H. Antiviral effect of flavonol glycosides isolated from the leaf of Zanthoxylum piperitum on influenza virus. J. MicroBiol. 2014, 52, 340–344. [Google Scholar] [CrossRef]
- Wang, Y.; Li, C.H.; Luo, B.; Sun, Y.N.; Kim, Y.H.; Wei, A.Z.; Gao, J.M. Isobutylhydroxyamides from Zanthoxylum bungeanum and their suppression of NO production. Molecules 2016, 21, 1416. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.Y.; Tai, B.H.; Song, S.B.; Li, W.; Yan, X.T.; Sun, Y.N.; Thao, N.P.; Kim, Y.H. NF-κB activation and PPAR transactivational effects of a new aliphatic acid amide from pericarps of Zanthoxylum piperitum. Bull. Korean Chem. Soc. 2014, 35, 2361–2366. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.Q.; Li, X.W.; Liu, M.; Wang, S.C.; Cao, Z.F. Inhibitory effect of Zanthoxylum bungeanum seed oil on ovalbumin-induced lung inflammation in a murine model of asthma. Mol. Med. Rep. 2016, 13, 4289–4302. [Google Scholar] [CrossRef] [Green Version]
- Lei, X.; Cheng, S.; Peng, H.; He, Q.; Zhu, H.; Xu, M.; Wang, Q.; Liu, L.; Zhang, C.; Zhou, Q.; et al. Anti-inflammatory effect of Zanthoxylum bungeanum-cake-separated moxibustion on rheumatoid arthritis rats. Afr. J. Tradit. Complement. Altern. Med. 2016, 13, 45–52. [Google Scholar] [CrossRef] [Green Version]
- Rahman, M.T.; Alimuzzaman, M.; Ahmad, S.; Chowdhury, A.A. Antinociceptive and antidiarrhoeal activity of Zanthoxylum rhetsa. Fitoterapia 2002, 73, 340–342. [Google Scholar] [CrossRef]
- Engeu, P.E.; Tumusiime, R.; Agwaya, M.; Mugisha, G.; Grace, N.; Galiwango, B.; Paul, W. Repeat-dose effects of Zanthoxylum chalybeum root bark extract: A traditional medicinal plant used for various diseases in Uganda. Afr. J. Pharm. Pharmacol. 2008, 2, 101–105. [Google Scholar]
- Chen, W.X.; Qin, Z.H.; Zeng, D.; Han, Z.Z.; Zhan, R.T.; Tan, Y.; Chen, W.W. Comparative study on effects of anti-contusion injury, analgesia and antiinflammation of root and stem of Zanthoxylum nitidum. Zhong Yao Cai 2015, 38, 2358–2363. [Google Scholar]
- Barros, G.S.G.; Matos, F.J.A.; Vieira, J.E.V.; Souza, M.P.; Medeiros, M.C.J. Pharmacological screening of some Brazillian plants. Pharm. Pharmac. 1970, 22, 116–118. [Google Scholar] [CrossRef]
- Alam, F.; Shah, A.J. Butyrlycholine esterase inhibitory activity and effects of extracts (fruit, bark and leaf) from Zanthoxylum armatum DC in gut, airways and vascular smooth muscles. BMC Complement. Altern. Med. 2019, 19, 180. [Google Scholar] [CrossRef]
- Shi, X.; Pan, X.; Li, Y.; Ma, W.; Wang, H.; Xu, C.; Li, L. Xanthoplanine attenuates macrophage polarization towards M1 and inflammation response via disruption of CrkL-STAT5 complex. Arch. BioChem. Biophys. 2020, 683, 108325. [Google Scholar] [CrossRef]
- Xia, L.; You, J.; Li, G.; Sun, Z.; Suo, Y. Compositional and antioxidant activity analysis of Zanthoxylum bungeanum seed oil obtained by supercritical CO2 fluid extraction. J. Am. Oil Chem. Soc. 2011, 88, 23–32. [Google Scholar] [CrossRef]
- Kim, M.H.; Lee, H.; Ha, I.J.; Yang, W.M. Zanthoxylum piperitum alleviates the bone loss in osteoporosis via inhibition of RANKL-induced c-fos/NFATc1/NF-κB pathway. Phytomedicine 2021, 80, 153397. [Google Scholar] [CrossRef]
- Lembè, D.M.; Gasco, M.; Gonzales, G.F. Synergistic effect of the hydroalcoholic extract from Lepidium meyenii (Brassicaceae) and Fagara tessmannii (Rutaceae) on male sexual organs and hormone level in rats. Pharm. Res. 2013, 6, 80–86. [Google Scholar] [CrossRef] [Green Version]
- Umaru, H.A.; Clarkson, W.P.; Christopher, K. Effect of stem bark extract of Fagara zanthoxyloides on bile secretion in rats. Am. J. Res. Commun. 2019, 7, 1–9. [Google Scholar]
- Anokbonggo, W.W.; Odoi-Adome, R.; Oluju, P.M. Traditional methods in management of diarrhoeal diseases in Uganda. Bull. WHO 1990, 68, 359–363. [Google Scholar]
- Ntchapda, F.; Maguirgue, K.; Kemeta, A.D.R.; Jean, M.; Djedouboum, A.; Dimo, T. Acute toxicity studies of the stem bark extract of Zanthoxylum heitzii A. & P. (Rutaceae) on haematological parameters, and body temperature. Int. J. Pharma Res. Health Sci. 2015, 3, 630–642. [Google Scholar]
Plant Species | Part Used | Region or Country | Traditional Uses | Refs. |
---|---|---|---|---|
Z. nitidum (Roxb.) DC. | S, R | Kanayatn Dayak Community, West Kalimantan, Indonesia | Boiled with water or chewed raw to prevent alcohol intoxication and heal respiratory diseases | [53] |
S | Thailand | For treating toothache and oral pathogens | [54] | |
R, S, L | China and Portugal | For treating ulcer | [55,56] | |
Z. zanthoxyloides Waterman (Syn. Fagara zanthoxyloides Lam. | RB, S, SB, L | Nigeria | For treating rheumatism, sickle cell anemia, toothache, malaria, urinary tract infection and venereal diseases | [34,35,36,57] |
RB | Uganda | For treating elephantiasis, toothache, sexual impotence, gonorrhea, malaria, dysmenorrhea and abdominal pain | [20,21] | |
S | Cote D’ Ivoire | Prepared as a decoction to relieve tooth pains and to treat infection by oral pathogens | [37] | |
L | Togo | For treating wounds | [38] | |
RB | For treating toothache, swellings, and worms and induce lactation post-partum | |||
S, SB | For relieving pains | |||
SB | Ghana | Prepared as a decoction for treating malaria | [8] | |
DP | Yamboro Community of Central African Republic | For healing diseases of circulatory and respiratory systems, malaria, diabetes, and hypertension | [39] | |
F | Cameroon | For managing fever, malaria, tumors and sickle cell anemia | [58] | |
SB, R, L | To suppress pains, and treat arthritis, leprosy, stomachache and venereal diseases | [59,60] | ||
S, R | Burkina Faso | For treating sickle cell | [61] | |
Z. gilletii (De Wild) P.G. Waterman (Syn. Z. marcrophylla or F. gilletii) | RB, SB, L | Côte d’Ivoire | Root bark, stem bark and leaves are used for treating malaria stem bark is used for treating fungal infection | [40] |
B | Kenya | For treating malaria, rheumatism, cough, urinary tract infection and many kinds of pains | [44,46] | |
SB | Cameroon and Madagascar | For treating microbial infection, cancer, inflammation, hypertension and related disorders | [3,51] | |
Z. clava-herculis L. (Syn. Z. macrophyllum Nutt.) | SB, L | Cameroon | For treating microbial infection, diabetes, and hypertension | [39] |
Z. davyi Waterm. | L, S, R, SB | Zulu, South Africa Vhavenda, South Africa | Leaves and stem are powdered and used to dress wounds from snakebite and decoction from these parts are used in for treating severe coughs and colds Spines for treating infected wounds, leaves for chest pains, stem bark to treat boils, pleurisy and toothache while for mouth ulcers, sore throats and as an aphrodisiac | [42] |
Z. bungeanum Maxim. (Syn. Z. piperitum Benn.) | L, S | China | For treating infection and bone diseases | [62,63,64,65] |
L, F, B | Japan | For treating bacterial and fungal infections | [66] | |
Z. schinifolium Siebold & Zucc. | L, R, S | Eastern Asia | For healing stomach pains, diarrhea, jaundice, all kinds of pain and cold | [67] |
Z. buesgenii (Engl.) P.G. Waterman | L, R, S | Sierra Leone | For treating inflammatory conditions like arthritis and rheumatism as well as venereal diseases | [68] |
South-Western Cameroon | To increase libido and improve fertility in males | [69,70] | ||
Z. capense Harv | L, R R B, RB | South Africa Limpopo province Zulu people | For treating abdominal pain, wounds, infections, asthma The roots are powdered with C. laureola root and taken as oral preparation for respiratory tract and oral infection Prepared as a decoction for treating tuberculosis | [16,17,18,19,71] [49] [50] |
Z. usambarense (Engl.) Kokwaro | R, F, B, S, L | Kenya | For treating malaria | [46] |
Z. tessmannii Engl | SB | Cameroon; Madagascar | For boosting libido and treating tumor, gonorrhea and other infections, swellings, erectile dysfunction, hypertension and heart diseases | [9,51,72] |
Z. chalybeum Engl. | SB | Kenya | For treating malaria | [46] |
Z. paracanthum Kokwaro | SB | Kenya | For treating tumor and abdominal infection | [73] |
Z. lepreurii Guill. & Perr., | SB | Côte D’Ivoire; Nigeria | For treating malaria and sickle cell | [14,15,35] |
Z. limonella (Dennst.) Alston. | EO | Mexico; Thailand | In suppressing muscle spasm and as natural herbicide | [74,75] |
Z. fagara (L.) Sarg. (Syn. Z. affine Kunth and Z. hyemale A. St.-Hil.) | AP, B | Cuba | For treating diarrhea, cardiac disorders, fever and many types of pains such as ear and muscle pain and toothaches | [47] |
Z. elephantiasis Macfad. | AP | Cuba | For treating diarrhea, cardiac disorders, fever and many types of pains such as ear and muscle pain and toothaches | [47] |
Z. martinicense (Lam.) DC. | AP | Cuba | For treating diarrhea, cardiac disorders, fever and many types of pains such as ear and muscle pain and toothaches | [47] |
Z. riedelianum Engl. | L | Brazil | For treating tumors and suppressing toothache and pains | [75] |
Z. acanthopodium DC. | AP | China | As contraceptives and in suppressing pains and in parasite control | [48] |
Z. rhetsa DC. (Syn. Z. budrunga DC.) | AP | Thailand | For treating infections | [1] |
Z. americanum Mill. | DP | USA; Canada | For treating tumors and fungal infections of skin, and respiratory, urinary, genital and gastrointestinal tract | [76,77] |
Z. madagascariense Baker | SB | Madagascar | For treating cancer and tuberculosis | [78] |
Z. ovalifolium (Engl.) Finkelstein | SB | Australia | For treating cancer | [79] |
F | India | bacterial and fungal infections | [80] | |
Z. rhoifolium Lam. | SB | Brazil; France | Microbial infection of the mouth, malaria, skin and wounds | [81] |
Z. tsihanimposa H. Perrier | SB | Madagascar | Treating inflammation, skin diseases, microbial infection and malaria | [52] |
Z. schreberi (J.F.Gmel.) Reynel ex C.Nelson (Syn. Z. monophylum (Lam.) P.Wilsom) | R, B | Colombia | Memory loss and related conditions | [11] |
Z. caribaeum Lam. (Syn. Z. chiloperone var. angustifolium Engl.) | SB | France; Portugal | For treating cancer and swellings | [82,83] |
Z. armatum DC. (Syn. Z. alatum Roxb. and Z. planispinum Siebold & Zucc.) | F, B, L, R | Abbottabad; Nepal | Treating oral pathogens, cough, diabetes, tumor, microbial infections | [84,85,86] |
Z. heitzii (Aubrev. & Pellegr.) P.G. Waterman | SB | Cameroon | Treating urogenital infections, malaria, cancer, cardiopathies, and hypertension and weight management | [87,88,89] |
Z. sprucei Engl. | SB | Peru | Treating tumor | [90] |
Z. parachanthum Kokwaro | SB | Kenya | For treating tumors | [2] |
Z. ailanthoides Seibold. & Zucc. | SB, S | China | For treating tumors and HIV | [91,92,93] |
Z. lemairei (De Wild) P.G. Waterman | SB | Nigeria | For healing malaria and running stomach | [94] |
Z. tingoassuiba A. St.-Hil. | B | Brazil | Microbial infections, inflammation, stomach ache, muscle pains and as analgesic | [95,96] |
Z. quinduense Tul. | SB | Colombia | For treating fungal infection of humans and plants | [97] |
Z. avicennae (Lam.) DC. | B, L | China; Korea | For treating fungal infection of humans and plants | [98] |
Z. coreanum Nakai | L | Korea | For treating oral pathogens and cough | [84] |
Isolated Compound | Biological Activities | Part of Plant | Refs. |
---|---|---|---|
Zanthoxylum alkaloids with anti-obesity activities | |||
6-Hydroxypellitorine | Anti-obesity activity | Z. heitzii stem bark | [111] |
Heitziquinone | Anti-obesity activity | Z. heitzii stem bark | [111] |
Isoarnottianamide | Anti-obesity activity | Z. heitzii stem bark | [111] |
Rhoifoline B | Anti-obesity activity | Z. heitzii stem bark | [111] |
Sylvamide | Anti-obesity activity | Z. heitzii stem bark | [111] |
Zanthoxylum alkaloids with antioxidant, gastroprotective and anti-inflammatory activities | |||
N,N-dimethyllindicarpin | Antioxidant activity | Z. zanthoxyloides root bark | [105] |
1,8-di-O-(3-methoxy-4-hydrobenzoyl)-3,6-dihydroxycyclooctane-2,7-endoperoxide | Antioxidant activity | Z. zanthoxyloides root bark | [105] |
Fagaronine | Antioxidant activity | Z. zanthoxyloides root bark | [105] |
Norchelerythrine | Antioxidant activity | Z. zanthoxyloides root bark | [105] |
Trans-fagaronine | Antioxidant activity | Z. zanthoxyloides root bark | [105] |
8-Acetonyldihydrochelerythrine | Antioxidant activity | F. zanthoxyloides root bark and Z. paracanthum stem bark | [62,73] |
Myrtopsine | antioxidant activity | Z. zanthoxyloides fruits | [58] |
Ribalinine | Antioxidant activity | Z. zanthoxyloides fruits | [58] |
N-isobutyl-(2E,4Z)-octa-2,4-dienamide, N-isobutyl-(2E,4Z)-deca-2,4-dienamide | Antioxidant activity | F. zanthoxyloides root bark | [62] |
Burkinabin A | Antioxidant activity | F. zanthoxyloides root | [112] |
Burkinabin B | Antioxidant activity | F. zanthoxyloides root | [112] |
Burkinabin C | Antioxidant activity | F. zanthoxyloides root | [112] |
Sanguinarine | Gastroprotective activity | Z. gilletii bark, root and leaves and Z. nitidum root | [56,113] |
Fagarine I | Anti-inflammatory activity | Z. gilletii bark, root and leaves | [44] |
Zanthoxylum alkaloids with multiple biological activities | |||
Peroxysimulenoline | Anti-inflammatory and anti-platelet aggregation activities | Z. gilletii bark, root and leaves and Z. austrosinense root | [44,113] |
Skimmianine | Antioxidant and chemopreventive activities | Z. zanthoxyloides fruits | [58] |
Xanthoplanine | Anti-inflammatory and analgesic activities | Z. bungeanum roots | [63,65] |
Zanthoxylum alkaloids with antispasmodic and anti-thrombotic activities | |||
(-)-R-Geilbalansine | Antispasmodic activity | Z. fagara stem bark | [114] |
Hyemaline | Antispasmodic activity | Z. fagara stem bark | [114] |
O-Methylbalsamide | Antispasmodic activity | Z. fagara stem bark | [114] |
Zanthoxyline | Antispasmodic activity | Z. fagara stem bark | [114] |
Palmatine | Anti-thrombotic activity | Different parts of Z. bungeanum | [115] |
Chelerythrine | Anti-thrombotic activity | Different parts of Z. bungeanum | [115] |
8--O--Demethylchelerythrine | Anti-thrombotic activity | Different parts of Z. bungeanum | [115] |
N--Methylcanadine | Anti-thrombotic activity | Different parts of Z. bungeanum | [115] |
N-Methyltetrahydrocolumbamine | Anti-thrombotic activity | Different parts of Z. bungeanum | [115] |
10--Demethyl--magnoflorine | Anti-thrombotic activity | Different parts of Z. bungeanum | [115] |
3--Glucoside | Anti-thrombotic activity | Different parts of Z. bungeanum | [115] |
Magnocurarine | Anti-thrombotic activity | Different parts of Z. bungeanum | [115] |
Isotembetarine | Anti-thrombotic activity | Different parts of Z. bungeanum | [115] |
8--Methoxy--isotembetatrine | Anti-thrombotic activity | Different parts of Z. bungeanum | [115] |
Magnoflorine | Anti-thrombotic activity | Different parts of Z. bungeanum | [115] |
Simulenoline | Anti-thrombotic activity | Different parts of Z. bungeanum | [115] |
Benzosimuline | Anti-thrombotic activity | Different parts of Z. bungeanum | [115] |
Zanthodioline | Anti-thrombotic activity | Different parts of Z. bungeanum | [115] |
(–)-N-Acetylanonanine | Anti-thrombotic activity | Different parts of Z. bungeanum | [115] |
(–)-N-Acetylnornuciferine | Anti-thrombotic activity | Different parts of Z. bungeanum | [115] |
N-Acetyldehydroanonaine | Anti-thrombotic activity | Different parts of Z. bungeanum | [115] |
Benzo [C] phenanthridine | Anti-thrombotic activity | Different parts of Z. bungeanum | [115] |
Decarine | Anti-thrombotic activity | Different parts of Z. bungeanum | [115] |
Arnottianamide | Anti-thrombotic activity | Different parts of Z. bungeanum | [115] |
7-Fagarine | Anti-thrombotic activity | Different parts of Z. bungeanum | [115] |
Zanthosimuline | Anti-thrombotic activity | Different parts of Z. bungeanum | [115] |
Zanthobugeanine | Anti-thrombotic activity | Different parts of Z. bungeanum | [115] |
Huajiaosimuline | Anti-thrombotic activity | Different parts of Z. bungeanum | [115] |
Zanthobisquinolone | Anti-thrombotic activity | Different parts of Z. bungeanum | [115] |
Edulitine | Anti-thrombotic activity | Different parts of Z. bungeanum | [115] |
Arborinin | Anti-thrombotic activity | Different parts of Z. bungeanum | [115] |
Aesculetin dimethyl ether | Anti-thrombotic activity | Different parts of Z. bungeanum | [115] |
Oxynitidine | Anti-thrombotic activity | Z. nitidum stem bark | [116] |
Oxyavicine | Anti-thrombotic activity | Z. nitidum stem bark | [116] |
Oxychelerythrine | Anti-thrombotic activity | Z. nitidum stem bark | [116] |
Dihydrochelerythrine | Anti-thrombotic activity | Z. nitidum stem bark | [116] |
6-Acetonyldihydrochelerythrine | Anti-thrombotic activity | Z. nitidum stem bark | [116] |
Arnottianamide | Anti-thrombotic activity | Z. nitidum stem bark | [116] |
Liriodenine | Anti-thrombotic activity | Z. nitidum stem bark | [116] |
N-Acetyldehydroanonaine | Anti-thrombotic activity | Z. nitidum stem bark | [116] |
N-Acetylanonaine | Anti-thrombotic activity | Z. nitidum stem bark | [116] |
Epizanthocadinanine A | Anti-thrombotic activity | Z. nitidum stem bark | [116] |
Zanthoxylum alkaloids with no reported biological activity | |||
Bocconoline | Not specified | Z. davyi stem bark | [42] |
6-Hydroxydihydrochelerythrine | Not specified | Z. davyi stem bark | [42] |
6-Methoxy-7-demethyldihydrochelerythrine | Not specified | Z. davyi stem bark | [42] |
Isolated Compound | Biological Activities | Part of Plant | Refs. |
---|---|---|---|
Quercitrin | Anti-inflammatory activity | Z. zanthoxyloides leaves | [103] |
Afzelin | Anti-inflammatory and antioxidant activities | Z. bungeanum leaves | [112,117] |
Datiscin | Antioxidant activity | Z. zanthoxyloides root and leave | [103] |
Neohesperidin | Antioxidant activity | Z. zanthoxyloides root and stem | [103] |
Eriocitrin | Antioxidant activity | Z. zanthoxyloides fruits | [103] |
Hyperoside | Antioxidant activity | Z. zanthoxyloides root and stem | [103] |
Hesperidin | Antioxidant activity | Z. zanthoxyloides root and stem | [103] |
Hesperetin | Antioxidant activity | Z. zanthoxyloides fruits | [58] |
Hyperin | Hypolipidemic activity | Z. bungeanum fruit | [112] |
Diosmetin | Antispasmodic activity | Z. nitidum leaves | [118] |
Vitexin | Antispasmodic activity | Z. nitidum leaves | [118] |
Isoquercitrin | Cardioprotective activity | Z. bungeanum fruits | [112] |
Myricetin | Cardioprotective activity | Z. bungeanum fruits | [112] |
Myricitrin | Cardioprotective activity | Z. bungeanum fruits | [112] |
Rutin | Hypolipidemic, antioxidant and anti-inflammatory activities | Z. bungeanum fruit | [112] |
Quercetin | Antioxidant and chemoprotective activities | Z. zanthoxyloides leaves | [103] |
Quercetin-3-O-glucopyranoside | Antioxidant and chemoprotective activities | Z. zanthoxyloides leaves | [103] |
Isolated Compound | Biological Activities | Part of the Plant | Refs. |
---|---|---|---|
8-Formylalloxanthoxyletin | Anti-inflammatory activity | Z. avicennae stem bark | [119] |
(Z)-avicennone | Anti-inflammatory activity | Z. avicennae stem bark | [119] |
Alloxanthoxyletin | Anti-inflammatory activity | Z. avicennae stem bark | [119] |
Avicennol | Anti-inflammatory activity | Z. avicennae stem bark | [119] |
Avicennol methyl ether | Anti-inflammatory activity | Z. avicennae stem bark | [119] |
cis-avicennol methyl ether | Anti-inflammatory activity | Z. avicennae stem bark | [119] |
Avicennin | Anti-inflammatory activity | Z. avicennae stem bark | [119] |
Xanthoxyletin | Anti-inflammatory activity | Z. avicennae stem bark | [119] |
Luvangetin | Anti-inflammatory activity | Z. avicennae stem bark | [119] |
Scopoletin | Anti-inflammatory activity | Z. avicennae stem bark | [119] |
Aesculetin dimethyl ether | Anti-inflammatory activity | Z. avicennae stem bark | [119] |
7,8,9-trimethoxycoumarin | Antioxidant activity | Z. gilletii root | [108] |
7,8-dimethoxycoumarin | Antioxidant activity | Z. gilletii root | [108] |
Isoscopletin | Antispasmodic activity | Z. nitidum leaves | [120] |
Zhebeiresinol | Antispasmodic and antioxidant activities | Z. nitidum leaves | [120] |
Tetracosyl ferulate | Anti-thrombotic activity | Different parts of Z. bungeanum | [115] |
Schinicoumarin | Anti-thrombotic activity | Z. schinifolium bark | [121] |
Acetoxyaurapten | Anti-thrombotic activity | Z. schinifolium bark | [121] |
Epoxycollinin | Anti-thrombotic activity | Z. schinifolium bark | [121] |
Schininallylol | Anti-thrombotic activity | Z. schinifolium bark | [121] |
Schinilenol | Anti-thrombotic activity | Z. schinifolium bark | [121] |
Schinindiol | Anti-thrombotic activity | Z. schinifolium bark | [121] |
Aurapten | Anti-thrombotic activity | Z. schinifolium bark | [121] |
Collinin | Anti-thrombotic activity | Z. schinifolium bark | [121] |
Epoxyaurapten | Anti-thrombotic activity | Z. schinifolium bark | [121] |
Hydrangetin | Anti-thrombotic activity | Z. schinifolium bark | [121] |
Umbelliferone | Anti-thrombotic activity | Z. schinifolium bark | [121] |
Acetoxycollinin | Anti-thrombotic activity | Z. schinifolium bark | [121] |
8-methoxyanisocoumarin H | Anti-thrombotic activity | Z. schinifolium root bark | [122] |
Anisocoumarin H | Anti-thrombotic activity | Z. schinifolium root bark | [122] |
Platydesmine | Anti-thrombotic activity | Z. schinifolium root bark | [122] |
Amottianamide | Anti-thrombotic activity | Z. schinifolium root bark | [122] |
Tetracosyl ferulate | Anti-thrombotic activity | Z. schinifolium root bark | [122] |
7-[(E)-7′-hydroxy-3′,7′-dimethylocta-2′,5′-dienyloxy] coumarin | Anti-thrombotic activity | Z. schinifolium root bark | [122] |
Isolated Compound | Biological Activities | Part of Plant | Refs. |
---|---|---|---|
Isobauerenol | Anti-obesity activity | Z. heitzii stem bark | [112] |
Limonene | Antioxidant activity | Z. armatum leaves essential oil | [123] |
Germacrene D | Antioxidant activity | Z. zanthoxyloides root and stem bark | [104] |
Myrcene | Antioxidant activity | Z. gilletti leaves | [109] |
4′-(4”-hydroxy-3”-methylbutyloxy)-2-phenylethanol | Antioxidant activity | F. zanthoxyloides root bark | [62] |
Cymene | Antioxidant activity | Z. armatum leaves essential oil | [123] |
α-Copaene | Antioxidant activity | Z. armatum leaves essential oil | [123] |
γ-Terpinene | Antioxidant activity | Z. armatum leaves essential oil | [123] |
Bornylacetate | Antioxidant activity | Z. armatum leaves essential oil | [123] |
Camphene | Antioxidant activity | Z. armatum leaves essential oil | [123] |
Linalool | Antioxidant activity | Z. armatum leaves essential oil | [123] |
β-Ocimene | Antioxidant activity | Z. armatum leaves essential oil | [123] |
transcaryophyllene | Antioxidant activity | Z. armatum leaves essential oil | [123] |
Germacrene | Antioxidant activity | Z. armatum leaves essential oil | [123] |
α-Terpinolene | Antioxidant activity | Z. armatum leaves essential oil | [123] |
β-Amyrenone | Anti-thrombotic activity | Different parts of Z. bungeanum | [115] |
β-Amyrin | Anti-thrombotic activity | Different parts of Z. bungeanum | [115] |
Friedelin | Anti-thrombotic activity | Z. schinifolium bark | [122] |
Lupeol | Hepatoprotective effect | Z. armatum root | [86] |
Isolated Compound | Biological Activities | Part of Plant | Refs. |
---|---|---|---|
Zanthpodocarpins A and B, | Anti-Inflammatory activity | Z. bungeanum barks | [63,65] |
Eudesmin | Anti-inflammatory activity | Z. bungeanum barks | [63,65] |
(1R,2R,5R,6S)-2-(3,4-Dimethoxyphenyl)-6-(3,4-dihydroxyphenyl)-3,7-ioxabicyclo[3.3.0]octane | Anti-inflammatory activity | Z. bungeanum barks | [63,65] |
Magnone A | Anti-inflammatory activity | Z. bungeanum barks | [63,65] |
rel-(1R,5R,6S)-6-(4-hydroxy-3-Methoxyphenyl)-3,7-dioxabicyclo[3.3.0]octan-2-one | Anti-inflammatory activity | Z. bungeanum barks | [63,65] |
Dimethoxysamin | Anti-inflammatory activity | Z. bungeanum barks | [63,65] |
Zanthpodocarpins C-H | Anti-inflammatory activity | Z. bungeanum barks | [63,65] |
Fargesin | Anti-inflammatory activity | Z. armatum root and stem | [124] |
Kobusin | Anti-inflammatory activity | Z. armatum root and stem | [124] |
Planispine A | Anti-inflammatory activity | Z. armatum root and stem | [124] |
Pinoresinol-di-3,3-dimethylallyl | Anti-inflammatory activity | Z. armatum root and stem | [124] |
Pinoresinol | Antispasmodic activity | Z. nitidum leaves | [120] |
Medioresinol | Antispasmodic activity | Z. nitidum leaves | [120] |
Piperitol-3,3-dimethylallyl ether | Anti-thrombotic activity | Z. nitidum stem bark | [110] |
(+)-Sesamin | Antioxidant and chemopreventive activities | Z. zanthoxyloides fruits | [58] |
Hydroxy-α-sanshool | Cardioprotective activity | Z. bungeanum fruits | [125] |
hydroxy-β-sanshool | Cardioprotective activity | Z. bungeanum fruits | [125] |
L-sesamin | Antiulcer activity | Z. nitidum root | [56] |
Isolated Compound | Class of Compound | Biological Activities | Part of Plant | Refs. |
---|---|---|---|---|
Zanthoxylum amides with anti-inflammatory, antioxidant, antispasmodic, hypolipidemic and neuroprotective activities | ||||
Zanthoamide A | Alkylamide | Anti-inflammatory activity | Z. bungeanum pericarps | [126] |
Zanthoamide B | Alkylamide | Anti-inflammatory activity | Z. bungeanum pericarps | [126] |
Zanthoamide C | Alkylamide | Anti-inflammatory activity | Z. bungeanum pericarps | [126] |
Zanthoamide D | Alkylamide | Anti-inflammatory activity | Z. bungeanum pericarps | [126] |
Bugeanumamide A | Alkylamide | Anti-inflammatory activity | Z. bungeanum leaves | [127,128] |
Tessmamide | Aromatic amide | Antioxidant activity | Z. gilletii root | [108] |
Robustin | Aromatic amide | Antioxidant activity | Z. gilletii root | [108] |
Integrifoliodiol | Aromatic amide | Antioxidant activity | Z. gilletii root | [108] |
Lupenone | Aromatic amide | Antioxidant activity | Z. gilletii root | [108] |
Zanthoamide G | Alkalimide | Antioxidant activity | Z. zanthoxyloides fruits | [58] |
Zanthoamide H | Alkalimide | Antioxidant activity | Z. zanthoxyloides fruits | [58] |
Zanthoamide I | Alkalimide | Antioxidant activity | Z. zanthoxyloides fruits | [58] |
(R)-tembamide | Benzamide | Antispasmodic activity | Z. fagara stem bark | [129] |
O-methyltembamide | Benzamide | Antispasmodic activity | Z. fagara stem bark | [129] |
4-methoxyquinolin-2-one | Cyclic amide | Antispasmodic activity | Z. nitidum leaves | [120] |
β-, γ- and hydroxy-β-sanshool | Amide | Hypolipidemic effects | Z. bungeanum fruit | [130] |
zanthoamide E and F | Alkyamide | Neuroprotective activity | Z. bungeanum pericarps | [126] |
ZP-amide A-E | Alkyamide | Neuroprotective activity | Z. bungeanum pericarps | [126] |
Tetrahydrobungeanool | Alkyamide | Neuroprotective activity | Z. bungeanum pericarps | [126] |
(2E,7E,9E)-N-(2-hydroxy-2-methylpropyl)-6,11-dioxo-2,7,9-dodecatrienamide | Alkyamide | Neuroprotective activity | Z. bungeanum pericarps | [126] |
Isolated Compound | Biological Activities | Part of Plant | Refs. |
---|---|---|---|
Zanthoxylum phytosterols and their derivatives | |||
Stigmasterol | Antioxidant activities | Z. paracanthum stem bark | [74,131] |
β-sitosterol | Antioxidant and anti-thrombotic properties | Z. budrunga leaves and different parts of Z. bungeanum | [33,108,115,132] |
β-sitostenone | Antioxidant and anti-thrombotic activities | Different parts of Z. bungeanum | [115] |
Zanthoxylum phenylpropanoids | |||
4′-(3′′-methylbut-2′′-enyloxy)-3-phenylpropanol | Antioxidant activity | F. zanthoxyloides root bark | [62] |
N-trans-coumaroyl tyramine | Antispasmodic activity | Z. nitidum leaves | [120] |
Zanthoxylum phenol and phenolic acids | |||
2-Methoxy-4-hydroxylphenyl-1-O-α-L-rhamnopyranosyl-(1′′→6′)-β-D-glucopyranoside | Anti-inflammatory activity | Z. armatum stem extract | [116] |
Cuspidiol | Antioxidant activity | F. zanthoxyloides root bark | [62] |
Dihydrocusidiol | Antioxidant activity | F. zanthoxyloides root bark | [62] |
Caffeic acid | Antioxidant activity | Z. zanthoxyloides stem bark | [106] |
Chlorogenic acid | Antioxidant activity | Z. zanthoxyloides stem bark | [106] |
Hydrocuspidiol | Antioxidant activity | F. zanthoxyloides root bark | [62] |
Zanthoxylum tannins | |||
1H-[1,2,4]-oxadiazolo-[4,3-α]-quinoxalin-1-one | Anti-hypertensive activity | Z. bungeanum leaves | [133] |
Zanthoxylum long-chain fatty acids | |||
Hexadecanoic acid | Antioxidant activity | Z. zanthoxyloides root and stem bark | [103] |
Zanthoxylum quinolones | |||
Flindersine | Anti-thrombotic activity | Z. nitidum stem bark | [110] |
4-methoxy-1-methyl-2-quinolone | Anti-thrombotic activity | Z. nitidum stem bark | [110] |
4-methoxy-1-methyl-2(1H)-quinolinone | Not specified | Z. davyi stem bark | [42] |
Isolated Compound | Class of Compound | Biological Activities | Part of Plant | Refs. |
---|---|---|---|---|
Atanine | Alanine derivative | Antioxidant activity | Z. zanthoxyloides fruits | [58] |
115kDa glycoproteins | Glycoprotein | Anti-inflammatory activity | Z. bungeanum leaves | [134] |
Isoplatydesmine | Aromatic compounds | Antioxidant activity | Z. zanthoxyloides fruits | [58] |
N-methylatanine | Carboxylic acid | Antioxidant activity | Z. zanthoxyloides fruits | [58] |
N-Benzoyltyramine methyl ether | Dimethyl ether | Antioxidant activity | Z. gilletii root | [108] |
Decanal | Medium-chain aldehydes | Antioxidant activity | Z. zanthoxyloides root and stem bark | [105] |
4-(methylamino)-benzoic acid | Phenolic acid | Antioxidant and antiulcer activities | Z. syncarpum branches | [135] |
N-benzoyl-L-Phenylalaninol | Phenylalanine derivative | Antispasmodic activity | Z. nitidum leaves | [120] |
4-methoxy-1-methyl-2-quinolone | Quinolone | Anti-thrombotic activity | Z. nitidum stem bark | [110] |
Isovanillic acid | Phenolic acid | Cardioprotective activity | Z. bungeanum fruits | [125] |
4-methoxy-1-methyl-2(1H)-quinolinone) | Quinolone | Not specified | Z. davyi stem bark | [42] |
Plant Species and Part Used | Test Substance | Results | Refs. |
---|---|---|---|
Antioxidant properties | |||
Z. budrunga seeds | Polyphenol-rich crude ethanol extract | Good DPPH radical scavenging effect (IC50 value of 82.60 μg/mL) compared to ascorbic acid (IC50 value of 12.58 μg/mL) and ferric reducing power relative to ascorbic acid standard | [179] |
Z. bungeanum pericarp and seed | Magnoflorine and arbutin isolated from them | Magnoflorine and arbutin showed weak antioxidant activities | [125] |
Z. bungeanum fruit | Hyperoside and quercitrin isolated from the fruit | Strong antioxidant and radical scavenging activities | [133] |
Z. armatum leaves | Essential oil | Good DPPH radical scavenging activity (IC50 = 27 μg/mL) relative to ascorbic acid (IC50 = 15.0 μg/mL) | [123] |
Z. armatum leaves | crude methanol extract, Essential oil and ethyl acetate fraction of the crude extract | Radical scavenging, ferric reducing and divalent metal chelating potentials | [85] |
Z. zanthoxyloides fruits, leaves, stems, trunk barks, and root barks | methanol extract | High radical scavenging and ferric reducing properties | [103,180] |
Z. capense leaves | Acetone extract | Good antioxidant and radical scavenging activities | [19] |
Z. syncarpum Tull. Branches | crude ethanol extract, its alkaloidal fraction and 4-(methylamino)-benzoic acid isolated from it | The crude extract and its alkaloidal fraction inhibited DPPH radical scavenging activities with IC50 values of 140.29 μg/mL and 56.17 μg/mL, respectively relative to quercetin (IC50 = 4.77 μg/mL). The crude extract, the alkaloidal fraction and 4-(methylamino)-benzoic acid potently inhibited hydrochloric acid-induced corrosion; 4-(methylamino)-benzoic acid showed the best corrosion inhibition | [135] |
Z. leprieurii stem bark | hydroethanol and aqueous | Good antioxidant activity | [15] |
Anti-diabetic effects | |||
Z. chalybeum stem bark and root bark | Aqueous extract | Hypoglycemic activity and protected β-cells from damage | [155,157] |
Z. armatum bark | Aqueous-ethanol extract | Anti-diabetic and hypoglycemic activities | [162] |
Z. zanthoxyloides leaves | Dietary formulation | Exhibited good anti-diabetic, hepatoprotective and hypolipidemic effects against alloxan toxixity in rats | [196] |
Z. armatum leaves | Aqueous extract | Hypoglycemic and inhibition of lipase, α-amylase and α/β-glucosidases activities | [160] |
Z. armatum fruits, bark and leaves | methanol extract | Suppressed glucose level, increased insulin secretion via KATP channel and inhibited β-glucosidases activities (94% by bark extract, 97% by leaf extract and 84% by fruits extract | [161] |
Gatro-protective effects | |||
Z. zanthxyloides root bark | Ethanol extract | Inhibited ulcer index by 71% and 85% at 250 and 500 mg/kg via inhibition of cholinergic, nicotinic and histaminic receptors | [135] |
Z. nitidum stem bark | aqueous extract | inhibited ulcer by 31% and 55% at 100 and 200 mg/kg by inhibiting gastric secretion | [170] |
Z. nitidum roots, stems and leaves | Aqueous extracts and total alkaloid extract | gastroprotective effect by increasing NO, prostaglandin E2 and antioxidant status as well as reducing lipid peroxidation | [55] |
Z. nitidum root | aqueous extract | Inhibition of gastric acid secretion and cytotoxic against H. pylori by inhibiting its urease activity | [56] |
Z. rhoifolium stem barks | ethanol extract | Antiulcer activity by antioxidant protection of the mucosa from free radical-mediated oxidation, activation of KATP channel and increase in NO availability | [173] |
Hepatoprotective effects | |||
Z. bungeanum fruits | Glycoprotein | Hepatoprotective properties by mechanisms related to anti-oxidative and radical scavenging properties | [63] |
Z. bungeanum leaves | crude methanol extract | Hepatoprotective properties by antioxidant activity and inhibition of lipid peroxidation and aniline hydroxylase activity | [174] |
Z. armatum leaves | crude methanol extract | Inhibited hepatic damage by antioxidant mechanism | [86,175] |
Z. armatum fruit | aqueous extract | Protected liver cells from damage by antioxidant status elevating catalase and vitamin C levels in serum and non-protein thiols in liver homogenate and lowering of malondialdehyde and liver enzyme levels in serum | [177] |
Lipid-lowering effects | |||
Z. bungeanum fruit and pericarp | petroleum ether, Crude ethanol extract, ethyl acetate and n-butanol fractions | Hypolipidemic activity by inhibiting in vivo lipid synthesis and increasing breakdown | [118,178] |
Z. bungeanum fruit | Ethanol extract | Inhibited lipid synthesis, transport and storage in both 3T3-L1 adipocytes and high fat diet-induced obese mouse | [179] |
Z. heitzii stem bark | aqueous extract | Reduced lipid levels by lipid synthesis inhibition and increasing the breakdown, protected cells from hyperlipidemia damages | [89] |
Anti-hypertensive effects | |||
Z. bungeanum leaves | crude methanol extract and its aqueous, n-hexane, ethyl acetate and n-butanol fractions | Induced vasorelaxation of smooth muscles by acting through SOCC- and Akt-eNOS-sGC-cGMP signaling in isolated aorta | [208] |
Z. gilletii stem barks | aqueous extacts | Reduced systolic and diastolic blood pressures, pulse pressure and heart rate by over 75% through NO signaling | [51,148] |
Cardioprotective effects | |||
Z. acanthopodium fruit | ethyl acetate extract | Protected the myocardium from doxorubicin-generated cardiac damage | [140] |
Z. bungeanum fruits | crude aqueous and alcoholic extracts and hydroxy-α-sanshool, hydroxy-β-sanshool, xanthoxylin, mikanin, hyperin, isoquercitrin, rutin, myricetin, myricitrin, quercitrin and isovanillic acid isolated from them | Improved breathing rate in cultured cardiac cells by inducing calcium uptake and modulating sarcoplasmic reticulum Na+/K+- and Ca2+-ATPase activities | [125] |
Z. chalybeum root bark | aqueous extract | Attenuated diabetes-related myocardial dysfunction | [157,190] |
Neuro-protective and Alzheimer′s disease modulatory effects | |||
Z. bungeanum pericarps | crude extract and alkylamides isolated from it | Potent neuritogenic activity | [126] |
Z. capense root | methanol and ethyl acetate extracts | Inhibition of rotenone-elicited neuronal injury in SH-SY5Y neuroblastoma cells | [151] |
Z. bungeanum leaves | crude methanol extract and flavonoid-rich fraction | Good antioxidant and radical scavenging activities and Strongly inhibited hydrogen peroxide-induced neuronal cell damage in neuronal PC12 cells | [127] |
Z. heitzii fruits and barks | syringic acid isolated from them | Potent neuroprotective activity against ischaemia/reperfusion (OGD/R) neuronal injury | [153] |
Z. schreberi bark | Crude extract and berberine, chelerythrine and columbamine from it | Strongly inhibited acetylcholinesterase and butyrylcholinesterase | [11] |
Z. monophylum bark | Crude extract and berberine, chelerythrine and columbamine isolated from it | Strongly inhibited acetylcholinesterase and butyrylcholinesterase | [11] |
Anti-inflammatory and antinociceptive effects | |||
Z. austrosinense root | Alkaloids isolated from ethanol extract | Strongly inhibited NO production in LPS-activated mouse macrophage RAW 264.7 cells (IC50 values = 0.89–9.62 μM) | [114] |
Z. budrunga seeds | crude ethanol extract | The extract at 250 and 500 mg/kg inhibited acetic acid-induced writhings in mice by 65.28% and 74.30%, respectively relative to 81.95% inhibition by diclofenac sodium that served as standard. Similarly, the extract at the same doses time and dose-dependently inhibited hot plate induced pain at latency time slightly lower than morphine that served as standard. | [203] |
Z. capense leaves | Acetone extract | Good anti-inflammatory activity by inhibiting 15-lipoxygenase activity in vitro and suppressed nitric oxide synthesis in activated RAW 264.7 macrophage by 33–86% at 3.12–32 μg/mL | [11] |
Z. zanthoxyloides root | aqueous extract | Strongly inhibited proteases and membrane damage induced by hypotonic solution | [195] |
Z. armatum roots and stems | Ethanol extract and ethyl acetate fraction | Demonstrated good anti-inflammatory activities against several models of inflammation | [198] |
Z. nitidum root and stem | Methanol extract | Suppressed feeling of both acute and chronic pain as well as inhibited both acute and chronic inflammation in both in vivo and in vitro models | [119] |
Z. rhetsa stem bark | methanol extract | Moderately inhibited acetic acid-generated writhings in mice by 47.82% and 58.89% at 250 and 500 mg/kg, respectively compared to 67.30% by reference drug, aspirin at 100 mg/kg | [202] |
Z. budrunga root bark | ethanol extract | At 250 and 500 mg/kg doses, the ethanol extract significantly increased the latency time of response to hot plate induced pain (5.80 and 6.81 s) relative to control (3.29 s) and morphine (9.60 s). The extract potently inhibited acetic acid-provoked writhings in mice by 64.58% and 77.43% at 250 and 500 mg/kg, respectively relative to 81.9% by diclofenac sodium | [203] |
Z. bungeanum pericarps | ethanol extract and amides isolated from it | Good anti-inflammatory activities by inhibiting NO production by LPS-stimulated RAW264.7 macrophages | [124,197,198,199,200,201,202,203,204,205,206,207,208], |
Anti-asthmatic effect | |||
Z. bungeanum seed | Essential oil | Inhibited nitric oxide production and suppressed pulmonary injury and infiltrations of inflammatory cells by inhibiting protein level and gene expression of inflammatory mediators and their receptors | [209] |
Anti-arthritic effects | |||
different parts of Z. bungeanum | Ethanol extract | Inhibited monosodium idoacetate-induced osteoarthritic inflammation and pain as follows: stalks (65%), roots (11.8%), twigs (84.7%), fruits (72.8%) and leaves (91.6%) through inhibition of protein level and mRNA expression of iNOS and COX-2 | [201] |
Z. bungeanum cake | Z. bungeanum-cake-separated moxibustion | Inhibited Freund’s complete adjuvant-induced rheumatoid arthritis by preventing edema formation, histological markers of inflammatory damages to the tissues and levels of pro-inflammatory cytokines (IL-1β and TNF-α) in serum | [63] |
Anti-thrombotic effect | |||
Z. schinifolium bark | Coumarins, alkaloids and triterpenoids isolated from chloroform fraction | Significantly inhibited platelet aggregatory response | [179] |
Z. schinifolium root bark | Extract and 30 isolated compounds | Significantly inhibited collagen, arachidonic acid and platelet-activating factor-induced platelet aggregation | [122] |
Z. nitidum var. tomentosum roots | Ethanol extract and toddalolactone isolated from it | Strongly inhibited PAI-1 and PAI-1-induced clot formation and induced breakdown of preformed clot in vitro. toddalolactone also inhibited ferric chloride-generated clot formation and hepatic necrosis and increased bleeding time in mice | [13] |
Anti-spasmodic effect | |||
Z. fagara stem bark | Crude ethanol extract | Suppressed muscle spasm and modulate muscle tone and contraction in isolated rat ileum, in vitro | [114] |
Z. armatum fruit, bark and leaves | Methanol extract | Inhibited butyryl cholineesterase activity by 51%, 83% and 38%, respectively and potently relaxed precontracted rabbit jejunum strips, intestine, trachea and thoracic aortic rings | [207] |
Z. rhoifolium leaves | alcoholic and aqueous extracts | Suppressed muscle spasm and modulate muscle tone and contraction in isolated rabbit duodenum, in vitro | [208] |
Oesteoprotective effect | |||
Z. piperitum fruit | Aqueous-ethanol extract | Exerted osteoprotective effects by inhibited the activation of c-fos/NFATc1/NF-κB pathway in osteoclast of receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoporosis in ovariectomized mice | [210] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Okagu, I.U.; Ndefo, J.C.; Aham, E.C.; Udenigwe, C.C. Zanthoxylum Species: A Comprehensive Review of Traditional Uses, Phytochemistry, Pharmacological and Nutraceutical Applications. Molecules 2021, 26, 4023. https://doi.org/10.3390/molecules26134023
Okagu IU, Ndefo JC, Aham EC, Udenigwe CC. Zanthoxylum Species: A Comprehensive Review of Traditional Uses, Phytochemistry, Pharmacological and Nutraceutical Applications. Molecules. 2021; 26(13):4023. https://doi.org/10.3390/molecules26134023
Chicago/Turabian StyleOkagu, Innocent Uzochukwu, Joseph Chinedu Ndefo, Emmanuel Chigozie Aham, and Chibuike C. Udenigwe. 2021. "Zanthoxylum Species: A Comprehensive Review of Traditional Uses, Phytochemistry, Pharmacological and Nutraceutical Applications" Molecules 26, no. 13: 4023. https://doi.org/10.3390/molecules26134023
APA StyleOkagu, I. U., Ndefo, J. C., Aham, E. C., & Udenigwe, C. C. (2021). Zanthoxylum Species: A Comprehensive Review of Traditional Uses, Phytochemistry, Pharmacological and Nutraceutical Applications. Molecules, 26(13), 4023. https://doi.org/10.3390/molecules26134023