Discovery of New Hits as Antitrypanosomal Agents by In Silico and In Vitro Assays Using Neolignan-Inspired Natural Products from Nectandra leucantha
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemical Characterization of Compounds 1–7 Isolated from Flowers of N. leucantha
2.2. Anti-T. cruzi Activity of the Natural Products 1–7
2.3. Dataset Used In Silico Analyses
2.4. Molecular Alignment
2.5. HQSAR Modeling
2.6. CoMFA and CoMSIA Models
2.7. External Validation
2.8. Physicochemical Interpretation of the Models
3. Material and Methods
3.1. General Experimental Procedures
3.2. Isolation of Neolignans 1–7 from n-Hexane Extract from Flowers of N. leucantha
3.3. Experimental Bioassays
3.4. Parasites and Mammalian Cell Maintenance
3.5. Determination of Activity against Amastigote Forms of T. cruzi
3.6. Determination of Cytotoxicity against Mammalian Cells
3.7. Compound Set
3.8. Rigid Alignment of the Compound Structures
3.9. HQSAR Modeling
3.10. Generation of CoMFA and CoMSIA Models
3.11. Validation of the Statistical Models
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Grecco, S.S.; Costa-Silva, T.A.; Jerz, G.; de Sousa, F.S.; Conserva, G.A.A.; Mesquita, J.T.; Galuppo, M.K.; Tempone, A.G.; Neves, B.J.; Andrade, C.H.; et al. Antitrypanosomal activity and evaluation of the mechanism of action of dehydrodieugenol isolated from Nectandra leucantha (Lauraceae) and its methylated derivative against Trypanosoma cruzi. Phytomedicine 2017, 24, 62–67. [Google Scholar] [CrossRef]
- Carraro, R.; Iribarne, F.; Paulino, M. Analysis of cyclosporin A and a set of analogs as inhibitors of a T. cruzi cyclophilin by docking and molecular dynamics. J. Biomol. Struct. Dyn. 2016, 34, 399–413. [Google Scholar] [CrossRef] [PubMed]
- Coura, J.R. Special issue on Chagas disease. Memórias Inst. Oswaldo Cruz 2015, 110, 275–276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costa-Silva, T.A.D.; Grecco, S.S.; De Sousa, F.S.; Lago, J.H.G.; Martins, E.G.; Terrazas, C.A.; Varikuti, S.; Owens, K.L.; Beverley, S.M.; Satoskar, A.R.; et al. Immunomodulatory and antileishmanial activity of phenylpropanoid dimers isolated from Nectandra leucantha. J. Nat. Prod. 2015, 78, 653–657. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lane, J.E.; Ribeiro-Rodrigues, R.; Suarez, C.C.; Bogitsh, B.J.; Jones, M.M.; Singh, P.K.; Carter, C.E. In vitro trypanocidal activity of tetraethylthiuram disulfide and sodium diethylamine-n-carbodithioate on Trypanosoma cruzi. Am. J. Trop. Med. Hyg. 1996, 55, 263–266. [Google Scholar] [CrossRef] [PubMed]
- Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs from 1981 to 2014. J. Nat. Prod. 2016, 79, 629–661. [Google Scholar] [CrossRef] [Green Version]
- Coura, J.R. The main sceneries of Chagas disease transmission. The vectors, blood and oral transmissions-A comprehensive review. Memórias Inst. Oswaldo Cruz 2014, 110, 277–282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grecco, S.S.; Costa-Silva, T.A.; Jerz, G.; de Sousa, F.S.; Londero, V.S.; Galuppo, M.K.; Lima, M.L.; Neves, B.J.; Andrade, C.H.; Tempone, A.G.; et al. Neolignans from leaves of Nectandra leucantha (Lauraceae) display in vitro antitrypanosomal activity via plasma membrane and mitochondrial dam-ages. Chem. Biol. Interact. 2017, 277, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Conserva, G.A.A.; da Costa-Silva, T.A.; Amaral, M.; Antar, G.M.; Neves, B.J.; Andrade, C.H.; Tempone, A.G.; Lago, J.H.G. Butenolides from Nectandra oppositifolia (Lauraceae) displayed anti-Trypanosoma cruzi activity via deregulation of mitochon-dria. Phytomedicine 2019, 54, 302–307. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, D.D.; Sousa, F.S.; Costa-Silva, T.A.; Reimão, J.Q.; Torrecilhas, A.C.; Johns, D.M.; Sear, C.E.; Honorio, K.M.; Lago, J.H.G.; Anderson, E.A.; et al. Dehydrodieugenol B derivatives as antiparasitic agents: Synthesis and biological activity against Trypanosoma cruzi. Eur. J. Med. Chem. 2019, 176, 162–174. [Google Scholar] [CrossRef] [PubMed]
- Grecco, S.S.; Costa-Silva, T.A.; Sousa, F.S.; Cargnelutti, S.B.; Umehara, E.; Mendonça, P.S.; Tempone, A.; Lago, J.H.G. Neolignans isolated from twigs of Nectandra leucantha Ness & Mart (Lauraceae) displayed in vitro antileishmanial activity. J. Venom. Anim. Toxins Incl. Trop. Dis. 2018, 24, 27. [Google Scholar] [CrossRef] [PubMed]
- Araujo, S.C.; Maltarollo, V.G.; Honorio, K.M. Computational studies of TGF-beta RI (ALK-5) inhibitors: Analysis of the bind-ing interactions between ligand-receptor using 2D and 3D techniques. Eur. J. Pharm. Sci. 2013, 49, 542–549. [Google Scholar] [CrossRef] [PubMed]
- Araujo, S.C.; Maltarollo, V.G.; Silva, D.C.; Gertrudes, J.C.; Honorio, K.M. ALK-5 inhibition: A molecular interpretation of the main physicochemical properties related to bioactive ligands. J. Braz. Chem. Soc. 2015, 26, 1936–1946. [Google Scholar] [CrossRef]
- Pantaleão, S.Q.; Araujo, S.C.; Gertrudes, J.C.; Maltarollo, V.G.; Honorio, K.M. Molecular docking studies and 2D analyses of DPP-4 inhibitors as candidates in the treatment of diabetes. Mol. BioSyst. 2015, 11, 3188–3193. [Google Scholar] [CrossRef]
- Almerico, A.M.; Tutone, M.; Guarcello, A.; Lauria, A. In vitro and in silico studies of polycondensed diazine systems as an-ti-parasitic agents. Bioorg. Med. Chem. Lett. 2012, 22, 1000–1004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Surabhi, S.; Singh, B. Computer aided drug design: An overview. J. Drug Deliv. Ther. 2018, 8, 504–509. [Google Scholar] [CrossRef] [Green Version]
- Maluf, F.V.; Andricopulo, A.D.; Oliva, G.; Guido, R.V. A pharmacophore-based virtual screening approach for the discov-ery of Trypanosoma cruzi GAPDH inhibitors. Future Med. Chem. 2013, 5, 2019–2035. [Google Scholar] [CrossRef]
- Salum, L.B.; Andricopulo, A.D. Fragment-based QSAR: Perspectives in drug design. Mol. Divers. 2009, 13, 277–285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Araujo, S.C.; Maltarollo, V.G.; Almeida, M.O.; Ferreira, L.L.G.; Andricopulo, A.D.; Honorio, K.M. Structure-based virtual screening, molecular dynamics and binding free energy calculations of hit candidates as ALK-5 inhibitors. Molecules 2020, 25, 264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Souza, A.S.; Ferreira, L.L.G.; de Oliveira, A.S.; Andricopulo, A.D. Quantitative structure-activity relationships for structural-ly diverse chemotypes having anti-Trypanosoma cruzi activity. Int. J. Mol. Sci. 2019, 20, 2801. [Google Scholar] [CrossRef] [Green Version]
- Melo-Filho, C.C.; Braga, R.C.; Muratov, E.N.; Franco, C.H.; Moraes, C.B.; Freitas-Junior, L.H.; Andrade, C.H. Discovery of new potent hits against intracellular Trypanosoma cruzi by QSAR-based virtual screening. Eur. J. Med. Chem. 2019, 163, 649–659. [Google Scholar] [CrossRef]
- Bollini, M.; Bruno, A.M.; Niño, M.E.; Casal, J.J.; Sasiambarrena, L.D.; Valdez, D.A.; Battini, L.; Puente, V.R.; Lombardo, M.E. Synthesis, 2D-QSAR studies and biological evaluation of quinazoline derivatives as potent anti-Trypanosoma cruzi agents. Med. Chem. 2019, 15, 265–276. [Google Scholar] [CrossRef]
- Ferreira, G.M.; De Magalhães, J.G.; Maltarollo, V.G.; Kronenberger, T.; Ganesan, A.; Emery, F.D.S.; Trossini, G.H.G. QSAR studies on the human sirtuin 2 inhibition by non-covalent 7,5,2-anilinobenzamide derivatives. J. Biomol. Struct. Dyn. 2019, 38, 354–363. [Google Scholar] [CrossRef]
- Ferreira, L.G.; Dos Santos, R.N.; Oliva, G.; Andricopulo, A.D. Molecular docking and structure-based drug design strategies. Molecules 2015, 20, 13384–13421. [Google Scholar] [CrossRef]
- Sousa, F.S.; Grecco, S.S.; Girola, N.; Azevedo, R.A.; Figueiredo, C.R.; Lago, J.H.G. Neolignans isolated from Nectandra leucan-tha induce apoptosis in melanoma cells by disturbance in mitochondrial integrity and redox homeostasis. Phytochemistry 2017, 140, 108–117. [Google Scholar] [CrossRef] [PubMed]
- Sear, C.E.; Pieper, P.; Amaral, M.; Romanelli, M.M.; Costa-Silva, T.A.; Haugland, M.M.; Tate, J.A.; Lago, J.H.G.; Tempone, A.G.; Anderson, E.A. Synthesis and struc-ture–activity relationship of dehydrodieugenol b neolignans against Trypanosoma cruzi. ACS Infect. Dis. 2020, 6, 2872–2878. [Google Scholar] [CrossRef] [PubMed]
- Sybyl 8.1; Tripos Associates Inc.: St. Louis, MO, USA, 2010; Available online: https://ir.certara.com/ (accessed on 20 April 2021).
- Chirico, N.; Gramatica, P. Real external predictivity of QSAR models: How to evaluate it? Comparison of different validation criteria and proposal of using the concordance correlation coefficient. J. Chem. Inf. Model. 2011, 51, 2320–2335. [Google Scholar] [CrossRef] [PubMed]
- Cramer, R.D.; Patterson, D.E.; Bunce, J.D. Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. J. Am. Chem. Soc. 1988, 110, 5959–5967. [Google Scholar] [CrossRef] [PubMed]
- Londero, V.S.; da Costa-Silva, T.A.; Gomes, K.S.; Ferreira, D.D.; Mesquita, J.T.; Tempone, A.G.; Young, M.C.M.; Jerz, G.; Lago, J.H.G. Acety-lenic fatty acids from Porcelia macrocarpa (Annonaceae) against trypomastigotes of Trypanosoma cruzi: Effect of octa-dec-9-ynoic acid in plasma membrane electric potential. Bioorg. Chem. 2018, 78, 307–311. [Google Scholar] [CrossRef]
- Tada, H.; Shiho, O.; Kuroshima, K.-I.; Koyama, M.; Tsukamoto, K. An improved colorimetric assay for interleukin 2. J. Immunol. Methods 1986, 93, 157–165. [Google Scholar] [CrossRef]
- Chemaxon Marvin 5.3 Program, Budapest, Hungary. 2014. Available online: http://www.chemaxon.com/products/marvin/marvinsketch/ (accessed on 25 April 2021).
- Hanwell, M.D.; Curtis, D.E.; Lonie, D.C.; Vandermeersch, T.; Zurek, E.; Hutchison, G.R. Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. J. Cheminforma. 2012, 4, 1–33. [Google Scholar] [CrossRef] [Green Version]
- Gaunt, J.A. A theory of Hartree’s atomic fields. In Mathematical Proceedings of the Cambridge Philosophical Society; Cambridge University Press: Cambridge, UK, 1928; Volume 24, pp. 328–342. [Google Scholar]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09; Gaussian, Inc.: Wallingford, UK; Wallingford, CT, USA, 2009. [Google Scholar]
- Yap, C.W. PaDEL-descriptor: An open source software to calculate molecular descriptors and fingerprints. J. Comput. Chem. 2011, 32, 1466–1474. [Google Scholar] [CrossRef] [PubMed]
- Nunes, C.A.; Freitas, M.P.; Pinheiro, A.C.M.; Bastos, S.C. Chemoface: A novel free user-friendly interface for chemometrics. J. Braz. Chem. Soc. 2012, 23, 2003–2010. [Google Scholar] [CrossRef] [Green Version]
- Heritage, T.W.; Lowis, D.R. Molecular Hologram QSAR; American Chemical Society (ACS): Washington, DC, USA, 1999; pp. 212–225. [Google Scholar]
- Caballero, J. 3D-QSAR (CoMFA and CoMSIA) and pharmacophore (GALAHAD) studies on the differential inhibition of aldose reductase by flavonoid compounds. J. Mol. Graph. Model. 2010, 29, 363–371. [Google Scholar] [CrossRef] [PubMed]
- Gramatica, P. Principles of QSAR models validation: Internal and external. QSAR Comb. Sci. 2007, 26, 694–701. [Google Scholar] [CrossRef]
- Kurihara, T.; Mine, H.; Satoh, Y.; Wakabayashi, H.; Motohashi, N.; Sakagami, H. Relationship between electronic structure and cytotoxic activity of tropolones. In Vivo 2006, 20, 391–395. [Google Scholar]
- Ou-Yang, S.-S.; Lu, J.-Y.; Kong, X.-Q.; Liang, Z.-J.; Luo, C.; Jiang, H. Computational drug discovery. Acta Pharmacol. Sin. 2012, 33, 1131–1140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
IC50 (μM) 2 | CC50 (μM) 3 | SI 4 | pIC50 Experimental | pIC50 | Residual | |||||
---|---|---|---|---|---|---|---|---|---|---|
HQSAR | CoMFA | CoMSIA | HQSAR | CoMFA | CoMSIA | |||||
1 | >30 | >200 | - | 4.52 | 4.60 | 4.53 | 4.47 | 0.08 | 0.01 | 0.05 |
2 | >30 | >200 | - | 4.52 | 4.80 | 4.53 | 4.57 | 0.28 | 0.00 | 0.05 |
3 | >30 | >200 | - | 4.52 | 4.57 | 4.52 | 4.58 | 0.05 | 0.00 | 0.05 |
4 | 14.3 ± 1.9 | >200 | >14.0 | 4.84 | 4.72 | 4.71 | 4.78 | 0.13 | 0.14 | 0.07 |
5 | >30 | >200 | - | 4.52 | 4.46 | 4.56 | 4.51 | 0.06 | 0.04 | 0.01 |
6 | 26.3 ± 1.3 | >200 | >7.6 | 4.58 | 4.65 | 4.63 | 4.51 | 0.07 | 0.05 | 0.07 |
7 | 4.2 ± 1.1 | >200 | >47.6 | 5.38 | 5.10 | 5.29 | 5.48 | 0.27 | 0.09 | 0.10 |
8 | >30 | >200 | - | 4.52 | 4.66 | 4.78 | 4.87 | 0.11 | 0.26 | 0.35 |
9 | 16.4 ± 2.1 | >200 | >12.2 | 4.79 | 4.80 | 4.69 | 4.45 | 0.01 | 0.09 | 0.33 |
10 | >30 | >200 | - | 4.52 | 4.52 | 4.53 | 4.48 | 0.00 | 0.01 | 0.05 |
11 | >30 | >200 | - | 4.52 | 4.79 | 4.52 | 4.52 | 0.27 | 0.00 | 0.00 |
12 | 8.0 ± 0.8 | 64.4 ± 4.2 | 8.1 | 5.10 | 5.25 | 4.99 | 5.27 | 0.15 | 0.11 | 0.18 |
13 | 10.0 ± 2.1 | 75.0 ± 13.8 | 7.5 | 5.00 | 5.46 | 4.91 | 5.01 | 0.46 | 0.09 | 0.01 |
14 | >30 | >200 | - | 4.52 | 4.57 | 4.50 | 4.46 | 0.05 | 0.02 | 0.06 |
15 | 9.5 ± 3.1 | >200 | >21.0 | 5.02 | 5.02 | 5.10 | 5.17 | 0.00 | 0.08 | 0.15 |
16 | >30 | >200 | - | 4.52 | 4.57 | 4.56 | 4.52 | 0.05 | 0.03 | 0.00 |
17 | >30 | >200 | - | 4.52 | 4.55 | 4.53 | 4.63 | 0.03 | 0.01 | 0.11 |
18 | >30 | >200 | - | 4.52 | 4.79 | 4.52 | 4.57 | 0.27 | 0.00 | 0.04 |
19 | >30 | >200 | - | 4.52 | 4.63 | 4.52 | 4.53 | 0.10 | 0.00 | 0.01 |
20 | 9.4 ± 2.2 | >200 | >21.3 | 5.03 | 4.90 | 5.01 | 5.07 | 0.13 | 0.01 | 0.04 |
21 | >30 | 57.7 ± 1.1 | - | 4.52 | 4.92 | 4.55 | 4.28 | 0.40 | 0.03 | 0.24 |
22 | >30 | >200 | - | 4.52 | 4.91 | 4.55 | 4.78 | 0.04 | 0.33 | 0.10 |
23 | >30 | 66.3 ± 6.0 | - | 4.52 | 4.36 | 4.51 | 4.46 | 0.83 | 0.01 | 0.07 |
24 | >30 | 156.1 ± 15.0 | - | 4.52 | 5.03 | 4.53 | 4.47 | 0.51 | 0.00 | 0.05 |
25 | >30 | >200 | - | 4.52 | 5.00 | 5.12 | 5.14 | 0.12 | 0.01 | 0.01 |
26 | >30 | >200 | - | 4.52 | 4.58 | 4.12 | 4.10 | 0.06 | 0.40 | 0.43 |
27 | 12.2 ± 3.6 | >200 | >16.4 | 4.91 | 4.89 | 4.90 | 4.80 | 0.02 | 0.01 | 0.11 |
28 | >30 | >200 | - | 4.52 | 4.65 | 4.53 | 4.62 | 0.13 | 0.01 | 0.09 |
29 | 9.4 ± 1.8 | >200 | >21.3 | 5.03 | 4.47 | 4.51 | 4.60 | 0.05 | 0.52 | 0.42 |
30 | >30 | >200 | - | 4.52 | 4.82 | 4.52 | 4.47 | 0.30 | 0.00 | 0.06 |
31 | 13.3 ± 3.6 | >200 | >15.0 | 4.88 | 4.51 | 4.53 | 4.50 | 0.36 | 0.34 | 0.38 |
32 | >30 | >200 | - | 4.52 | 4.50 | 4.59 | 4.52 | 0.02 | 0.06 | 0.00 |
33 | >30 | >200 | - | 4.52 | 4.42 | 4.68 | 4.52 | 0.10 | 0.16 | 0.00 |
34 | 5.8 ± 0.7 | >200 | >34.5 | 5.24 | 5.38 | 5.24 | 5.23 | 0.15 | 0.00 | 0.00 |
35 | 10.9 ± 6.5 | >200 | >18.3 | 4.96 | 5.00 | 4.78 | 4.86 | 0.04 | 0.18 | 0.10 |
36 | 16.6 ± 1.0 | 42.0 ± 3.8 | 2.5 | 4.78 | 4.85 | 5.00 | 5.14 | 0.07 | 0.22 | 0.36 |
37 | 10.5 ± 8.3 | 14.2 ± 0.1 | 1.4 | 4.98 | 4.94 | 4.99 | 4.98 | 0.04 | 0.01 | 0.00 |
38 | 11.7 ± 7.0 | >200 | >17.1 | 4.93 | 4.85 | 4.92 | 4.88 | 0.08 | 0.01 | 0.05 |
39 | 5.5 ± 3.5 | >200 | >36.4 | 5.26 | 5.03 | 5.25 | 5.28 | 0.23 | 0.01 | 0.02 |
40 | 8.6 ± 2.1 | >200 | >23.3 | 5.07 | 5.07 | 5.08 | 5.12 | 0.00 | 0.02 | 0.06 |
41 | 13.4 ± 5.4 | >200 | >14.9 | 4.87 | 4.93 | 4.84 | 5.27 | 0.06 | 0.04 | 0.40 |
42 | 25.7 ± 12.2 | >200 | >7.8 | 4.59 | 4.48 | 4.54 | 4.52 | 0.11 | 0.05 | 0.07 |
43 | 7.7 ± 1.3 | 128.6 ± 5.2 | 16.7 | 5.11 | 4.99 | 5.01 | 5.15 | 0.12 | 0.10 | 0.03 |
44 | 11.6 ± 8.4 | >200 | >17.2 | 4.94 | 4.95 | 5.07 | 5.14 | 0.02 | 0.13 | 0.20 |
45 | 22.5 ± 18.8 | 123.4 ± 9.8 | 5.5 | 4.65 | 4.81 | 4.91 | 4.89 | 0.16 | 0.26 | 0.24 |
46 | 11.0 ± 2.3 | >200 | >18.2 | 4.94 | 4.93 | 4.96 | 4.87 | 0.03 | 0.00 | 0.09 |
47 | >30 | >200 | - | 4.52 | 4.46 | 4.50 | 4.55 | 0.06 | 0.02 | 0.03 |
48 | >30 | >200 | - | 4.52 | 4.60 | 4.55 | 4.53 | 0.08 | 0.02 | 0.00 |
49 | >30 | >200 | - | 4.52 | 4.47 | 4.56 | 4.52 | 0.05 | 0.04 | 0.00 |
50 | >30 | >200 | - | 4.52 | 4.60 | 4.69 | 4.61 | 0.08 | 0.17 | 0.09 |
Bzd | 5.5 ± 1.4 | 190.2 ± 13.5 | 34.5 | 5.26 | 4.56 | 4.6 | 4.62 | 0.14 | 0.94 | 0.08 |
FD [1] | FS [2] | q2[3] | SE [4] | r2[5] | SECV [6] | HL [7] | PCs [8] |
---|---|---|---|---|---|---|---|
A/B | 4–7 | 0.50 | 0.26 | 0.81 | 0.14 | 151 | 6 |
A/B/C | 0.53 | 0.22 | 0.78 | 0.15 | 199 | 4 | |
A/B/C/H | 0.52 | 0.22 | 0.83 | 0.13 | 199 | 5 | |
A/B/C/H/Ch | 0.68 | 0.22 | 0.83 | 0.11 | 61 | 5 | |
A/B/H/Ch/DA | 0.54 | 0.24 | 0.85 | 0.13 | 199 | 6 | |
A/B/H | 0.48 | 0.21 | 0.79 | 0.15 | 151 | 4 | |
A/B/C/Ch | 0.55 | 0.26 | 0.77 | 0.15 | 83 | 4 | |
A/B/DA | 0.43 | 0.22 | 0.80 | 0.14 | 53 | 4 | |
A/B/C/DA | 0.54 | 0.24 | 0.84 | 0.13 | 257 | 5 | |
A/B/H/DA | 0.43 | 0.22 | 0.81 | 0.14 | 53 | 4 | |
A/B/C/Ch/DA | 0.60 | 0.22 | 0.88 | 0.11 | 61 | 6 | |
A/B/C/H/DA | 0.54 | 0.24 | 0.72 | 0.11 | 353 | 6 | |
A/B/H/Ch/DA | 0.75 | 0.22 | 0.88 | 0.16 | 61 | 6 | |
A/B/H/Ch | 0.49 | 0.26 | 0.81 | 0.14 | 151 | 6 |
FD [1] | FS [2] | q2[3] | SE [4] | r2[5] | SECV [6] | HL [7] | PCs [8] |
---|---|---|---|---|---|---|---|
A/B/H/Ch/DA | 1–4 | 0.63 | 0.24 | 0.81 | 0.14 | 61 | 6 |
A/B/H/Ch/DA | 2–5 | 0.54 | 0.24 | 0.82 | 0.14 | 5 | |
A/B/H/Ch/DA | 3–6 | 0.58 | 0.23 | 0.83 | 0.13 | 5 | |
A/B/H/Ch/DA | 4–7 | 0.75 | 0.22 | 0.88 | 0.16 | 6 | |
A/B/H/Ch/DA | 5–8 | 0.82 | 0.17 | 0.98 | 0.08 | 5 | |
A/B/H/Ch/DA | 6–9 | 0.45 | 0.25 | 0.88 | 0.12 | 6 | |
A/B/H/Ch/DA | 7–10 | 0.48 | 0.23 | 0.83 | 0.13 | 6 |
No. Focus | d h = 0.3 | w = 0.5 | |||||||
d i = 0.5 | d = 1.0 | d = 1.5 | d = 2.0 | d = 0.5 | d = 1.0 | d = 1.5 | d = 2.0 | ||
q2LOO a | 0.64 | 0.76 | 0.83 | 0.81 | 0.73 | 0.82 | 0.89 | 0.86 | 0.62 |
SEP b | 0.18 | 0.15 | 0.13 | 0.14 | 0.14 | 0.13 | 0.11 | 0.12 | 0.18 |
Nc | 5 | 5 | 6 | 5 | 5 | 6 | 6 | 6 | 3 |
r2 d | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.93 |
SEE e | 0.02 | 0.01 | 0.01 | 0.03 | 0.03 | 0.02 | 0.02 | 0.02 | 0.08 |
S f | 0.53 | 0.49 | 0.50 | 0.52 | 0.52 | 0.53 | 0.52 | 0.55 | 0.58 |
E g | 0.77 | 0.51 | 0.50 | 0.48 | 0.48 | 0.48 | 0.48 | 0.45 | 0.42 |
w = 0.7 | w = 0.9 | ||||||||
d = 0.5 | d = 1.0 | d = 1.5 | d = 2.0 | d = 0.5 | d = 1.0 | d = 1.5 | d = 2.0 | ||
q2LOO | 0.72 | 0.81 | 0.28 | 0.05 | 0.12 | 0.68 | 0.08 | 0.28 | |
SEP | 0.16 | 0.13 | 0.24 | 0.24 | 0.28 | 0.18 | 0.27 | 0.23 | |
N | 4 | 6 | 2 | 2 | 5 | 6 | 1 | 1 | |
r2 | 0.99 | 0.99 | 0.89 | 0.45 | 0.90 | 0.93 | 0.83 | 0.44 | |
SEE | 0.03 | 0.04 | 0.10 | 0.23 | 0.10 | 0.08 | 0.13 | 0.21 | |
S | 0.53 | 0.54 | 0.70 | 0.53 | 0.55 | 0.67 | 0.41 | 0.00 | |
E | 0.47 | 0.46 | 0.30 | 0.48 | 0.45 | 0.33 | 0.59 | 1.00 |
No. Focus | w h =0.3 | w = 0.5 | |||||||
d i =0.5 | d = 1.0 | d = 1.5 | d = 2.0 | d = 0.5 | d = 1.0 | d = 1.5 | d = 2.0 | ||
q2LOOa | 0.45 | 0.54 | 0.61 | 0.62 | 0.43 | 0.69 | 0.82 | 0.61 | 0.61 |
SEP b | 0.23 | 0.21 | 0.19 | 0.19 | 0.23 | 0.21 | 0.19 | 0.19 | 0.29 |
Nc | 4 | 5 | 4 | 5 | 4 | 6 | 6 | 5 | 4 |
r2 d | 0.92 | 0.89 | 0.91 | 0.91 | 0.88 | 0.93 | 0.99 | 0.89 | 0.60 |
SEE e | 0.05 | 0.10 | 0.09 | 0.09 | 0.10 | 0.10 | 0.01 | 0.10 | 0.20 |
S f | 0.33 | 0.39 | 0.41 | 0.43 | 0.37 | 0.45 | 0.49 | 0.46 | 0.47 |
H g | 0.67 | 0.61 | 0.59 | 0.57 | 0.63 | 0.57 | 0.61 | 0.53 | 0.53 |
w = 0.7 | w = 0.9 | ||||||||
d = 0.5 | d = 1.0 | d = 1.5 | d = 2.0 | d = 0.5 | d = 1.0 | d = 1.5 | d = 2.0 | ||
q2LOO | 0.45 | 0.71 | 0.65 | 0.20 | 0.54 | 0.61 | 0.13 | 0.17 | |
SEP | 0.24 | 0.20 | 0.27 | 0.18 | 0.21 | 0.19 | 0.27 | 0.29 | |
N | 6 | 6 | 5 | 3 | 5 | 4 | 2 | 4 | |
r2 | 0.84 | 0.86 | 0.87 | 0.75 | 0.84 | 0.84 | 0.62 | 0.47 | |
SEE | 0.13 | 0.12 | 0.16 | 0.15 | 0.13 | 0.13 | 0.20 | 0.24 | |
S | 0.36 | 0.29 | 0.31 | 0.29 | 0.26 | 0.26 | 0.52 | 0.25 | |
H | 0.64 | 0.71 | 0.69 | 0.71 | 0.74 | 0.74 | 0.48 | 0.75 |
HQSAR | CoMFA | CoMSIA | ||
---|---|---|---|---|
q2LOO a | 0.82 | 0.89 | 0.82 | |
SEE b | 0.17 | 0.11 | 0.19 | |
r2 c | 0.98 | 0.99 | 0.99 | |
SEEcv d | 0.08 | 0.02 | 0.01 | |
N e | 5 | 6 | 6 | |
Fdist f | A/B/H/Ch/DA | S % i | 0.52 | - |
HL g | 61 | E % j | 0.48 | - |
Fsize h | 5–8 | S% i | - | 0.49 |
H% k | - | 0.61 | ||
Weight | 0.9 | 0.8 | ||
Distance | 1.2 | 1.5 | ||
dq2/dr2yy′ m | 1.10 | 0.80 |
Model | q2 [a] | r2pred [b] | r2m [c] | Q2F2 [d] | Q2F3 [d] |
---|---|---|---|---|---|
HQSAR (A/B/H/Ch/DA) | 0.82 | 0.90 | 0.82 | 0.91 | 0.98 |
CoMFA (d = 1.0 Å, w = 0.5) | 0.89 | 0.94 | 0.84 | 0.95 | 0.99 |
CoMSIA (d = 1.0 Å, w = 0.5) | 0.82 | 0.93 | 0.79 | 0.94 | 0.99 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Araujo, S.C.; Sousa, F.S.; Costa-Silva, T.A.; Tempone, A.G.; Lago, J.H.G.; Honorio, K.M. Discovery of New Hits as Antitrypanosomal Agents by In Silico and In Vitro Assays Using Neolignan-Inspired Natural Products from Nectandra leucantha. Molecules 2021, 26, 4116. https://doi.org/10.3390/molecules26144116
Araujo SC, Sousa FS, Costa-Silva TA, Tempone AG, Lago JHG, Honorio KM. Discovery of New Hits as Antitrypanosomal Agents by In Silico and In Vitro Assays Using Neolignan-Inspired Natural Products from Nectandra leucantha. Molecules. 2021; 26(14):4116. https://doi.org/10.3390/molecules26144116
Chicago/Turabian StyleAraujo, Sheila C., Fernanda S. Sousa, Thais A. Costa-Silva, Andre G. Tempone, João Henrique G. Lago, and Kathia M. Honorio. 2021. "Discovery of New Hits as Antitrypanosomal Agents by In Silico and In Vitro Assays Using Neolignan-Inspired Natural Products from Nectandra leucantha" Molecules 26, no. 14: 4116. https://doi.org/10.3390/molecules26144116
APA StyleAraujo, S. C., Sousa, F. S., Costa-Silva, T. A., Tempone, A. G., Lago, J. H. G., & Honorio, K. M. (2021). Discovery of New Hits as Antitrypanosomal Agents by In Silico and In Vitro Assays Using Neolignan-Inspired Natural Products from Nectandra leucantha. Molecules, 26(14), 4116. https://doi.org/10.3390/molecules26144116