Spin Crossover in Nickel(II) Tetraphenylporphyrinate via Forced Axial Coordination at the Air/Water Interface
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Yang, Y. Effects induced by axial ligands binding to tetrapyrrole-based aromatic metallomacrocycles. J. Phys. Chem. A 2011, 115, 9043–9054. [Google Scholar] [CrossRef] [PubMed]
- Kepp, K.P. Heme: From quantum spin crossover to oxygen manager of life. Coord. Chem. Rev. 2017, 344, 363–374. [Google Scholar] [CrossRef] [Green Version]
- Amanullah, S.; Singha, A.; Dey, A. Tailor made iron porphyrins for investigating axial ligand and distal environment contributions to electronic structure and reactivity. Coord. Chem. Rev. 2019, 386, 183–208. [Google Scholar] [CrossRef]
- Zhou, X.; Xu, C.; Guo, P.; Sun, W.; Wei, P.; Liu, J. Axial Ligand Coordination Tuning of the Electrocatalytic Activity of Iron Porphyrin Electrografted onto Carbon Nanotubes for the Oxygen Reduction Reaction. Chem. A Eur. J. 2021. [Google Scholar] [CrossRef]
- Nikolaou, V.; Charisiadis, A.; Stangel, C.; Charalambidis, G.; Coutsolelos, A.G. Porphyrinoid–Fullerene Hybrids as Candidates in Artificial Photosynthetic Schemes. C J. Carbon Res. 2019, 5, 57. [Google Scholar] [CrossRef] [Green Version]
- Benitz, A.; Thomas, M.B.; Silva, I.; Nesterov, V.N.; Verbeck, G.F.; D’Souza, F. Photoinduced Electron Transfer in Axially Coordinated Supramolecular Zinc Tetrapyrrole Bis(styryl)BODIPY Donor-Acceptor Conjugates. ChemPhotoChem 2021, 5, 260–269. [Google Scholar] [CrossRef]
- Jia, Q.-F.; Chen, P.-Y.; Cao, J.; Li, Y.-X.; Li, Y.-Y.; Liu, J.-L.; Feng, X.-X.; Liu, J.-C. Anchored porphyrin with different side chain groups via its axial coordinate self-assembly for dye-sensitized solar cells. J. Photochem. Photobiol. A Chem. 2021, 410, 113125. [Google Scholar] [CrossRef]
- Otsuki, J. Supramolecular approach towards light-harvesting materials based on porphyrins and chlorophylls. J. Mater. Chem. A 2018, 6, 6710–6753. [Google Scholar] [CrossRef]
- Shee, N.K.; Kim, M.K.; Kim, H.J. Supramolecular porphyrin nanostructures based on coordination-driven self-assembly and their visible light catalytic degradation of methylene blue dye. Nanomaterials 2020, 10, 2314. [Google Scholar] [CrossRef]
- Prigorchenko, E.; Ustrnul, L.; Borovkov, V.; Aav, R. Heterocomponent ternary supramolecular complexes of porphyrins: A review. J. Porphyr. Phthalocyanines 2019, 23, 1308–1325. [Google Scholar] [CrossRef] [Green Version]
- Zarrabi, N.; Poddutoori, P.K. Aluminum(III) porphyrin: A unique building block for artificial photosynthetic systems. Coord. Chem. Rev. 2021, 429, 213561. [Google Scholar] [CrossRef]
- Meshkov, I.N.; Bulach, V.; Gorbunova, Y.G.; Gostev, F.E.; Nadtochenko, V.A.; Tsivadze, A.Y.; Hosseini, M.W. Tuning photochemical properties of phosphorus(V) porphyrin photosensitizers. Chem. Commun. 2017, 53, 9918–9921. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Y.; Li, L.; Zhou, S. Axial Ligation of Heme in c-Type Cytochromes of Living Shewanella oneidensis: A New Insight into Enhanced Extracellular Electron Transfer. ChemElectroChem 2015, 2, 1672–1677. [Google Scholar] [CrossRef]
- Devaramani, S.; Ma, X.; Zhang, S.; Shinger, M.I.; Qin, D.; Shan, D.; Lu, X. Photo-Switchable and Wavelength Selective Axial Ligation of Thiol-Appended Molecules to Zinc Tetraphenylporphyrin: Spectral and Charge Transfer Kinetics Studies. J. Phys. Chem. C 2017, 121, 9729–9738. [Google Scholar] [CrossRef]
- Thies, S.; Bornholdt, C.; Köhler, F.; Sönnichsen, F.D.; Näther, C.; Tuczek, F.; Herges, R. Coordination-induced spin crossover (CISCO) through axial bonding of substituted pyridines to nickel-porphyrins: σ-Donor versus π-acceptor effects. Chem. A Eur. J. 2010, 16, 10074–10083. [Google Scholar] [CrossRef]
- Halcrow, M.A. Structure: Function relationships in molecular spin-crossover complexes. Chem. Soc. Rev. 2011, 40, 4119–4142. [Google Scholar] [CrossRef]
- Martynov, A.G.; Safonova, E.A.; Tsivadze, A.Y.; Gorbunova, Y.G. Functional molecular switches involving tetrapyrrolic macrocycles. Coord. Chem. Rev. 2019, 387, 325–347. [Google Scholar] [CrossRef]
- Choi, S.; Phillips, J.A.; Ware, W.; Wittschieben, C.; Medforth, C.J.; Smith, K.M. Magnetic Circular Dichroism Spectroscopic Studies on the Stereochemistry and Coordination Behavior of Nickel Porphyrins. Inorg. Chem. 1994, 33, 3873–3876. [Google Scholar] [CrossRef]
- Caughey, W.S.; Deal, R.M.; McLees, B.D.; Alben, J.O. Species Equilibria in Nickel(II) Porphyrin Solutions: Effect of Porphyrin Structure, Solvent and Temperature. J. Am. Chem. Soc. 1962, 84, 1735–1736. [Google Scholar] [CrossRef]
- McLees, B.D.; Caughey, W.S. Substituted deuteroporphyrins. V. Structures, stabilities, and properties of nickel(II) complexes with axial ligands. Biochemistry 1968, 7, 642–652. [Google Scholar] [CrossRef]
- Kim, D.; Su, Y.O.; Spiro, T.G. Resonance Raman frequencies and core size for low- and high-spin nickel porphyrins. Inorg. Chem. 1986, 25, 3988–3993. [Google Scholar] [CrossRef]
- Jia, S.L.; Jentzen, W.; Shang, M.; Song, X.Z.; Ma, J.G.; Robert Scheldt, W.; Shelnutt, J.A. Axial Coordination and Conformational Heterogeneity of Nickel(II) Tetraphenylporphyrin Complexes with Nitrogenous Bases 1. Inorg. Chem. 1998, 37, 4402–4412. [Google Scholar] [CrossRef]
- Thies, S.; Sell, H.; Bornholdt, C.; Schütt, C.; Köhler, F.; Tuczek, F.; Herges, R. Light-Driven Coordination-Induced Spin-State Switching: Rational Design of Photodissociable Ligands. Chem. A Eur. J. 2012, 18, 16358–16368. [Google Scholar] [CrossRef] [PubMed]
- Thies, S.; Sell, H.; Schütt, C.; Bornholdt, C.; Näther, C.; Tuczek, F.; Herges, R. Light-induced spin change by photodissociable external ligands: A new principle for magnetic switching of molecules. J. Am. Chem. Soc. 2011, 133, 16243–16250. [Google Scholar] [CrossRef]
- Venkataramani, S.; Jana, U.; Dommaschk, M.; Sönnichsen, F.D.; Tuczek, F.; Herges, R. Magnetic bistability of molecules in homogeneous solution at room temperature. Science 2011, 331, 445–448. [Google Scholar] [CrossRef]
- Ludwig, J.; Gröbner, J.; Dommaschk, M.; Huber, L.M.; Peters, M.K.; Hövener, J.B.; Herges, R. Ni(II)porphyrins as pH dependent light-driven coordination-induced spin-state switches (LD-CISSS) in aqueous solution. J. Porphyr. Phthalocyanines 2020, 24, 480–488. [Google Scholar] [CrossRef]
- Kumar, R.; Chaudhri, N.; Sankar, M. Ratiometric and colorimetric “naked eye” selective detection of CN—Ions by electron deficient Ni(ii) porphyrins and their reversibility studies. Dalton Trans. 2015, 44, 9149–9157. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, K.; Furutani, K.; Ogawa, T. Outstanding Enhancement in the Axial Coordination Ability of the Highly Rigid Cofacial Cyclic Metalloporphyrin Dimer. Asian J. Org. Chem. 2021, 10, 1192–1197. [Google Scholar] [CrossRef]
- Mandal, T.; Das, S.; De Sarkar, S. Nickel(II) Tetraphenylporphyrin as an Efficient Photocatalyst Featuring Visible Light Promoted Dual Redox Activities. Adv. Synth. Catal. 2019, 361, 3200–3209. [Google Scholar] [CrossRef]
- Gorbunova, Y.G.; Grishina, A.D.; Martynov, A.G.; Krivenko, T.V.; Isakova, A.A.; Savel’ev, V.V.; Nefedov, S.E.; Abkhalimov, E.V.; Vannikov, A.V.; Tsivadze, A.Y. The crucial role of self-assembly in nonlinear optical properties of polymeric composites based on crown-substituted ruthenium phthalocyaninate. J. Mater. Chem. C 2015, 3, 6692–6700. [Google Scholar] [CrossRef]
- Stuchebryukov, S.D.; Selektor, S.L.; Silantieva, D.A.; Shokurov, A.V. Peculiarities of the reflection-absorption and transmission spectra of ultrathin films under normal incidence of light. Prot. Met. 2013, 49, 189–197. [Google Scholar] [CrossRef]
- Gorbunova, Y.G.; Enakieva, Y.Y.; Sakharov, S.G.; Tsivadze, A.Y. Synthesis and spectral properties of ruthenium(II) complexes with tetra-15-crown-5-phthalocyanine and N-donor ligands. J. Porphyr. Phthalocyanines 2003, 7, 795–800. [Google Scholar] [CrossRef]
- Enakieva, Y.Y.; Gorbunova, Y.G.; Nefedov, S.E.; Tsivadze, A.Y. Synthesis and structure of the (R4Pc)Ru(TED)2 complex, where R4Pc2− is the tetra-15-crown-5-phthalocyaninate dianion and TED is triethylenediamine. Mendeleev Commun. 2004, 14, 193–194. [Google Scholar] [CrossRef]
- Grishina, A.D.; Gorbunova, Y.G.; Zolotarevsky, V.I.; Pereshivko, L.Y.; Enakieva, Y.Y.; Krivenko, T.V.; Savelyev, V.; Vannikov, A.V.; Tsivadze, A.Y. Solvent-induced supramolecular assemblies of crown-substituted ruthenium phthalocyaninate: Morphology of assemblies and non-linear optical properties. J. Porphyr. Phthalocyanines 2009, 13, 92–98. [Google Scholar] [CrossRef]
- Vannikov, A.V.; Grishina, A.D.; Gorbunova, Y.G.; Enakieva, Y.Y.; Krivenko, T.V.; Savelyev, V.; Tsivadze, A.Y. Photorefractive IR-spectrum composites prepared from polyimide and ruthenium(II) tetra-15-crown-5-phthalocyaninate with axially coordinated triethylenediamine molecules. Russ. J. Phys. Chem. 2006, 80, 453–460. [Google Scholar] [CrossRef]
- Shokurov, A.V.; Selektor, S.L.; Arslanov, V.V.; Karpacheva, M.I.; Gagina, I.A.; Gorbunova, Y.G.; Tsivadze, A.Y. Two-Dimensional Aggregation of Crown-Phthalocyanine Ligand at Air-Water Interface. Macroheterocycles 2012, 5, 358–365. [Google Scholar] [CrossRef] [Green Version]
- Arslanov, V.V.; Gorbunova, Y.G.; Selektor, S.L.; Sheinina, L.S.; Tselykh, O.G.; Enakieva, Y.Y.; Tsivadze, A.Y. Monolayers and Langmuir-Blodgett films of crown-substituted phthalocyanines. Russ. Chem. Bull. 2004, 53, 2532–2541. [Google Scholar] [CrossRef]
- Chen, Y.; Zhao, S.; Li, X.; Jiang, J. Tuning the arrangement of mono-crown ether-substituted phthalocyanines in Langmuir–Blodgett films by the length of alkyl chains and the cation in subphase. J. Colloid Interface Sci. 2005, 289, 200–205. [Google Scholar] [CrossRef]
- Van Nostrum, C.F. Supramolecular Assembles from Liquid-Crystalline Phthalocyanines. Mol. Cryst. Liq. Cryst. 1997, 302, 303–308. [Google Scholar] [CrossRef]
- Song, Y.; Haddad, R.E.; Jia, S.L.; Hok, S.; Olmstead, M.M.; Nurco, D.J.; Schore, N.E.; Zhang, J.; Ma, J.G.; Smith, K.M.; et al. Energetics and structural consequences of axial ligand coordination in nonplanar nickel porphyrins. J. Am. Chem. Soc. 2005, 127, 1179–1192. [Google Scholar] [CrossRef]
- Gutzeit, F.; Dommaschk, M.; Levin, N.; Buchholz, A.; Schaub, E.; Plass, W.; Näther, C.; Herges, R. Structure and Properties of a Five-Coordinate Nickel(II) Porphyrin. Inorg. Chem. 2019, 58, 12542–12546. [Google Scholar] [CrossRef] [PubMed]
- Dommaschk, M.; Thoms, V.; Schütt, C.; Näther, C.; Puttreddy, R.; Rissanen, K.; Herges, R. Coordination-Induced Spin-State Switching with Nickel Chlorin and Nickel Isobacteriochlorin. Inorg. Chem. 2015, 54, 9390–9392. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shokurov, A.V.; Kutsybala, D.S.; Kroitor, A.P.; Dmitrienko, A.A.; Martynov, A.G.; Enakieva, Y.Y.; Tsivadze, A.Y.; Selektor, S.L.; Gorbunova, Y.G. Spin Crossover in Nickel(II) Tetraphenylporphyrinate via Forced Axial Coordination at the Air/Water Interface. Molecules 2021, 26, 4155. https://doi.org/10.3390/molecules26144155
Shokurov AV, Kutsybala DS, Kroitor AP, Dmitrienko AA, Martynov AG, Enakieva YY, Tsivadze AY, Selektor SL, Gorbunova YG. Spin Crossover in Nickel(II) Tetraphenylporphyrinate via Forced Axial Coordination at the Air/Water Interface. Molecules. 2021; 26(14):4155. https://doi.org/10.3390/molecules26144155
Chicago/Turabian StyleShokurov, Alexander V., Daria S. Kutsybala, Andrey P. Kroitor, Alexander A. Dmitrienko, Alexander G. Martynov, Yulia Yu. Enakieva, Aslan Yu. Tsivadze, Sofiya L. Selektor, and Yulia G. Gorbunova. 2021. "Spin Crossover in Nickel(II) Tetraphenylporphyrinate via Forced Axial Coordination at the Air/Water Interface" Molecules 26, no. 14: 4155. https://doi.org/10.3390/molecules26144155
APA StyleShokurov, A. V., Kutsybala, D. S., Kroitor, A. P., Dmitrienko, A. A., Martynov, A. G., Enakieva, Y. Y., Tsivadze, A. Y., Selektor, S. L., & Gorbunova, Y. G. (2021). Spin Crossover in Nickel(II) Tetraphenylporphyrinate via Forced Axial Coordination at the Air/Water Interface. Molecules, 26(14), 4155. https://doi.org/10.3390/molecules26144155