Enhanced Electrochemical Performance of Supercapacitors via Atomic Layer Deposition of ZnO on the Activated Carbon Electrode Material
Abstract
:1. Introduction
2. Materials and Methods
2.1. Electrode and Electrolyte Materials
2.2. ALD ZnO Coating Process
2.3. Microstructural Analysis
2.4. Electrochemical Measurements
3. Results and Discussion
3.1. Deposition of ZnO ALD on AC Electrodes
3.2. Electrochemical Performance of ALD ZnO-Coated AC Electrodes
3.2.1. Dependence on ALD Coating Cycle
3.2.2. Dependence on ALD Pulsing Time and Temperatures
3.3. ALD of ZnO on AC Powders Compared to ALD of ZnO on Electrodes
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Zhang, Y.; Feng, H.; Wu, X.; Wang, L.; Zhang, A.; Xia, T.; Dong, H.; Li, X.; Zhang, L. Progress of electrochemical capacitor electrode materials: A review. Int. J. Hydrog. Energy 2009, 34, 4889–4899. [Google Scholar] [CrossRef]
- Simon, P.; Gogotsi, Y. Materials for electrochemical capacitors. Nat. Mater. 2008, 7, 845–854. [Google Scholar] [CrossRef] [Green Version]
- Wu, Q.; Yin, Y.; Sun, S.; Zhang, X.; Wan, N.; Bai, Y. Novel AlF3 surface modified spinel LiMn1.5Ni0.5O4 for lithium-ion batteries: Performance characterization and mechanism exploration. Electrochim. Acta 2015, 158, 73–80. [Google Scholar] [CrossRef]
- Gandla, D.; Song, G.; Wu, C.; Ein-Eli, Y.; Tan, D.Q. Atomic Layer Deposition (ALD) of Alumina over Activated Carbon Electrodes Enabling a STable 4 V Supercapacitor Operation. ChemistryOpen 2021, 10, 402. [Google Scholar] [CrossRef]
- Li, Z.; Su, J.; Wang, X. Atomic Layer Deposition in the Development of Supercapacitor and Lithium-ion battery Devices. Carbon 2021, 179, 299–326. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, L.; Liu, J.; Adair, K.; Zhao, F.; Sun, Y.; Wu, T.; Bi, X.; Amine, K.; Lu, J. Atomic/molecular layer deposition for energy storage and conversion. J. Chem. Soc. Rev. 2021, 50, 3889–3956. [Google Scholar] [CrossRef] [PubMed]
- Knez, M.; Kadri, A.; Wege, C.; Gösele, U.; Jeske, H.; Nielsch, K. Atomic layer deposition on biological macromolecules: Metal oxide coating of tobacco mosaic virus and ferritin. Nano Lett. 2006, 6, 1172–1177. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Li, X.; Karuturi, S.K.; Tok, A.I.Y.; Fan, H.J. Atomic layer deposition for nanofabrication and interface engineering. Nanoscale 2012, 4, 1522–1528. [Google Scholar] [CrossRef]
- Zhang, F.; Song, G.; Gandla, D.; Ein-Eli, Y.; Tan, D.Q. Synergy of Oxygen Plasma and Al2O3 Atomic Layer Deposition on Improved Electrochemical Stability of Activated Carbon-Based Supercapacitor. Front. Energy Res. 2021, 9, 124. [Google Scholar] [CrossRef]
- Tan, D.; Song, G.; Gandla, D.; Zhang, F. Commonalities of Atomic Layer Deposition of Oxide Coatings on Activated Carbons for 3.5 V Electric Double Layer Supercapacitors. Front. Energy Res. 2020, 8, 596062. [Google Scholar] [CrossRef]
- Hong, K.; Cho, M.; Kim, S.O. Atomic layer deposition encapsulated activated carbon electrodes for high voltage stable supercapacitors. ACS Appl. Mater. Interfaces 2015, 7, 1899–1906. [Google Scholar] [CrossRef]
- Maruthupandy, M.; Anand, M.; Maduraiveeran, G.; Suresh, S.; Beevi, A.S.H.; Priya, R.J. Investigation on the electrical conductivity of ZnO nanoparticles-decorated bacterial nanowires. Adv. Nat. Sci. Nanosci. 2016, 7, 045011. [Google Scholar] [CrossRef] [Green Version]
- Barroso-Bogeat, A.; Alexandre-Franco, M.; Fernández-González, C.; Macías-García, A.; Gómez-Serrano, V. Electrical conductivity of activated carbon-metal oxide nanocomposites under compression: A comparison study. Phys. Chem. Chem. Phys. 2014, 16, 25161–25175. [Google Scholar] [CrossRef] [PubMed]
- Vijayan, B.L.; Misnon, I.I.; Kumar, G.M.A.; Miyajima, K.; Reddy, M.V.; Zaghib, K.; Karuppiah, C.; Yang, C.; Jose, R. Facile fabrication of thin metal oxide films on porous carbon for high density charge storage. J. Colloid Interface Sci. 2020, 562, 567–577. [Google Scholar] [CrossRef]
- Sofiane, B.; Kara, E.; Gleb, Y. Atomic layer deposition of vanadium oxide on carbon nanotubes for high-power supercapacitor electrodes. Energy Environ. Sci. 2012, 5, 6872–6879. [Google Scholar] [CrossRef]
- Elmouwahidi, A.; Bailón-García, E.; Castelo-Quibén, J.; Pérez-Cadenas, A.F.; Maldonado-Hódar, F.J.; Carrasco-Marín, F. Carbon–TiO 2 composites as high-performance supercapacitor electrodes: Synergistic effect between carbon and metal oxide phases. J. Mater.Chem. A 2018, 6, 633–644. [Google Scholar] [CrossRef]
- Cho, H.-M.; Chen, M.V.; MacRae, A.C.; Meng, Y.S. Effect of surface modification on nano-structured LiNi0.5Mn1.5O4 spinel materials. ACS Appl. Mater. Interfaces 2015, 7, 16231–16239. [Google Scholar] [CrossRef] [PubMed]
- Kraytsberg, A.; Drezner, H.; Auinat, M.; Shapira, A.; Solomatin, N.; Axmann, P.; Wohlfahrt-Mehrens, M.; Ein-Eli, Y. Atomic Layer Deposition of a Particularized Protective MgF2 Film on a Li-Ion Battery LiMn1.5Ni0.5O4 Cathode Powder Material. ChemNanoMat 2015, 1, 577–585. [Google Scholar] [CrossRef]
- Shapira, A.; Tiurin, O.; Solomatin, N.; Auinat, M.; Meitav, A.; Ein-Eli, Y. Robust AlF3 atomic layer deposition protective coating on LiMn1.5Ni0.5O4 particles: An advanced Li-ion battery cathode material powder. ACS Appl. Energy Mater. 2018, 1, 6809–6823. [Google Scholar] [CrossRef]
- Tiurin, O.; Solomatin, N.; Auinat, M.; Ein-Eli, Y. Atomic layer deposition (ALD) of lithium fluoride (LiF) protective film on Li-ion battery LiMn1.5Ni0.5O4 cathode powder material. J. Power Sources 2020, 448, 227373. [Google Scholar] [CrossRef]
- Tiurin, O.; Ein-Eli, Y. A critical review: The impact of the battery electrode material substrate on the composition and properties of atomic layer deposition (ALD) coatings. Adv. Mater. Interfaces 2019, 6, 1901455. [Google Scholar] [CrossRef]
- Tanskanen, J.T.; Bakke, J.R.; Pakkanen, T.A.; Bent, S.F. Influence of organozinc ligand design on growth and material properties of ZnS and ZnO deposited by atomic layer deposition. J. Vac. Sci. Technol. 2011, 29, 031507. [Google Scholar] [CrossRef]
- Wang, C.-C.; Lin, J.-W.; Yu, Y.-H.; Lai, K.-H.; Chiu, K.-F.; Kei, C.-C. Electrochemical and structural investigation on ultrathin ALD ZnO and TiO2 coated lithium-rich layered oxide cathodes. ACS Sustain. Chem. Eng. 2018, 6, 16941–16950. [Google Scholar] [CrossRef]
- Tynell, T.; Karppinen, M. Atomic layer deposition of ZnO: A review. Semicond. Sci. Technol. 2014, 29, 043001. [Google Scholar] [CrossRef]
- Zhu, J.; Tang, H.; Tang, Z.; Ma, C. Improved electrochemical performance of zinc oxide coated lithium manganese silicate electrode for lithium-ion batteries. J. Alloys Compd. 2015, 633, 194–200. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, Y. Surface modifications of Li-ion battery electrodes with various ultrathin amphoteric oxide coatings for enhanced cycleability. J. Solid State Electrochem. 2013, 17, 1049–1058. [Google Scholar] [CrossRef]
- Gandla, D.; Tan, D.Q. Progress report on atomic layer deposition toward hybrid nanocomposite electrodes for next generation supercapacitors. Adv. Mater. Interfaces 2019, 6, 1900678. [Google Scholar] [CrossRef]
- Yan, J.; Wang, Q.; Wei, T.; Fan, Z. Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities. Adv. Energy Mater. 2014, 4, 1300816. [Google Scholar] [CrossRef]
- Song, G.; Tan, D.Q. Atomic Layer Deposition for Polypropylene Film Engineering—A Review. Macromol. Mater. Eng. 2020, 305, 2000127. [Google Scholar] [CrossRef]
ALD Temperature | 70 °C | 120 °C | 150 °C |
---|---|---|---|
DEZ pulse time | 100 and 400 ms | 100 ms | 400 ms |
ALD cycle | 20 | 2 and 6 | 7, 20 and 50 |
Impedance of EDLC Cells | Pristine AC | AC-Electrode-Coated with ZnO | AC-Powder-Coated with ZnO |
---|---|---|---|
ALD at 70 °C, 20 cycle, and 400 ms | 10–20 Ω | <10 Ω | <8 Ω |
After 5000 cycles | 50 Ω | 22 Ω | 17 Ω |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, C.; Zhang, F.; Xiao, X.; Chen, J.; Sun, J.; Gandla, D.; Ein-Eli, Y.; Tan, D.Q. Enhanced Electrochemical Performance of Supercapacitors via Atomic Layer Deposition of ZnO on the Activated Carbon Electrode Material. Molecules 2021, 26, 4188. https://doi.org/10.3390/molecules26144188
Wu C, Zhang F, Xiao X, Chen J, Sun J, Gandla D, Ein-Eli Y, Tan DQ. Enhanced Electrochemical Performance of Supercapacitors via Atomic Layer Deposition of ZnO on the Activated Carbon Electrode Material. Molecules. 2021; 26(14):4188. https://doi.org/10.3390/molecules26144188
Chicago/Turabian StyleWu, Chongrui, Fuming Zhang, Xiangshang Xiao, Junyan Chen, Junqi Sun, Dayakar Gandla, Yair Ein-Eli, and Daniel Q. Tan. 2021. "Enhanced Electrochemical Performance of Supercapacitors via Atomic Layer Deposition of ZnO on the Activated Carbon Electrode Material" Molecules 26, no. 14: 4188. https://doi.org/10.3390/molecules26144188
APA StyleWu, C., Zhang, F., Xiao, X., Chen, J., Sun, J., Gandla, D., Ein-Eli, Y., & Tan, D. Q. (2021). Enhanced Electrochemical Performance of Supercapacitors via Atomic Layer Deposition of ZnO on the Activated Carbon Electrode Material. Molecules, 26(14), 4188. https://doi.org/10.3390/molecules26144188