Effect of Inoculated Lactic Acid Fermentation on the Fermentable Saccharides and Polyols, Polyphenols and Antioxidant Activity Changes in Wheat Sourdough
Abstract
:1. Introduction
2. Results and Discussion
2.1. Dynamics of pH Changes during Fermentation
2.2. Dynamics of FODMAP Content Change during Fermentation
2.3. Dynamics of Polyphenolic Compounds and Antioxidant Activity Changes during Fermentation
3. Materials and Methods
3.1. Material
3.2. Methods
3.2.1. Dynamic of Fermentation
3.2.2. Determination of Fructans
3.2.3. Determination of Sugar and Polyol Content by HPLC-ELSD
3.2.4. Determination of Polyphenolic Compounds and Antioxidant Activity
3.3. Statistic Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- De Vuyst, L.; Neysens, P. The sourdough microflora: Biodiversity and metabolic interactions. Trends Food Sci. Technol. 2005, 16, 43–56. [Google Scholar] [CrossRef]
- Marco, M.L.; Heeney, D.; Binda, S.; Cifelli, C.J.; Cotter, P.D.; Folingé, B.; Gänzle, M.; Kort, R.; Pasin, G.; Pihlanto, A.; et al. Health benefits of fermented foods: Microbiota and beyond. Curr. Opin. Biotechnol. 2017, 44, 94–102. [Google Scholar] [CrossRef] [PubMed]
- Bertsch, A.; Roy, D.; LaPointe, G. Fermentation of Wheat Bran and Whey Permeate by Mono-Cultures of Lacticaseibacillus rhamnosus Strains and Co-culture with Yeast Enhances Bioactive Properties. Front. Bioeng. Biotechnol. 2020, 8, 956. [Google Scholar] [CrossRef]
- Ferraz, R.; Hickmann Flores, S.; Frazzon, J.; CruzSilveira Thys, R. The Effect of co-Fermentation on Sourdough Breadmaking using Different Viable Cell Concentrations of Lactobacillus plantarum and Saccharomyces cerevisiae as Starter Cultures. J. Culin. Sci. Technol. 2019, 19, 1–17. [Google Scholar] [CrossRef]
- Acín Albiac, M.; Di Cagno, R.; Filannino, P. How fructophilic lactic acid bacteria may reduce the FODMAPs content in wheat-derived baked goods: A proof of concept. Microb. Cell 2020, 19, 182. [Google Scholar] [CrossRef]
- Gibson, P.R.; Shepherd, S.J. Evidence-based dietary management of functional gastrointestinal symptoms: The FODMAP approach. J. Gastroenterol. Hepatol. 2010, 25, 252–258. [Google Scholar] [CrossRef] [PubMed]
- Loponen, J.; Gänzle, M.G. Use of Sourdough in Low FODMAP Baking. Foods 2018, 7, 96. [Google Scholar] [CrossRef] [Green Version]
- Menezes, L.A.A.; Minervini, F.; Filannin, P.; Sardaro, M.L.S.; Gatti, M.; De Dea Lindner, J. Effects of Sourdough on FODMAPs in Bread and Potential Outcomes on Irritable Bowel Syndrome Patients and Healthy Subjects. Front. Microbiol. 2018, 9, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whelan, K.; Abrahmsohn, O.; David, G.J.P.; Staudacher, H.; Irving, P.; Lomer, M.C.E.; Ellis, P.R. Fructan content of commonly consumed wheat, rye and gluten-free breads. Int. J. Food Sci. Nutr. 2011, 62, 498–503. [Google Scholar] [CrossRef]
- Yan, Y.L.; Hu, Y.; Gänzle, M.G. Prebiotics, FODMAPs and dietary fibre-conflicting concepts in development of functional food products? Curr. Opin. Food Sci. 2018, 20, 30–37. [Google Scholar] [CrossRef]
- El-Salhy, M.; Gundersen, D.; Hatlebakk, J.G.; Hausken, T. Diet and Irritable Bowel Syndrome, with a Focus on Appetite-Regulating Gut Hormones. In Nutrition in the Prevention and Treatment of Abdominal Obesity; Watson, R.R., Ed.; Academic Press: Amsterdam, The Netherlands, 2014; pp. 5–16. [Google Scholar]
- Shah, S.L.; Lacy, B.E. Dietary Interventions and Irritable Bowel Syndrome: A Review of the Evidence. Curr. Gastroenterol. Rep. 2016, 18, 1–6. [Google Scholar] [CrossRef]
- Biesiekierski, J.R.; Rosella, O.; Rose, R.; Liels, K.; Barrett, J.S.; Shepherd, S.J.; Gibson, P.R.; Muir, J.G. Quantification of fructans, galacto-oligosacharides and other short-chain carbohydrates in processed grains and cereals. J. Hum. Nutr. Diet. 2011, 24, 154–176. [Google Scholar] [CrossRef]
- Halmos, E.P.; Power, V.A.; Shepherd, S.J.; Gibson, P.R.; Muir, J.G. A Diet Low in FODMAPs Reduces Symptoms of Irritable Bowel Syndrome. Gastroenterology 2014, 146, 67–75. [Google Scholar] [CrossRef]
- Shepherd, S.J.; Gibson, P.R. Fructose Malabsorption and Symptoms of Irritable Bowel Syndrome: Guidelines for Effective Dietary Management. J. Am. Diet. Assoc. 2006, 106, 1631–1639. [Google Scholar] [CrossRef]
- Shepherd, S.J.; Lomer, M.C.E.; Gibson, P.R. Short-Chain Carbohydrates and Functional Gastrointestinal Disorders. Am. J. Gastroenterol. 2013, 108, 707–717. [Google Scholar] [CrossRef] [PubMed]
- Mansueto, P.; Seidita, A.; D’Alcamo, A.; Carroccio, A. Role of FODMAPs in Patients with Irritable Bowel Syndrome: A Review. Nutr. Clin. Pract. 2015, 30, 665–682. [Google Scholar] [CrossRef] [Green Version]
- El-Salhy, M.; Gundersen, D. Diet in irritable bowel syndrome. Nutr. J. 2015, 14, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calderon de la Barca, A.M.; Mejia-Leon, M.E. Are Gluten-Free Foods Just for Patients with a Gluten-Related Disease? In Celiac Disease and Non-Celiac; Rodrigo, L., Ed.; IntechOpen: London, UK, 2017; pp. 59–72. [Google Scholar]
- Ziegler, J.U.; Steiner, D.; Longin, C.F.H.; Würschum, T.; Schweiggert, R.M.; Carle, R. Wheat and the irritable bowel syndrome-FODMAP levels of modern and ancient species and their retention during bread making. J. Funct. Foods 2016, 25, 257–266. [Google Scholar] [CrossRef]
- Gänzle, M.G. Lactic metabolism revisited: Metabolism of lactic acid bacteria in food fermentations and food biotechnology. Curr. Opin. Food Sci. 2015, 2, 106–117. [Google Scholar] [CrossRef]
- Gänzle, M.G. Enzymatic and bacterial conversions during sourdough fermentation. Food Microbiol. 2014, 37, 2–10. [Google Scholar] [CrossRef]
- Gänzle, M.G.; Vermeulen, N.; Vogel, R.F. Carbohydrate, peptide and lipid metabolism of lactic acid bacteria in sourdough. Food Microbiol. 2007, 24, 128–138. [Google Scholar] [CrossRef] [PubMed]
- Banu, I.; Vasilean, I.; Aprodu, I. Effect of Lactic Fermentation on Antioxidant Capacity of Rye Sourdough and Bread. Food Sci. Technol. Res. 2010, 16, 571–576. [Google Scholar] [CrossRef]
- Colosimo, R.; Gabriele, M.; Cifelli, M.; Longo, V.; Domenici, V.; Pucci, L. The effect of sourdough fermentation on Triticum dicoccum from Garfagnana: 1H NMR characterization and analysis of the antioxidant activity. Food Chem. 2020, 305, 125510. [Google Scholar] [CrossRef]
- Galle, S.; Arendt, E.K. Exopolysaccharides from sourdough lactic acid bacteria. Food Sci. Nutr. 2014, 54, 891–901. [Google Scholar] [CrossRef]
- Struyf, N.; Laurent, J.; Lefevere, B.; Verspreet, J.; Verstrepen, K.J.; Courtin, C.M. Establishing the relative importance of damaged starch and fructan as sources of fermentable sugars in wheat flour and whole meal bread dough fermentations. Food Chem. 2017, 218, 89–98. [Google Scholar] [CrossRef]
- Struyf, N.; Laurent, J.; Verspreet, J.; Verstrepen, K.J.; Courtin, C.M. Saccharomyces cerevisiae and Kluyveromyces marxianus co-cultures allow to reduce FODMAP levels in whole wheat bread. J. Agric. Food Chem. 2017, 65, 8704–8713. [Google Scholar] [CrossRef] [Green Version]
- Gélinas, P.; McKinnon, C.; Gagnon, F. Fructans, water-soluble fibre and fermentable sugars in bread and pasta made with ancien and modern wheat. Int. J. Food Sci. Technol. 2016, 51, 555–564. [Google Scholar] [CrossRef]
- Fraberger, V.; Call, L.M.; Domin, K.J.; D’Amico, S. Applicability of Yeast Fermentation to Reduce Fructans and Other FODMAPs. Nutrients 2018, 10, 1247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wisselink, H.W.; Moers, A.P.; Mars, A.E.; Hoefnagel, M.H.; de Vos, W.M.; Hugenholtz, J. Overproduction of heterologous mannitol 1-phosphatase: A key factor for engineering mannitol production by Lactococcus lactis. Appl. Environ. Microbiol. 2005, 71, 1507–1514. [Google Scholar] [CrossRef] [Green Version]
- Chiș, M.S.; Păucean, A.; Stan, L.; Mureșan, V.; Vlaic, R.A.; Man, S.; Biriș-Dorhoi, E.S.; Muste, S. Lactobacillus plantarum ATCC 8014 in quinoa sourdough adaptability and antioxidant potential. Rom. Biotechnol. Lett. 2018, 23, 13581–13591. [Google Scholar]
- Curiel, A.; Curri, N.; Curiel, J.A.; Di Cagno, R.; Pontonio, E.; Cavoski, I.; Gobbetti, M.; Rizzello, C.G. Exploitation of Albanian wheat cultivars: Characterization of the flours and lactic acid bacteria microbiota and selection of starters for sourdough fermentation. Food Microbiol. 2014, 44, 96–107. [Google Scholar]
- Rodríguez, H.; Curiel, J.A.; Landete, J.M.; De Las Rivas, B.; Felipe, F.L.; Gómezcordovés, C. Food phenolics and lactic acid bacteria. Int. J. Food Microbiol. 2009, 132, 79–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rizzello, C.G.; Lorusso, A.; Russo, V.; Pinto, D.; Marzani, B.; Gobbetti, M. Improving the antioxidant properties of quinoa flour through fermentation with selected autochthonous lactic acid bacteria. Int. J. Food Microbiol. 2017, 241, 252. [Google Scholar] [CrossRef] [PubMed]
- McCleary, B.V.; Murphy, A.; Mugford, D.C. Measurement of total fructan in foods by enzymatic/spectrophotometric method: Collaborative study. J AOAC Int. 2000, 83, 356–364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lachowicz, S.; Świeca, M.; Pejcz, E. Biological activity, phytochemical parameters, and potential bioaccessibility of wheat bread enriched with powder and microcapsules made from Saskatoon berry. Food Chem. 2021, 338. [Google Scholar] [CrossRef]
- Prior, R.L.; Wu, X.; Schaich, K. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J. Agric. Food Chem. 2005, 53, 4290–4302. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M. Antioxidant activity applying an improved abts radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing Ability of plasma (FRAP) as a measure of ‘‘Antioxidant Power’’: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [Green Version]
Fermentation Time [h]/Sourdough Type | Spontaneous Fermentation | Lactobacillus casei | Lactobacillus plantarum |
---|---|---|---|
0 | 6.159 a | 6.159 a | 6.159 a |
24 | 3.410 c | 3.592 b | 3.566 b |
48 | 3.441 b | 3.506 c | 3.437 c |
72 | 3.410 c | 3.593 b | 3.416 d |
Sourdough Type | Fermentation Time [h] | Fructan | Glucose | Fructose | Mannitol | Sum of FODMAPs |
---|---|---|---|---|---|---|
unfermented sourdough | 0 | 1.15 a | 0.00 e | nd | 0.000 d | 1.15 a |
spontanous fermentation | 24 | 0.42 b | 0.06 c | nd | 0.000 d | 0.48 b |
48 | 0.28 d | 0.08 b | nd | 0.000 d | 0.35 c | |
72 | 0.18 e | 0.00 e | nd | 0.007 a | 0.19 d | |
Lactobacillus casei | 24 | 0.39 bc | 0.20 a | nd | 0.000 d | 0.45 b |
48 | 0.11 ef | 0.00 e | nd | 0.006 b | 0.12 de | |
72 | 0.07 f | 0.00 e | nd | 0.002 c | 0.08 e | |
Lactobacillus plantarum | 24 | 0.31 cd | 0.05 d | nd | 0.000 d | 0.36 c |
48 | 0.31 cd | 0.05 d | nd | 0.000 d | 0.36 c | |
72 | 0.10 ef | 0.00 e | nd | 0.000 d | 0.10 de |
Sourdough Type | Fermentation Time [h] | Polyphenolic Compounds [mg/100 g d.m.] | ABTS [mmol Trolox/100 g d.m.] | FRAP [mmol Trolox/100 g d.m.] |
---|---|---|---|---|
unfermented sourdough | 0 | 208.30 c | 1.95 c | 0.96 c |
spontaneous fermentation | 24 | 273.74 ab | 2.16 bc | 1.36 b |
48 | 270.54 ab | 2.18 bc | 1.27 b | |
72 | 262.35 b | 3.88 a | 1.80 a | |
Lactobacillus casei | 24 | 263.13 b | 2.48 bc | 1.06 c |
48 | 270.65 ab | 2.01 c | 1.03 c | |
72 | 295.96 ab | 3.60 a | 1.85 a | |
Lactobacillus plantarum | 24 | 251.38 b | 1.96 c | 1.09 c |
48 | 260.07 b | 1.91 c | 1.11 c | |
72 | 309.59 a | 3.58 a | 1.89 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pejcz, E.; Lachowicz-Wiśniewska, S.; Nowicka, P.; Wojciechowicz-Budzisz, A.; Spychaj, R.; Gil, Z. Effect of Inoculated Lactic Acid Fermentation on the Fermentable Saccharides and Polyols, Polyphenols and Antioxidant Activity Changes in Wheat Sourdough. Molecules 2021, 26, 4193. https://doi.org/10.3390/molecules26144193
Pejcz E, Lachowicz-Wiśniewska S, Nowicka P, Wojciechowicz-Budzisz A, Spychaj R, Gil Z. Effect of Inoculated Lactic Acid Fermentation on the Fermentable Saccharides and Polyols, Polyphenols and Antioxidant Activity Changes in Wheat Sourdough. Molecules. 2021; 26(14):4193. https://doi.org/10.3390/molecules26144193
Chicago/Turabian StylePejcz, Ewa, Sabina Lachowicz-Wiśniewska, Paulina Nowicka, Agata Wojciechowicz-Budzisz, Radosław Spychaj, and Zygmunt Gil. 2021. "Effect of Inoculated Lactic Acid Fermentation on the Fermentable Saccharides and Polyols, Polyphenols and Antioxidant Activity Changes in Wheat Sourdough" Molecules 26, no. 14: 4193. https://doi.org/10.3390/molecules26144193
APA StylePejcz, E., Lachowicz-Wiśniewska, S., Nowicka, P., Wojciechowicz-Budzisz, A., Spychaj, R., & Gil, Z. (2021). Effect of Inoculated Lactic Acid Fermentation on the Fermentable Saccharides and Polyols, Polyphenols and Antioxidant Activity Changes in Wheat Sourdough. Molecules, 26(14), 4193. https://doi.org/10.3390/molecules26144193